Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/65"
(AUTOMATIC EDIT of page 65 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
(→List) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005078.png ; $D ^ { * } = \hat { C } \backslash \overline { D }$ ; confidence 0.378 | + | 1. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005078.png ; $\mathbf{D} ^ { * } = \hat { \mathbf{C} } \backslash \overline { \mathbf{D} }$ ; confidence 0.378 |
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025053.png ; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378 | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025053.png ; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378 | ||
| − | 3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007041.png ; $ | + | 3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007041.png ; $a_5$ ; confidence 0.378 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001012.png ; $\ | + | 4. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001012.png ; $\tau_{ U , V } ( u \otimes v ) = v \otimes u$ ; confidence 0.378 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378 | + | 5. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $\operatorname{Sp} ( 0 )$ ; confidence 0.378 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080134.png ; $( u , \ | + | 6. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080134.png ; $( u , \varphi_j ) = \lambda _ { j } w _ { j }$ ; confidence 0.378 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049018.png ; $\operatorname { lim } _ { | + | 7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049018.png ; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m ( E )$ ; confidence 0.378 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300804.png ; $n \in N _ { 0 } = \{ 0,1,2 , \dots \}$ ; confidence 0.378 | + | 8. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300804.png ; $n \in \mathbf{N} _ { 0 } = \{ 0,1,2 , \dots \}$ ; confidence 0.378 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013048.png ; $( f _ { 1 } ( X ) , \dots , f _ { m } ( X ) )$ ; confidence 0.378 | + | 9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013048.png ; $( f _ { 1 } ( \bar{X} ) , \dots , f _ { m } ( \bar{X} ) )$ ; confidence 0.378 |
10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013079.png ; $H _ { \pm }$ ; confidence 0.378 | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013079.png ; $H _ { \pm }$ ; confidence 0.378 | ||
| − | 11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021041.png ; $0 \rightarrow D _ { n } \stackrel { \delta _ { n } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } C \rightarrow 0$ ; confidence 0.378 | + | 11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021041.png ; $0 \rightarrow D _ { n } \stackrel { \delta _ { n } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } \mathbf{C} \rightarrow 0$ ; confidence 0.378 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036018.png ; $ | + | 12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036018.png ; $p_ x$ ; confidence 0.378 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011054.png ; $- \Delta _ { | + | 13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011054.png ; $- \Delta _ { k } ^ { 0 }$ ; confidence 0.378 |
14. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021010.png ; $( a | b ) ^ { * } ( c | d ) = ( a ^ { * } c ) | ( b ^ { * } d )$ ; confidence 0.378 | 14. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021010.png ; $( a | b ) ^ { * } ( c | d ) = ( a ^ { * } c ) | ( b ^ { * } d )$ ; confidence 0.378 | ||
| − | 15. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016033.png ; $I _ { nd }$ ; confidence 0.378 | + | 15. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016033.png ; $\mathcal{I} _ { nd }$ ; confidence 0.378 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016027.png ; $A \| _ { 2 } = \operatorname { max } _ { x | + | 16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016027.png ; $\|A \| _ { 2 } = \operatorname { max } _ { x \neq 0} \|Ax\|_2 / \| x \|_2$ ; confidence 0.377 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011022.png ; $Y ( T _ { A } ) = \{ N _ { | + | 17. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011022.png ; $\mathcal{Y} ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.377 |
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015064.png ; $\mathfrak { g } / Ad$ ; confidence 0.377 | 18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015064.png ; $\mathfrak { g } / Ad$ ; confidence 0.377 | ||
| − | 19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027022.png ; $x _ { | + | 19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027022.png ; $x _ { n } \in X _ { n }$ ; confidence 0.377 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520363.png ; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.377 | + | 20. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520363.png ; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n,$ ; confidence 0.377 |
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377 | 21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377 | ||
| − | 22. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110123.png ; $( a \ | + | 22. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110123.png ; $( a \sharp b ) ( X ) =$ ; confidence 0.377 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010020.png ; $ | + | 23. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010020.png ; $L _ { 0 , n }$ ; confidence 0.377 |
24. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164099.png ; $V ^ { \prime }$ ; confidence 0.377 | 24. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164099.png ; $V ^ { \prime }$ ; confidence 0.377 | ||
| − | 25. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060181.png ; $= \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) u , u \rangle _ { E } - \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) v , v \rangle _ { E }$ ; confidence 0.377 | + | 25. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060181.png ; $= \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) u , u \rangle _ { \mathcal{E} } - \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) v , v \rangle _ { \mathcal{E} }$ ; confidence 0.377 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016061.png ; $ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016061.png ; $c_0$ ; confidence 0.377 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014017.png ; $Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } )$ ; confidence 0.377 | + | 27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014017.png ; $Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } ),$ ; confidence 0.377 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200109.png ; $R S [ i ] = | + | 28. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200109.png ; $R S [ i ] = id_X$ ; confidence 0.376 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022010.png ; $g \in M$ ; confidence 0.376 | + | 29. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022010.png ; $g \in \mathbf{M}$ ; confidence 0.376 |
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018025.png ; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376 | 30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018025.png ; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376 | ||
| − | 31. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009036.png ; $\zeta \in C ^ { | + | 31. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009036.png ; $\zeta \in \mathbf{C} ^ { n }$ ; confidence 0.376 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663017.png ; $\Delta _ { | + | 32. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663017.png ; $\Delta _ { h _ { i } } ^ { \bar{s} }$ ; confidence 0.376 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $( g )$ ; confidence 0.376 | + | 33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $\operatorname{Aut} ( \mathfrak{g} )$ ; confidence 0.376 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005079.png ; $\sigma | + | 34. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005079.png ; $\sigma _T$ ; confidence 0.376 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042030.png ; $\Psi _ { V | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042030.png ; $\Psi _ { V \otimes W , Z } = \Psi _ { V , Z } \circ \Psi _ { W , Z },$ ; confidence 0.376 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060109.png ; $= \ | + | 36. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060109.png ; $\operatorname{Bel}_{X,\text{known}}= \bigoplus _ { h_ { i } \in H } \operatorname{Bel} _ { h_i, \text{know} }.$ ; confidence 0.376 |
37. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071033.png ; $B _ { i }$ ; confidence 0.376 | 37. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071033.png ; $B _ { i }$ ; confidence 0.376 | ||
| − | 38. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001010.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { | + | 38. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001010.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { n } x _ { n }$ ; confidence 0.376 |
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019020.png ; $| S ^ { * } ( \alpha / q ) |$ ; confidence 0.375 | 39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019020.png ; $| S ^ { * } ( \alpha / q ) |$ ; confidence 0.375 | ||
| − | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020073.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { j = 1 , \ldots , n } | + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020073.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { j = 1 , \ldots , n^2 } | s _ { j } | \geq \sqrt { n }$ ; confidence 0.375 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005052.png ; $\{ \alpha _ { | + | 41. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005052.png ; $\{ \alpha _ { n } \}$ ; confidence 0.375 |
42. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021031.png ; $r \in R _ { W }$ ; confidence 0.375 | 42. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021031.png ; $r \in R _ { W }$ ; confidence 0.375 | ||
| − | 43. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003084.png ; $j | + | 43. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003084.png ; $j _0$ ; confidence 0.375 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014010.png ; $\gamma _ { j } = \hat { \phi } ( j ) , j \in Z$ ; confidence 0.375 | + | 44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014010.png ; $\gamma _ { j } = \hat { \phi } ( j ) , j \in \mathbf{Z},$ ; confidence 0.375 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221037.png ; $K$ ; confidence 0.375 | + | 45. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221037.png ; $\operatorname{Ad} K$ ; confidence 0.375 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011074.png ; $\{ \psi _ { X } ( . ) \ | + | 46. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011074.png ; $\{ \psi _ { X } ( . ) \hat{=} f ^ { * } ( x ) : x \in M \}.$ ; confidence 0.375 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170142.png ; $\operatorname { | + | 47. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170142.png ; $\operatorname { lnt } C ^ { 2 }$ ; confidence 0.375 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001040.png ; $f _ { 1 } , \dots , f _ { | + | 48. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001040.png ; $f _ { 1 } , \dots , f _ { n } \in \mathcal{D}$ ; confidence 0.375 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040175.png ; $| a _ { \alpha } | \leq C ^ { | \alpha | + 1 } , \alpha \in Z _ { + } ^ { n }$ ; confidence 0.375 | + | 49. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040175.png ; $| \mathbf{a} _ { \alpha } | \leq C ^ { | \alpha | + 1 } , \alpha \in \mathbf{Z} _ { + } ^ { n }.$ ; confidence 0.375 |
50. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021014.png ; $u _ { N } = \sum _ { n = 0 } ^ { N } a _ { n } \phi _ { n } ( x )$ ; confidence 0.375 | 50. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021014.png ; $u _ { N } = \sum _ { n = 0 } ^ { N } a _ { n } \phi _ { n } ( x )$ ; confidence 0.375 | ||
| − | 51. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201406.png ; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2$ ; confidence 0.375 | + | 51. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201406.png ; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2,$ ; confidence 0.375 |
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028072.png ; $\tilde { D } _ { m } \supset \tilde { D }$ ; confidence 0.375 | 52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028072.png ; $\tilde { D } _ { m } \supset \tilde { D }$ ; confidence 0.375 | ||
| Line 106: | Line 106: | ||
53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001014.png ; $- A ^ { \pm 3 }$ ; confidence 0.375 | 53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001014.png ; $- A ^ { \pm 3 }$ ; confidence 0.375 | ||
| − | 54. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301104.png ; $b | + | 54. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301104.png ; $b / 1$ ; confidence 0.375 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100114.png ; $\sigma _ { | + | 55. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100114.png ; $\sigma _ { n }$ ; confidence 0.375 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026014.png ; $X _ { H } , | + | 56. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026014.png ; $X _ { H } , \tilde{x}$ ; confidence 0.374 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026029.png ; $( L _ { h k } V ) _ { j } ^ { n + 1 } = \frac { V _ { j } ^ { n + 1 } - V _ { j } ^ { n } } { k } - \delta ^ { 2 } ( \frac { V _ { j } ^ { n + 1 } + V _ { j } ^ { n } } { 2 } )$ ; confidence 0.374 | + | 57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026029.png ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } = \frac { V _ { j } ^ { n + 1 } - V _ { j } ^ { n } } { k } - \delta ^ { 2 } \left( \frac { V _ { j } ^ { n + 1 } + V _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.374 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004048.png ; $\varphi \in G ^ { | + | 58. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004048.png ; $\varphi \in G ^ { s_0 } ( \Omega )$ ; confidence 0.374 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015036.png ; $P _ { j } ^ { i }$ ; confidence 0.374 | + | 59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015036.png ; $\mathcal{P} _ { j } ^ { i }$ ; confidence 0.374 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011086.png ; $ | + | 60. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011086.png ; $\dot{c}$ ; confidence 0.374 |
61. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c0271803.png ; $M _ { k }$ ; confidence 0.374 | 61. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c0271803.png ; $M _ { k }$ ; confidence 0.374 | ||
| − | 62. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110122.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 }$ ; confidence 0.374 | + | 62. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110122.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 },$ ; confidence 0.374 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374 | + | 63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.374 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027020.png ; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }$ ; confidence 0.374 | + | 64. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027020.png ; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }m$ ; confidence 0.374 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040653.png ; $ | + | 65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040653.png ; $\mathbf{Me} _ { \mathcal{S} _ { P } } ^ { *L } \mathfrak { M }$ ; confidence 0.374 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220116.png ; $k = 0 , \dots , m$ ; confidence 0.374 | + | 66. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220116.png ; $k = 0 , \dots , m.$ ; confidence 0.374 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006067.png ; $\| f \| _ { W ^ { k - 1 } | + | 67. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006067.png ; $\| f \| _ { W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )} + \textbf { inf } $ ; confidence 0.374 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007018.png ; $a \in A$ ; confidence 0.374 | + | 68. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007018.png ; $a \in \mathcal{A}$ ; confidence 0.374 |
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373 | 69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373 | ||
| − | 70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029048.png ; $HF _ { | + | 70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029048.png ; $\operatorname{HF} _ { * } ^ { symp } ( M , \phi )$ ; confidence 0.373 |
71. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002015.png ; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373 | 71. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002015.png ; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373 | ||
| − | 72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017016.png ; $ | + | 72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017016.png ; $#$ ; confidence 0.373 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001092.png ; $\mathfrak { | + | 73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001092.png ; $\mathfrak { g } ^ { c }$ ; confidence 0.373 |
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040033.png ; $G \times F / \sim$ ; confidence 0.373 | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040033.png ; $G \times F / \sim$ ; confidence 0.373 | ||
| Line 150: | Line 150: | ||
75. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322048.png ; $f _ { k }$ ; confidence 0.373 | 75. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322048.png ; $f _ { k }$ ; confidence 0.373 | ||
| − | 76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055034.png ; $- b _ { | + | 76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055034.png ; $- b _ { \gamma }$ ; confidence 0.373 |
77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023025.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } \leq 1$ ; confidence 0.373 | 77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023025.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } \leq 1$ ; confidence 0.373 | ||
Revision as of 15:18, 10 May 2020
List
1.
; $\mathbf{D} ^ { * } = \hat { \mathbf{C} } \backslash \overline { \mathbf{D} }$ ; confidence 0.378
2.
; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378
3.
; $a_5$ ; confidence 0.378
4.
; $\tau_{ U , V } ( u \otimes v ) = v \otimes u$ ; confidence 0.378
5.
; $\operatorname{Sp} ( 0 )$ ; confidence 0.378
6.
; $( u , \varphi_j ) = \lambda _ { j } w _ { j }$ ; confidence 0.378
7.
; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m ( E )$ ; confidence 0.378
8.
; $n \in \mathbf{N} _ { 0 } = \{ 0,1,2 , \dots \}$ ; confidence 0.378
9.
; $( f _ { 1 } ( \bar{X} ) , \dots , f _ { m } ( \bar{X} ) )$ ; confidence 0.378
10.
; $H _ { \pm }$ ; confidence 0.378
11.
; $0 \rightarrow D _ { n } \stackrel { \delta _ { n } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } \mathbf{C} \rightarrow 0$ ; confidence 0.378
12.
; $p_ x$ ; confidence 0.378
13.
; $- \Delta _ { k } ^ { 0 }$ ; confidence 0.378
14.
; $( a | b ) ^ { * } ( c | d ) = ( a ^ { * } c ) | ( b ^ { * } d )$ ; confidence 0.378
15.
; $\mathcal{I} _ { nd }$ ; confidence 0.378
16.
; $\|A \| _ { 2 } = \operatorname { max } _ { x \neq 0} \|Ax\|_2 / \| x \|_2$ ; confidence 0.377
17.
; $\mathcal{Y} ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.377
18.
; $\mathfrak { g } / Ad$ ; confidence 0.377
19.
; $x _ { n } \in X _ { n }$ ; confidence 0.377
20.
; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n,$ ; confidence 0.377
21.
; $n - r$ ; confidence 0.377
22.
; $( a \sharp b ) ( X ) =$ ; confidence 0.377
23.
; $L _ { 0 , n }$ ; confidence 0.377
24.
; $V ^ { \prime }$ ; confidence 0.377
25.
; $= \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) u , u \rangle _ { \mathcal{E} } - \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) v , v \rangle _ { \mathcal{E} }$ ; confidence 0.377
26.
; $c_0$ ; confidence 0.377
27.
; $Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } ),$ ; confidence 0.377
28.
; $R S [ i ] = id_X$ ; confidence 0.376
29.
; $g \in \mathbf{M}$ ; confidence 0.376
30.
; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376
31.
; $\zeta \in \mathbf{C} ^ { n }$ ; confidence 0.376
32.
; $\Delta _ { h _ { i } } ^ { \bar{s} }$ ; confidence 0.376
33.
; $\operatorname{Aut} ( \mathfrak{g} )$ ; confidence 0.376
34.
; $\sigma _T$ ; confidence 0.376
35.
; $\Psi _ { V \otimes W , Z } = \Psi _ { V , Z } \circ \Psi _ { W , Z },$ ; confidence 0.376
36.
; $\operatorname{Bel}_{X,\text{known}}= \bigoplus _ { h_ { i } \in H } \operatorname{Bel} _ { h_i, \text{know} }.$ ; confidence 0.376
37.
; $B _ { i }$ ; confidence 0.376
38.
; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { n } x _ { n }$ ; confidence 0.376
39.
; $| S ^ { * } ( \alpha / q ) |$ ; confidence 0.375
40.
; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { j = 1 , \ldots , n^2 } | s _ { j } | \geq \sqrt { n }$ ; confidence 0.375
41.
; $\{ \alpha _ { n } \}$ ; confidence 0.375
42.
; $r \in R _ { W }$ ; confidence 0.375
43.
; $j _0$ ; confidence 0.375
44.
; $\gamma _ { j } = \hat { \phi } ( j ) , j \in \mathbf{Z},$ ; confidence 0.375
45.
; $\operatorname{Ad} K$ ; confidence 0.375
46.
; $\{ \psi _ { X } ( . ) \hat{=} f ^ { * } ( x ) : x \in M \}.$ ; confidence 0.375
47.
; $\operatorname { lnt } C ^ { 2 }$ ; confidence 0.375
48.
; $f _ { 1 } , \dots , f _ { n } \in \mathcal{D}$ ; confidence 0.375
49.
; $| \mathbf{a} _ { \alpha } | \leq C ^ { | \alpha | + 1 } , \alpha \in \mathbf{Z} _ { + } ^ { n }.$ ; confidence 0.375
50.
; $u _ { N } = \sum _ { n = 0 } ^ { N } a _ { n } \phi _ { n } ( x )$ ; confidence 0.375
51.
; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2,$ ; confidence 0.375
52.
; $\tilde { D } _ { m } \supset \tilde { D }$ ; confidence 0.375
53.
; $- A ^ { \pm 3 }$ ; confidence 0.375
54.
; $b / 1$ ; confidence 0.375
55.
; $\sigma _ { n }$ ; confidence 0.375
56.
; $X _ { H } , \tilde{x}$ ; confidence 0.374
57.
; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } = \frac { V _ { j } ^ { n + 1 } - V _ { j } ^ { n } } { k } - \delta ^ { 2 } \left( \frac { V _ { j } ^ { n + 1 } + V _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.374
58.
; $\varphi \in G ^ { s_0 } ( \Omega )$ ; confidence 0.374
59.
; $\mathcal{P} _ { j } ^ { i }$ ; confidence 0.374
60.
; $\dot{c}$ ; confidence 0.374
61.
; $M _ { k }$ ; confidence 0.374
62.
; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 },$ ; confidence 0.374
63.
; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.374
64.
; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }m$ ; confidence 0.374
65.
; $\mathbf{Me} _ { \mathcal{S} _ { P } } ^ { *L } \mathfrak { M }$ ; confidence 0.374
66.
; $k = 0 , \dots , m.$ ; confidence 0.374
67.
; $\| f \| _ { W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )} + \textbf { inf } $ ; confidence 0.374
68.
; $a \in \mathcal{A}$ ; confidence 0.374
69.
; $T ^ { 2 }$ ; confidence 0.373
70.
; $\operatorname{HF} _ { * } ^ { symp } ( M , \phi )$ ; confidence 0.373
71.
; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373
72.
; $#$ ; confidence 0.373
73.
; $\mathfrak { g } ^ { c }$ ; confidence 0.373
74.
; $G \times F / \sim$ ; confidence 0.373
75.
; $f _ { k }$ ; confidence 0.373
76.
; $- b _ { \gamma }$ ; confidence 0.373
77.
; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } \leq 1$ ; confidence 0.373
78.
; $X \sim U _ { p , R }$ ; confidence 0.373
79.
; $H ^ { * } O D$ ; confidence 0.373
80.
; $N$ ; confidence 0.372
81.
; $| F ( u ) | \leq C _ { 1 } \sum _ { \alpha \in K } \rho ^ { m - N / p } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.372
82.
; $\alpha ( k ) = Vol ( S ^ { k } )$ ; confidence 0.372
83.
; $X _ { 1 } , \dots , X _ { w }$ ; confidence 0.372
84.
; $( E ^ { \alpha } ( L ) \circ \sigma ^ { 2 k } ) ( Z ^ { \alpha } \circ \sigma ) \Delta$ ; confidence 0.372
85.
; $\| g _ { y } \| \rightarrow 0$ ; confidence 0.372
86.
; $d z = d z _ { 1 } \wedge \ldots \wedge d z _ { n } , \quad \langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.372
87.
; $F _ { x } - 1$ ; confidence 0.372
88.
; $H ^ { q } ( \Gamma , C )$ ; confidence 0.372
89.
; $A _ { i }$ ; confidence 0.372
90.
; $Q ( \alpha ^ { \beta } , \ldots , \alpha ^ { \beta ^ { d - 1 } } )$ ; confidence 0.372
91.
; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
92.
; $K _ { N } ( D ^ { \circ } ) . D ^ { \circ }$ ; confidence 0.372
93.
; $F$ ; confidence 0.372
94.
; $n = ( n 1 , \ldots , n _ { m } )$ ; confidence 0.372
95.
; $x \neq y$ ; confidence 0.372
96.
; $P = \langle x _ { 1 } , \dots , x _ { 8 } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.372
97.
; $A = ( \alpha _ { i } , j )$ ; confidence 0.372
98.
; $S _ { y }$ ; confidence 0.371
99.
; $\langle a , b | a ^ { p } b ^ { q } , a ^ { r } b ^ { s } \rangle$ ; confidence 0.371
100.
; $2 ^ { d - 1 } ( 2 d - 1 )$ ; confidence 0.371
101.
; $\psi : R ^ { N } \rightarrow R$ ; confidence 0.371
102.
; $a 0 , a 1 , \dots$ ; confidence 0.371
103.
; $y = \operatorname { Sub } T$ ; confidence 0.371
104.
; $E ^ { Y }$ ; confidence 0.371
105.
; $x ^ { \prime \prime } = ( x _ { k } + 1 , \dots , x _ { N } )$ ; confidence 0.371
106.
; $\operatorname { lim } \{ \| x ^ { n } \| ^ { 1 / n } \} = \operatorname { max } \{ | \lambda | : \lambda \in \operatorname { sp } ( J , x ) \}$ ; confidence 0.370
107.
; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { R } f _ { h } ( \frac { x - u } { N } ) d \mu ( u )$ ; confidence 0.370
108.
; $S _ { i n }$ ; confidence 0.370
109.
; $x \in R ^ { m }$ ; confidence 0.370
110.
; $\{ f ( t ) \} _ { ( k ; t _ { i } ) } = \sum _ { m = 0 } ^ { k } \frac { ( t - t _ { i } ) ^ { m } } { m ! } \frac { d ^ { m } f ( t ) } { d t ^ { m } } | _ { t = t _ { i } }$ ; confidence 0.370
111.
; $f e ^ { i x \operatorname { ln } \tau } = f e ^ { i t } = \xi$ ; confidence 0.370
112.
; $C _ { m } , N _ { 1 }$ ; confidence 0.370
113.
; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { lap } } f ( x ) d s$ ; confidence 0.370
114.
; $d ^ { n }$ ; confidence 0.370
115.
; $\{ E _ { t } ^ { S } \} _ { 1 } \leq s , t \leq n$ ; confidence 0.370
116.
; $R = 0$ ; confidence 0.370
117.
; $\xi ^ { * } \overline { \eta }$ ; confidence 0.370
118.
; $C _ { j } = ( 1 - x ^ { 2 } ) \frac { T _ { N } ^ { \prime } ( x ) ( - 1 ) ^ { j + 1 } } { [ \tau _ { j } N ^ { 2 } ( x - x _ { j } ) ] }$ ; confidence 0.370
119.
; $w _ { y } \in S$ ; confidence 0.370
120.
; $\alpha = ( \alpha _ { 1 } , \ldots , \alpha _ { n } )$ ; confidence 0.370
121.
; $D _ { n } ( x , \alpha ) = \sum _ { i = 0 } ^ { | n / 2 | } \frac { n } { n - i } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i }$ ; confidence 0.369
122.
; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369
123.
; $D = ( D _ { 1 } , \dots , D _ { n } )$ ; confidence 0.369
124.
; $\mu _ { 2 } ( \Omega ) \leq ( \frac { 1 } { | \Omega | } ) ^ { 2 / n } C _ { n } ^ { 2 / n } p _ { n / 2,1 } ^ { 2 }$ ; confidence 0.369
125.
; $\operatorname { tm } \zeta$ ; confidence 0.369
126.
; $\hat { K } ( X / A ) = K ( X , A )$ ; confidence 0.369
127.
; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369
128.
; $R \text { Mod } ( ? , C )$ ; confidence 0.369
129.
; $z \in C$ ; confidence 0.369
130.
; $8$ ; confidence 0.369
131.
; $M _ { N } = [ m _ { i } + j ] _ { i , j = 0 } ^ { n }$ ; confidence 0.369
132.
; $\| F f \| _ { L } 2 _ { \langle R ^ { 3 } \rangle } = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369
133.
; $L _ { 0 c } ^ { 2 } ( R ^ { N } )$ ; confidence 0.369
134.
; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369
135.
; $\sum _ { l = 1 } ^ { r } g ( a ^ { i } x )$ ; confidence 0.368
136.
; $i = 1 , \ldots , I$ ; confidence 0.368
137.
; $Z ( t , u )$ ; confidence 0.368
138.
; $H _ { P } ^ { 2 } ( X _ { C } , A ( j ) )$ ; confidence 0.368
139.
; $( S _ { m } + m )$ ; confidence 0.368
140.
; $n \| < C$ ; confidence 0.368
141.
; $h \in E$ ; confidence 0.368
142.
; $P \{ M / N \leq x \} \stackrel { \omega } { \rightarrow } F ( x )$ ; confidence 0.368
143.
; $A = B ^ { \uparrow X }$ ; confidence 0.368
144.
; $\alpha : X \rightarrow y$ ; confidence 0.368
145.
; $u _ { j }$ ; confidence 0.368
146.
; $X _ { i } = X \Lambda$ ; confidence 0.368
147.
; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n$ ; confidence 0.367
148.
; $\operatorname { exp } \{ \frac { 1 } { k _ { B } T } \sum _ { l = 1 } ^ { N } [ J S _ { i } S _ { + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { + 1 } ) ] \} =$ ; confidence 0.367
149.
; $\sigma _ { 1 } , \ldots , \sigma _ { e }$ ; confidence 0.367
150.
; $\operatorname { Ad } ( g ) = 1$ ; confidence 0.367
151.
; $1$ ; confidence 0.367
152.
; $n ^ { w }$ ; confidence 0.367
153.
; $\vec { E } _ { B }$ ; confidence 0.367
154.
; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367
155.
; $\| T \| < \gamma ( A )$ ; confidence 0.367
156.
; $t \in C$ ; confidence 0.366
157.
; $L _ { 100 } ^ { 2 }$ ; confidence 0.366
158.
; $S ^ { N } ( t )$ ; confidence 0.366
159.
; $V ^ { \sigma \langle y \rangle } / \operatorname { Ker } ( y )$ ; confidence 0.366
160.
; $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ ; confidence 0.366
161.
; $Mod ^ { * } L D = Mod ^ { * } S _ { D }$ ; confidence 0.366
162.
; $( p , q ) _ { M } = \langle M \hat { p } , \hat { q } \rangle$ ; confidence 0.366
163.
; $\delta _ { P } = [ P , . ] ^ { \wedge }$ ; confidence 0.366
164.
; $\otimes \mathfrak { p } : C \times C \rightarrow C$ ; confidence 0.366
165.
; $I \subset N$ ; confidence 0.366
166.
; $x \approx y = | \operatorname { K } K ( E ( x , y ) ) \approx L ( E ( x , y ) )$ ; confidence 0.366
167.
; $A ( x ) = \sum _ { p \leq x } 1 / p \cdot \operatorname { Im } ( f ( p ) p ^ { - i x _ { 0 } } )$ ; confidence 0.366
168.
; $C ]$ ; confidence 0.366
169.
; $I$ ; confidence 0.366
170.
; $H _ { N } = \cup \{ m \in Z ^ { n } : 2 ^ { s } j \leq | m _ { j } | < 2 ^ { s } j + 1 \}$ ; confidence 0.365
171.
; $< n + 2$ ; confidence 0.365
172.
; $A ( t _ { 0 } ) = A _ { 0 } , \dot { X } ( t ) = [ N ( X ( t ) , A ( t ) , t ) - X ( t ) ] \operatorname { exp } ( - k P ( t ) )$ ; confidence 0.365
173.
; $( S _ { n } + 2 )$ ; confidence 0.365
174.
; $L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.365
175.
; $i$ ; confidence 0.365
176.
; $Q _ { x } V ^ { \pm } = 0$ ; confidence 0.365
177.
; $v _ { i , t }$ ; confidence 0.365
178.
; $m$ ; confidence 0.365
179.
; $\Lambda _ { p , q }$ ; confidence 0.365
180.
; $A _ { \gamma }$ ; confidence 0.365
181.
; $P _ { L } ( i , i ) = ( i \sqrt { 2 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 3 ) } , Z _ { 2 } ) ) }$ ; confidence 0.365
182.
; $L \oplus \dot { k } = \{ 1 \oplus \dot { k } : 1 \in L \}$ ; confidence 0.365
183.
; $x ^ { * } : = 2 ( 1 | x ) 1 - \sigma ( x ) , \| x | ^ { 2 } : = ( x | x ) + ( ( x | x ) ^ { 2 } - | ( x | \sigma ( x ) ) | ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.365
184.
; $\langle S \rangle = G$ ; confidence 0.365
185.
; $\operatorname { Gal } ( N / E )$ ; confidence 0.365
186.
; $H _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x _ { 1 } ^ { n _ { 1 } } \ldots x _ { k } ^ { n _ { k } }$ ; confidence 0.364
187.
; $i , j , k = 1 , \dots , m$ ; confidence 0.364
188.
; $\Delta y = y \otimes 1 + 1 \otimes y , \varepsilon y = 0$ ; confidence 0.364
189.
; $N \nmid K$ ; confidence 0.364
190.
; $F _ { X }$ ; confidence 0.364
191.
; $\langle \lambda | f )$ ; confidence 0.364
192.
; $q \in k ^ { * }$ ; confidence 0.364
193.
; $L _ { n } = - z ^ { n } D$ ; confidence 0.364
194.
; $\phi ^ { 0 p }$ ; confidence 0.363
195.
; $\sum \mathfrak { c } _ { i } x _ { i }$ ; confidence 0.363
196.
; $R ^ { n } \times R ^ { p }$ ; confidence 0.363
197.
; $Z _ { 0 } ^ { \phi } ( t ) : = \{ s : M _ { s } - W _ { s } = 0 , s \leq t \}$ ; confidence 0.363
198.
; $\mu ( \alpha )$ ; confidence 0.363
199.
; $\Gamma ( A ) = \operatorname { inf } _ { M } \| A |$ ; confidence 0.363
200.
; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
201.
; $E ( a , R ) = \{ x \in B : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \}$ ; confidence 0.363
202.
; $\mu _ { \varepsilon } ^ { x } : = P _ { x } \{ \omega : \rho ( X _ { t } ( \omega ) , \phi ( t ) ) \leq \varepsilon \text { for everyt } \in [ 0 , T ] \}$ ; confidence 0.363
203.
; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in R ^ { N }$ ; confidence 0.363
204.
; $x \in E _ { 1 }$ ; confidence 0.363
205.
; $= \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0 } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0 } \end{array} \right.$ ; confidence 0.363
206.
; $\operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty$ ; confidence 0.363
207.
; $1 ^ { 2 }$ ; confidence 0.363
208.
; $\lambda \notin \sigma _ { \text { lre } } ( T )$ ; confidence 0.362
209.
; $\alpha \in \partial \Delta$ ; confidence 0.362
210.
; $f ( z ) = a _ { 0 } z ^ { x } + \ldots + a _ { x } - 1 z + a _ { x } =$ ; confidence 0.362
211.
; $p ( G )$ ; confidence 0.362
212.
; $\{ Y : y _ { i } = 0 , \square i = i _ { 1 } , \dots , i _ { l } \}$ ; confidence 0.362
213.
; $x = ( x , u )$ ; confidence 0.362
214.
; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362
215.
; $= 2 ^ { 2 n } \int \int e ^ { - 4 i \pi [ X - Y , X - Z ] _ { a } ( Y ) b ( Z ) d Y d Z }$ ; confidence 0.362
216.
; $x \in V ( \varnothing )$ ; confidence 0.362
217.
; $\alpha ; ( \ldots )$ ; confidence 0.362
218.
; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
219.
; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z )$ ; confidence 0.362
220.
; $w ^ { \prime }$ ; confidence 0.362
221.
; $b _ { i } b _ { i } + 1 b _ { i } = b _ { i } + 1 b _ { i } b _ { i } + 1 , b _ { i } b _ { j } = b _ { j } b _ { i } , \quad | i - j | \geq 2$ ; confidence 0.362
222.
; $z _ { t } ( t )$ ; confidence 0.362
223.
; $( M ) \subset Z ( \mathfrak { g } ) ^ { * }$ ; confidence 0.361
224.
; $c : T ^ { * } M \cong T M \rightarrow \operatorname { End } ( W )$ ; confidence 0.361
225.
; $C _ { N } = \left( \begin{array} { c } { 2 n } \\ { n } \end{array} \right) - \left( \begin{array} { c } { 2 n } \\ { n - 1 } \end{array} \right)$ ; confidence 0.361
226.
; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I _ { e }$ ; confidence 0.361
227.
; $P _ { L } ( e ^ { \pi i / 3 } , i ) = \varepsilon ( L ) i ^ { \operatorname { com } ( L ) - 1 } ( i \sqrt { 3 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 2 ) } , Z _ { 3 } ) ) }$ ; confidence 0.361
228.
; $III _ { 1 }$ ; confidence 0.361
229.
; $d ^ { 11 }$ ; confidence 0.361
230.
; $y _ { 0 } \in Fix G$ ; confidence 0.361
231.
; $K ^ { \prime } K = I _ { m }$ ; confidence 0.361
232.
; $H _ { \phi } ( E )$ ; confidence 0.361
233.
; $( V ) = \Lambda$ ; confidence 0.361
234.
; $1 - 2$ ; confidence 0.360
235.
; $\overline { D } =$ ; confidence 0.360
236.
; $\sum ^ { n _ { k = 1 } } c _ { k } ( b - a ) ^ { k } \| p _ { k } \| < 1$ ; confidence 0.360
237.
; $z _ { y }$ ; confidence 0.360
238.
; $\sum _ { n < x } f ( n ) = c x ^ { 1 + i x } \cdot L ( \operatorname { log } x ) + o ( x )$ ; confidence 0.360
239.
; $f ( x ) \operatorname { tg } ( x ; m , s )$ ; confidence 0.360
240.
; $X \in R$ ; confidence 0.360
241.
; $B _ { j }$ ; confidence 0.359
242.
; $R ^ { * } g : = \int _ { S ^ { n - 1 } g ( \alpha , \alpha x ) d \alpha }$ ; confidence 0.359
243.
; $\hat { f } \in H$ ; confidence 0.359
244.
; $S ^ { \prime } ( R ^ { 2 x } )$ ; confidence 0.359
245.
; $D = \{ 1,0 , - 1 \} ^ { x }$ ; confidence 0.359
246.
; $\rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { BMO } : \rho \in R _ { n } \}$ ; confidence 0.359
247.
; $\sum _ { l = 1 } ^ { m } w _ { l } \cdot \frac { p _ { l } - x _ { 0 } } { \| p _ { l } - x _ { 0 } \| } = 0$ ; confidence 0.359
248.
; $\zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 }$ ; confidence 0.359
249.
; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } )$ ; confidence 0.359
250.
; $= ( \alpha _ { x } p _ { x } + \alpha _ { y } p y + \alpha _ { z } p _ { z } + \beta m _ { 0 } c ) ^ { 2 }$ ; confidence 0.359
251.
; $a _ { k } - 1 + 1$ ; confidence 0.359
252.
; $\{ p _ { 1 } , h \}$ ; confidence 0.359
253.
; $T _ { N } ( x )$ ; confidence 0.359
254.
; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359
255.
; $k _ { \infty } ^ { \prime }$ ; confidence 0.359
256.
; $\nabla ( A ) : = \{ Y \in \left( \begin{array} { l } { [ n ] } \\ { l + 1 } \end{array} \right) : Y \supset \text { Xfor someX } \in A \}$ ; confidence 0.359
257.
; $A = \{ | h _ { 1 } ( z ) | < 1 , \dots , | h _ { 1 } ( z ) | < 1 \}$ ; confidence 0.358
258.
; $bv = \{ d = \{ d _ { k } \} : \| \alpha \| _ { bv } = \sum _ { k = 0 } ^ { \infty } | \Delta d _ { k } | < \infty \}$ ; confidence 0.358
259.
; $x _ { x } \backslash x _ { 0 }$ ; confidence 0.358
260.
; $L ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( X / R , R ( i - m ) )$ ; confidence 0.358
261.
; $\in H ^ { 1 } ( Z [ 1 / p L ] ; Z / M ( n ) )$ ; confidence 0.358
262.
; $A _ { s } ^ { + } = \left\{ \begin{array} { l l } { f : } & { f \in A _ { s } } \\ { f : } & { f ^ { ( s ) } \text { has no change of } \operatorname { sign } \operatorname { in } ( a , b ) } \end{array} \right\}$ ; confidence 0.358
263.
; $l _ { 1 } ( P , Q ) = \operatorname { sup } \{ \int f d ( P - Q ) : \operatorname { Lip } f \leq 1 \}$ ; confidence 0.358
264.
; $\Lambda ( F ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \operatorname { tr } ( r * n \circ t * n ^ { - 1 } )$ ; confidence 0.358
265.
; $\| \alpha _ { N } + \beta _ { N } \|$ ; confidence 0.358
266.
; $A _ { K } / p$ ; confidence 0.358
267.
; $9 \pi$ ; confidence 0.358
268.
; $| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } | ^ { - ( \delta + n + p - 1 ) / 2 } , X \in R ^ { p \times n }$ ; confidence 0.357
269.
; $x \in T ^ { \gamma }$ ; confidence 0.357
270.
; $L _ { t }$ ; confidence 0.357
271.
; $\operatorname { ch } V = \sum _ { \mu \in h ^ { * } } ( \operatorname { dim } V _ { \mu } ) e ^ { \mu }$ ; confidence 0.357
272.
; $v _ { n } \in G$ ; confidence 0.357
273.
; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
274.
; $NC = \text { ASPACETIME } [ \operatorname { log } n , ( \operatorname { log } n ) ^ { O ( 1 ) } ]$ ; confidence 0.357
275.
; $T _ { W d } = T _ { H }$ ; confidence 0.357
276.
; $\square$ ; confidence 0.357
277.
; $G ( I ) = \oplus _ { n } \geq 0 I ^ { n } / I ^ { n + 1 }$ ; confidence 0.357
278.
; $\hat { H } ^ { 1 }$ ; confidence 0.357
279.
; $x ^ { ( b ) }$ ; confidence 0.356
280.
; $\operatorname { lim } _ { k \rightarrow \infty } g _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) }$ ; confidence 0.356
281.
; $\underline { x } = ( x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.356
282.
; $l _ { p } ( P , Q ) = \operatorname { inf } \{ \| d ( X , Y ) \| _ { p } \}$ ; confidence 0.356
283.
; $V ( z _ { 0 } , \dots , z _ { r } - 1 ) ( \rho _ { 0 } , \dots , \rho _ { r - 1 } ) ^ { T } = ( \gamma _ { 00 } , \dots , \gamma _ { 0 , r - 1 } ) ^ { T }$ ; confidence 0.356
284.
; $\Delta \subset R ^ { x }$ ; confidence 0.356
285.
; $\mathfrak { p } \supset b$ ; confidence 0.356
286.
; $m b$ ; confidence 0.356
287.
; $\tilde { \Omega } _ { D } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { D } A \}$ ; confidence 0.356
288.
; $Vp ( . )$ ; confidence 0.356
289.
; $[ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }$ ; confidence 0.355
290.
; $_ { s = m } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.355
291.
; $0$ ; confidence 0.355
292.
; $r _ { 1 } ( k )$ ; confidence 0.355
293.
; $t z - \alpha$ ; confidence 0.355
294.
; $N = r 1 + \ldots + r _ { n }$ ; confidence 0.355
295.
; $I$ ; confidence 0.355
296.
; $F$ ; confidence 0.354
297.
; $X = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , } \beta \in Q _ { 1 }$ ; confidence 0.354
298.
; $k ( A _ { i } ) = n$ ; confidence 0.354
299.
; $F A _ { 1 } \ldots A _ { N }$ ; confidence 0.354
300.
; $\frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } [ \sum _ { k = 1 } ^ { q - 1 } \lambda _ { k } b _ { k } ^ { ( 2 ) } + ( 1 - \sigma _ { p - 1 } ) \frac { b _ { q } ^ { ( 2 ) } } { b _ { \gamma } } ] , 1 \leq p \leq q - 1$ ; confidence 0.354
Maximilian Janisch/latexlist/latex/NoNroff/65. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/65&oldid=45828