Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/73"
(→List) |
(→List) |
||
| Line 310: | Line 310: | ||
155. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002011.png ; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167 | 155. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002011.png ; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167 | ||
| − | 156. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png ; $\ | + | 156. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png ; $\tilde { A } _ { n }$ ; confidence 0.167 |
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001029.png ; $P ^ { n } \supset C ^ { n }$ ; confidence 0.167 | 157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001029.png ; $P ^ { n } \supset C ^ { n }$ ; confidence 0.167 | ||
| Line 318: | Line 318: | ||
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026097.png ; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167 | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026097.png ; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167 | ||
| − | 160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\ | + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\vdash_\mathcal{D} E ( \lambda x _ { 0 } , \ldots , x _ { n - 1} , \lambda y 0 , \ldots , y _ { n - 1} )$ ; confidence 0.167 |
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027077.png ; $h \downarrow 0$ ; confidence 0.167 | 161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027077.png ; $h \downarrow 0$ ; confidence 0.167 | ||
| − | 162. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010015.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha x - p } d \alpha d p$ ; confidence 0.166 | + | 162. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010015.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha x - p } d \alpha d p,$ ; confidence 0.166 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png ; $J _ { | + | 163. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png ; $J _ { a - b } ( 2 \sqrt { x } ) = x ^ { - ( a + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b ),$ ; confidence 0.166 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003038.png ; $ | + | 164. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003038.png ; $d_{ j k l}$ ; confidence 0.166 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602038.png ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) }\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \ | + | 165. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602038.png ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) ,}\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int_{\Gamma} \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi .}\end{array} \right.$ ; confidence 0.166 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E | + | 166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E^{ \otimes r }.$ ; confidence 0.166 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004011.png ; $\ | + | 167. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004011.png ; $\lfloor m/ 2 \rfloor$ ; confidence 0.166 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010052.png ; $\sum _ { l = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f ( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } )$ ; confidence 0.166 | + | 168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010052.png ; $\sum _ { l = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f \left( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } \right).$ ; confidence 0.166 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002057.png ; $U _ { | + | 169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002057.png ; $U _ { x }$ ; confidence 0.166 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003031.png ; $ | + | 170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003031.png ; $g_{n,m}$ ; confidence 0.166 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010066.png ; $\operatorname { | + | 171. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010066.png ; $\operatorname { supp } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070108.png ; $r ^ { 2 } = \sum \| A _ { j } | ^ { 2 }$ ; confidence 0.166 | + | 172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070108.png ; $r ^ { 2 } = \sum \| A _ { j } \| ^ { 2 }$ ; confidence 0.166 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045015.png ; $U = \sum _ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045015.png ; $U = \sum _ { \mathcal{U} } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026021.png ; $d [ f / \| f \| , \partial K , S ^ { | + | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026021.png ; $d [ f / \| f \| , \partial K , S ^ { n - 1 } ]$ ; confidence 0.165 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006021.png ; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | \alpha _ { i , j } |$ ; confidence 0.165 | + | 175. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006021.png ; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | \alpha _ { i , j } |.$ ; confidence 0.165 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019023.png ; $A _ { k | + | 176. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019023.png ; $A _ { k l }$ ; confidence 0.165 |
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004060.png ; $\cap _ { N = 1 } ^ { \infty } U _ { n } = \cap _ { N = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165 | 177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004060.png ; $\cap _ { N = 1 } ^ { \infty } U _ { n } = \cap _ { N = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165 | ||
| − | 178. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001015.png ; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | | + | 178. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001015.png ; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | s D | - 1 }$ ; confidence 0.165 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301408.png ; $Q ( r , s ) = | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301408.png ; $Q ( r , s ) = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_r + i q _ { s - i}$ ; confidence 0.165 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200158.png ; $ | + | 180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200158.png ; $r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } }$ ; confidence 0.165 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520462.png ; $j \neq | + | 181. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520462.png ; $j \neq i_ 1 , \ldots , i_l$ ; confidence 0.165 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002045.png ; $P _ { \text { | + | 182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002045.png ; $P _ { \text { max } }$ ; confidence 0.165 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340131.png ; $\alpha _ { H } ( x _ { + } ) - \alpha _ { H } ( x _ { - } )$ ; confidence 0.165 | + | 183. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340131.png ; $\alpha _ { H } ( \tilde{x} _ { + } ) - \alpha _ { H } ( \tilde{x} _ { - } )$ ; confidence 0.165 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020200.png ; $\ | + | 184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020200.png ; $\tilde{v} ( \tilde { u } _ { 1 } ) > 0$ ; confidence 0.165 |
185. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003012.png ; $T P U$ ; confidence 0.165 | 185. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003012.png ; $T P U$ ; confidence 0.165 | ||
| Line 372: | Line 372: | ||
186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009025.png ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165 | 186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009025.png ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165 | ||
| − | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028022.png ; $A x$ ; confidence 0.165 | + | 187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028022.png ; $\tilde{A} x$ ; confidence 0.165 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007017.png ; $v _ { t | + | 188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007017.png ; $v _ { t + 1} = L _ { v_ t }$ ; confidence 0.165 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011040.png ; $ | + | 189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011040.png ; $v$ ; confidence 0.165 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011041.png ; $H ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x | + | 190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011041.png ; $\mathcal{H} ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x , \xi }u , v \rangle _ { L^2 ( R ^ { n } )} , ( \sigma _ { x , \xi} u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi).$ ; confidence 0.164 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007045.png ; $V ^ { | + | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007045.png ; $V ^ { \sharp } = \oplus _ { n } V _ { n }$ ; confidence 0.164 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007068.png ; $a , b \in C ^ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007068.png ; $a , b \in \mathbf{C} ^ { n }$ ; confidence 0.164 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030181.png ; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } ( 2 \pi i ) ^ { - m } ( Ch ( [ a ] ) T ( M ) f ^ { * } \phi ) [ T ^ { * } M ]$ ; confidence 0.164 | + | 193. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030181.png ; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } ( 2 \pi i ) ^ { - m } ( Ch ( [ a ] ) T ( M ) f ^ { * } \phi ) [ T ^ { * } M ].$ ; confidence 0.164 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { k \ | + | 194. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { |k| \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164 | + | 195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 ),$ ; confidence 0.164 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052091.png ; $w _ { n - 1 } = ( \| s _ { n } - 1 \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w$ ; confidence 0.164 | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052091.png ; $w _ { n - 1 } = ( \| s _ { n } - 1 \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w.$ ; confidence 0.164 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220248.png ; $ | + | 197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220248.png ; $\mathbf{Q}$ ; confidence 0.164 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010100.png ; $\ | + | 198. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010100.png ; $\sigma_{ U , V} ( u \otimes v ) = u ^ { ( 2 ) } . v \otimes u ^ { ( 1 ) }$ ; confidence 0.164 |
199. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b11009049.png ; $F _ { 2 }$ ; confidence 0.164 | 199. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b11009049.png ; $F _ { 2 }$ ; confidence 0.164 | ||
| − | 200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010059.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) )$ ; confidence 0.164 | + | 200. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010059.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) ).$ ; confidence 0.164 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054088.png ; $SL _ { | + | 201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054088.png ; $SL _ { n} ( Q _ { p } )$ ; confidence 0.164 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691029.png ; $ | + | 202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691029.png ; $\vee _ { a } ^ { b } g _ { n }$ ; confidence 0.164 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008069.png ; $f ( w ^ { H _ { i } } | | + | 203. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008069.png ; $f ( w ^ { H _ { i } } | { v ^ { H _ { i } } } ) = f ( w | v )$ ; confidence 0.164 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003020.png ; $T _ { | + | 204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003020.png ; $T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\tilde { D }$ ; confidence 0.164 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031045.png ; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031045.png ; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - q } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ],$ ; confidence 0.163 |
207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100129.png ; $s p \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163 | 207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100129.png ; $s p \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163 | ||
| − | 208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011040.png ; $S _ { n + 1 } = \{ z \in C ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \}$ ; confidence 0.163 | + | 208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011040.png ; $S _ { n + 1 } = \left\{ z \in C ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\},$ ; confidence 0.163 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010124.png ; $ | + | 209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010124.png ; $C ^ { \infty_0 }(D)$ ; confidence 0.163 |
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022055.png ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163 | 210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022055.png ; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163 | ||
| − | 211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006085.png ; $\ | + | 211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006085.png ; $\mathcal{H}^ ( 1 )$ ; confidence 0.163 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230154.png ; $f _ { 1 } ( T ) = W ^ { ( | + | 212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230154.png ; $f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T )$ ; confidence 0.163 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310138.png ; $ | + | 213. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310138.png ; $x \in y$ ; confidence 0.163 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018039.png ; $ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018039.png ; $\operatorname{mng}_ \tau$ ; confidence 0.163 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050129.png ; $f : V ^ { | + | 215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050129.png ; $f : V ^ { n } \rightarrow W ^ { n }$ ; confidence 0.163 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026085.png ; $U _ { | + | 216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026085.png ; $U _ { h } ( t _ { n } )$ ; confidence 0.162 |
217. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060104.png ; $\dot { i } = 1 , \ldots , r$ ; confidence 0.162 | 217. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060104.png ; $\dot { i } = 1 , \ldots , r$ ; confidence 0.162 | ||
| − | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015033.png ; $d ^ { * } \in \ | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015033.png ; $d ^ { * } \in \cap_{ P \in \mathcal{P}} L _ { 2 } ( \Omega , \mathcal{A} , P )$ ; confidence 0.162 |
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020037.png ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162 | 219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020037.png ; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162 | ||
| − | 220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021064.png ; $A ( C | + | 220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021064.png ; $A ( C ; q , z ) = \sum _ { V \in C } z ^ { w (v) }$ ; confidence 0.162 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png ; $\operatorname { dim } \Lambda ^ { k | + | 221. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png ; $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014099.png ; $ | + | 222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014099.png ; $r_{j,1} / r_{j,2} $ ; confidence 0.162 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110248.png ; $g x ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + \alpha ( X ) + H ( X ) ^ { 2 } \| \alpha ^ { \prime \prime } ( X ) \| ^ { 2 } G _ { X } ] ^ { 1 / 2 } }$ ; confidence 0.162 | + | 223. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110248.png ; $g x ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + \alpha ( X ) + H ( X ) ^ { 2 } \| \alpha ^ { \prime \prime } ( X ) \| ^ { 2 } G _ { X } ] ^ { 1 / 2 } }.$ ; confidence 0.162 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }$ ; confidence 0.162 | + | 224. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }.$ ; confidence 0.162 |
225. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080177.png ; $( A , \overline { A } , t \sim t _ { \alpha } )$ ; confidence 0.162 | 225. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080177.png ; $( A , \overline { A } , t \sim t _ { \alpha } )$ ; confidence 0.162 | ||
| − | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201509.png ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n ( | + | 226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201509.png ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n } (1) } \end{array} \right)$ ; confidence 0.161 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png ; $ | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png ; $\mathfrak{h}_R$ ; confidence 0.161 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200105.png ; $ | + | 228. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200105.png ; $\operatorname{det} JF \in \mathbf{C}^*$ ; confidence 0.161 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $ | + | 229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $7$ ; confidence 0.161 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006012.png ; $ | + | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006012.png ; $ \| x \| _ { 1 } | = \sum _ { i } | x_i |$ ; confidence 0.161 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016021.png ; $\sigma ( T ) \backslash \sigma _ { \text { Tre } } ( T )$ ; confidence 0.161 | + | 231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016021.png ; $\sigma ( T ) \backslash \sigma |_ { \text { Tre } } ( T )$ ; confidence 0.161 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020184.png ; $\overline { | + | 232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020184.png ; $\overline { v } = \infty$ ; confidence 0.161 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003017.png ; $\{ | + | 233. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003017.png ; $\{ S q ^ { i } : i \geq 0 \}$ ; confidence 0.161 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { | + | 234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _{c},$ ; confidence 0.161 |
235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017040.png ; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161 | 235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017040.png ; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161 | ||
| − | 236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110164.png ; $r _ { m | + | 236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110164.png ; $r _ { m - 2} \in S _ { \text{loc} } ^ { m - 2 } ( \Omega )$ ; confidence 0.161 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130104.png ; $ | + | 237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130104.png ; $|F(0)|\geq |h(0)|$ ; confidence 0.161 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120164.png ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { | + | 238. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120164.png ; $( K _ { s } ( \overline { \sigma } ) \cap K _ { totS } ) _ { ins }$ ; confidence 0.161 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050020.png ; $\ | + | 239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050020.png ; $\tilde { Q }_ p$ ; confidence 0.161 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589041.png ; $\ | + | 240. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589041.png ; $\tilde { H }$ ; confidence 0.160 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002044.png ; $l \in R ^ { N }$ ; confidence 0.160 | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002044.png ; $l \in \mathbf{R} ^ { N }$ ; confidence 0.160 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png ; $\psi _ { \mathfrak { A } } ^ { | + | 242. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160121.png ; $\psi _ { \mathfrak { A } } ^ { 0 } \overline {a}$ ; confidence 0.160 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193041.png ; $ | + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193041.png ; $\operatorname{GL} ( m , C )$ ; confidence 0.160 |
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031054.png ; $e _ { \lambda } ^ { ran } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { ran } ( Q _ { n } , F _ { d } )$ ; confidence 0.160 | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031054.png ; $e _ { \lambda } ^ { ran } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { ran } ( Q _ { n } , F _ { d } )$ ; confidence 0.160 | ||
| − | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042090.png ; $\Psi _ { V , W } ( v \otimes w ) = q ^ { | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042090.png ; $\Psi _ { V , W } ( v \otimes w ) = q ^ { |v| | w | } w \otimes v$ ; confidence 0.160 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027012.png ; $A ( t ) = t - S _ { N } ( t ) , R ( t ) = S _ { N ( t ) + 1 } - t$ ; confidence 0.160 | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027012.png ; $A ( t ) = t - S _ { N } ( t ) , R ( t ) = S _ { N ( t ) + 1 } - t,$ ; confidence 0.160 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106608.png ; $ | + | 247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106608.png ; $|Q|$ ; confidence 0.160 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024022.png ; $P _ { | + | 248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024022.png ; $P _ { ll } ( x ) \in \mathbf{Z} [ x ]$ ; confidence 0.160 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005055.png ; $H _ { | + | 249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005055.png ; $H _ { k+1 } 1$ ; confidence 0.160 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220221.png ; $\rightarrow \operatorname { Ext } _ { M H _ { R } ^ { + } } ( R ( 0 ) , H _ { B } ^ { i } ( X ) , R ( j ) )$ ; confidence 0.159 | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220221.png ; $\rightarrow \operatorname { Ext } _ { \mathcal{M} \mathcal{H} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { B } ^ { i } ( X ) , \mathbf{R} ( j ) ).$ ; confidence 0.159 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220117.png ; $r : H _ { M } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { D } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159 | + | 251. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220117.png ; $r : H _ { \mathcal{M} } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { \mathcal{D} } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060310.png ; $ | + | 252. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060310.png ; $g_i$ ; confidence 0.159 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006029.png ; $P _ { k } = ( u _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006029.png ; $P _ { k } = ( u _ { i + 1} , \dots , u _ { i + k})$ ; confidence 0.159 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015049.png ; $\dot { | + | 254. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015049.png ; $\dot { x } ^ { i }$ ; confidence 0.159 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007031.png ; $F ( r , m ) = | + | 255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007031.png ; $F ( r , m ) = ( x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r - 1} = x _ { i + r } ),$ ; confidence 0.159 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $D = \{ F m , \ | + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $\mathcal{D} = \{ F m , \vDash _ { \mathcal{D} } )$ ; confidence 0.159 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420162.png ; $\lambda _ { 1 } = id , \lambda _ { W | + | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420162.png ; $\lambda _ { 1 } = id , \lambda _ { W \otimes Z} = \lambda_{Z} \circ \lambda _ { W }$ ; confidence 0.159 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011019.png ; $C | + | 258. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011019.png ; $C / \Lambda$ ; confidence 0.159 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159 | + | 259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $\mathbf{M} _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j. } )$ ; confidence 0.159 |
260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013014.png ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159 | 260. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013014.png ; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159 | ||
| Line 522: | Line 522: | ||
261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159 | 261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159 | ||
| − | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200103.png ; $\alpha \mapsto x _ { \alpha } \in h$ ; confidence 0.159 | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200103.png ; $\alpha \mapsto x _ { \alpha } \in \mathfrak{h}$ ; confidence 0.159 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png ; $m _ { r s } = g _ { | + | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png ; $m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j }$ ; confidence 0.159 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290125.png ; $ | + | 264. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290125.png ; $\textbf{SFRM}$ ; confidence 0.158 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430118.png ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \otimes \alpha + ( 1 - q ^ { 2 } ) \beta \otimes \gamma$ ; confidence 0.158 | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430118.png ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \otimes \alpha + ( 1 - q ^ { 2 } ) \beta \otimes \gamma,$ ; confidence 0.158 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009017.png ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { X } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { X } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { X } } & { 0 } \end{array} \right)$ ; confidence 0.158 | + | 266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009017.png ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { X } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { X } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { X } } & { 0 } \end{array} \right),$ ; confidence 0.158 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001026.png ; $\operatorname { lim } _ { z | \rightarrow \infty } \ | + | 267. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001026.png ; $\operatorname { lim } _ { |z | \rightarrow \infty } \tilde { x } ( z ) = x ( 0 )$ ; confidence 0.158 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005019.png ; $ | + | 268. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005019.png ; $\kappa _ { n } > 0$ ; confidence 0.158 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220137.png ; $c ( i , m ) L ( i , m ) = \operatorname { det } _ { Q } r _ { D } ( H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } )$ ; confidence 0.157 | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220137.png ; $c ( i , m ) \mathcal{L} ( i , m ) = \operatorname { det } _ { Q } r _ { D } ( H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } ),$ ; confidence 0.157 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230101.png ; $ | + | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230101.png ; $\epsilon ^ { a } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0,$ ; confidence 0.157 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080184.png ; $M _ { | + | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080184.png ; $M _ { \alpha }$ ; confidence 0.157 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027014.png ; $( Q _ { | + | 272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027014.png ; $( Q _ { n_i } [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007044.png ; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n } e ^ { - i x | + | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007044.png ; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n }} e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.157 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008057.png ; $[ L : K ] \geq \sum _ { | + | 274. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008057.png ; $[ L : K ] \geq \sum _ { i = 1 } ^ { m } e ( w _ { i } | v ) . f ( w _ { l } | w ).$ ; confidence 0.157 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006022.png ; $\| f _ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }$ ; confidence 0.157 | + | 275. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006022.png ; $\| f |_ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }.$ ; confidence 0.157 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040173.png ; $\sum _ { \alpha \in Z ^ { n } } \frac { \alpha _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha }$ ; confidence 0.157 | + | 276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040173.png ; $\sum _ { \alpha \in Z _+^ { n } } \frac { \alpha _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha },$ ; confidence 0.157 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002063.png ; $x = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot x ^ { ( k ) }$ ; confidence 0.156 | + | 277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002063.png ; $\overline{x} = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot \tilde{x} ^ { ( k ) }$ ; confidence 0.156 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019048.png ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right)$ ; confidence 0.156 | + | 278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019048.png ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right).$ ; confidence 0.156 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110238.png ; $a | + | 279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110238.png ; $a \sharp b \in S ( m _ { 1 } m _ { 2 } , G ),$ ; confidence 0.156 |
280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032091.png ; $T ^ { st }$ ; confidence 0.156 | 280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032091.png ; $T ^ { st }$ ; confidence 0.156 | ||
| − | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( | + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.156 |
282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025052.png ; $( x , \xi ) \in W F ( v )$ ; confidence 0.156 | 282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025052.png ; $( x , \xi ) \in W F ( v )$ ; confidence 0.156 | ||
| Line 566: | Line 566: | ||
283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011041.png ; $\mathfrak { S } _ { w }$ ; confidence 0.156 | 283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011041.png ; $\mathfrak { S } _ { w }$ ; confidence 0.156 | ||
| − | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007063.png ; $F | _ { - k } ^ { V } M = F + p _ { M } , \forall M \in \Gamma$ ; confidence 0.156 | + | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007063.png ; $F | _ { - k } ^ { V } M = F + p _ { M } , \forall M \in \Gamma,$ ; confidence 0.156 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002047.png ; $\int _ { U M } f ( u ) d u = \int _ { U ^ { + } \partial M | + | 285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002047.png ; $\int _ { \overline{U M} } f ( u ) d u = \int _ { U ^ { + } \partial M } \int _ { 0 } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.156 |
286. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021061.png ; $x _ { , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1 } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.156 | 286. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021061.png ; $x _ { , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1 } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.156 | ||
| − | 287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001021.png ; $f _ { 1 } = \operatorname { gcd } ( x ^ { | + | 287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001021.png ; $f _ { 1 } = \operatorname { gcd } ( x ^ {q } - x , f )$ ; confidence 0.156 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003033.png ; $V ^ { | + | 288. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003033.png ; $V ^ { n } \subset U ^ { n }$ ; confidence 0.156 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017048.png ; $L _ { | + | 289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017048.png ; $L _ { \alpha } ^ { 2 }$ ; confidence 0.156 |
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156 | 290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007048.png ; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156 | ||
| − | 291. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { | + | 291. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { m }$ ; confidence 0.156 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050120.png ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m | + | 292. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050120.png ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m - i }( v _ { n } + i ( w ) ) - ( - 1 ) ^ { m } v _ { m + n - i }( u _ { i } ( w ) ) )$ ; confidence 0.155 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620463.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620463.png ; $h_* $ ; confidence 0.155 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076790/q07679049.png ; $4 | + | 294. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076790/q07679049.png ; $4 m$ ; confidence 0.155 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004020.png ; $ | + | 295. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004020.png ; $j_{m,1}$ ; confidence 0.155 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065055.png ; $S _ { | + | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065055.png ; $S _ { k } ( 0 )$ ; confidence 0.155 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034011.png ; $K _ { | + | 297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034011.png ; $K _ { n } . U _ { 1 }$ ; confidence 0.155 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005013.png ; $e ^ { i | + | 298. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005013.png ; $e ^ { i k x }$ ; confidence 0.155 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015039.png ; $g \subset \text { End } ( V )$ ; confidence 0.155 | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015039.png ; $\mathfrak{g} \subset \text { End } ( V )$ ; confidence 0.155 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008057.png ; $E , A \in C ^ { | + | 300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008057.png ; $E , A \in C ^ { n \times n }$ ; confidence 0.155 |
Revision as of 14:53, 9 May 2020
List
1.
; $Z _ { \ddot{\alpha} } f$ ; confidence 0.183
2.
; $\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182
3.
; $( \mathcal{S} ) $ ; unknown symbol
4.
; $\| \alpha \| _ { b t } = \| \alpha \| _ { b v } + \sum _ { n = 2 } ^ { \infty } | \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } | } { k }.$ ; confidence 0.182
5.
; $ad : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182
6.
; $v ^ { k }$ ; confidence 0.182
7.
; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
8.
; $T _ { N } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \frac { b _ { n } , j } { j } P _ { j } ^ { \prime } ( x ) , n \geq k + 1,$ ; confidence 0.181
9.
; $i = r j - 1 , \dots , r ; - 1$ ; confidence 0.181
10.
; $\textbf{Alg} _ { \vDash } ( \mathcal{L} ) \subseteq \textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.181
11.
; $a _ { j } \in \mathcal{B}$ ; confidence 0.181
12.
; $[G:\operatorname{rist}_G ( n )]<\infty$ ; confidence 0.181
13.
; $\mathbf{C} ^ { n } \backslash D$ ; confidence 0.181
14.
; $\sum _ { l = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( l _ { m } \otimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.181
15.
; $\int _ { E ^ { X } } dP( x ) = m$ ; confidence 0.181
16.
; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181
17.
; $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { C } \rightarrow A$ ; confidence 0.181
18.
; $\mathfrak{h}(S)\otimes \mathbf{C}$ ; confidence 0.181
19.
; $\leq \sum _ { I \subseteq \{ 1 , \ldots , k \} , I \neq \emptyset } ( - 1 ) ^ { | l | + 1 } \operatorname { Bel } ( \cap _ { i \in I } A _ { i } ).$ ; confidence 0.180
20.
; $2 ^ { \alpha } 3 ^ { b }$ ; confidence 0.180
21.
; $x \in D$ ; confidence 0.180
22.
; $P S L_n$ ; confidence 0.180
23.
; $w ^ { i }$ ; confidence 0.180
24.
; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
25.
; $a ( f ) = \int _ { M } a ( x ) f ( x ) d \sigma ( x ) , \quad \alpha ^ { * } ( f ) = \int _ { M } a ^ { * } ( x ) \overline { f } ( x ) d \sigma ( x ).$ ; confidence 0.180
26.
; $k _ { \overline{z} }$ ; confidence 0.180
27.
; $A _ { 1 } = A ^ { * } / \cap _ { i \in N } m ^ { i } A ^ { * }$ ; confidence 0.180
28.
; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180
29.
; $g _ { k } ( z )$ ; confidence 0.180
30.
; $\overline { c }$ ; confidence 0.180
31.
; $W _ { k } ^ { * }$ ; confidence 0.179
32.
; $\sim _ { c }$ ; confidence 0.179
33.
; $\frac { d } { d t } U _ { k } = F _ { k } ( t , U _ { k } ) , 0 < t , U _ { k } ( 0 ) = u ^ { 0 } h,$ ; confidence 0.179
34.
; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r } - 1 ^ { r - 1 } )$ ; confidence 0.179
35.
; $p x$ ; confidence 0.179
36.
; $( \oplus _ { b } G _ { = B } b )$ ; confidence 0.179
37.
; $A _ {M}$ ; confidence 0.179
38.
; $\text{Pf}$ ; confidence 0.179
39.
; $\rho _ { c \varepsilon } ( g ) = g ( \sqrt { \alpha } ) / \sqrt { \alpha }$ ; confidence 0.179
40.
; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } 0 } = ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } + ( \frac { \partial \phi } { \partial x _ { i } } ) | _ { t } ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }.$ ; confidence 0.179
41.
; $Id _ { i j } = \{ q \in \square ^ { \omega } U : q_i = q_j \}$ ; confidence 0.179
42.
; $C_{B ( m , n )} ( G )$ ; confidence 0.179
43.
; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1_3 } \nabla A ( g ) \in \bigotimes \square ^ { 3 } \epsilon$ ; confidence 0.179
44.
; $b \in F$ ; confidence 0.178
45.
; $A = \sum _ { m , n \geq 0 } \int K _ { q , m } ( x _ { 1 } , \ldots , x _ { n } ; y _ { 1 } , \ldots , y _ { m } ) \times$ ; confidence 0.178
46.
; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k 1 } \rangle \rangle \ldots ( 1 + \langle z , \alpha _ { k n } \rangle ) },$ ; confidence 0.178
47.
; $u _ { t } + u _ { x } + u u _ { x } + u _ { X X X } = 0$ ; confidence 0.178
48.
; $k _ { n } ( z )$ ; confidence 0.178
49.
; $\pi_ 1 M_0$ ; confidence 0.178
50.
; $\pi _ { \kappa}$ ; confidence 0.178
51.
; $\times \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } s _ { j } d s _ { 1 } \wedge \ldots \wedge [ d s _ { j } ] \wedge \ldots \wedge d s _ { n } \wedge \omega ( \zeta ),$ ; confidence 0.178
52.
; $[ [ \lambda x \cdot M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178
53.
; $a_{k + 1}$ ; confidence 0.177
54.
; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n } - 1 + \ldots + \frac { 1 } { i k _ { 1 } } }.$ ; confidence 0.177
55.
; $\mathcal{Q}$ ; confidence 0.177
56.
; $\operatorname { lim } _ { n } a _ { n } = \frac { \sum _ { 0 } ^ { \infty } b _ { j } } { \sum _ { 0 } ^ { \infty } j p _ { j } }.$ ; confidence 0.177
57.
; $j_{0,1} = 2.4048\dots$ ; confidence 0.177
58.
; $\operatorname{ind} ( P ) : = \operatorname { dim } ( \operatorname{ker} ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) ).$ ; confidence 0.177
59.
; $L _ { \alpha } ^ { p } ( G )$ ; confidence 0.177
60.
; $m D$ ; confidence 0.176
61.
; $\hat { g }$ ; confidence 0.176
62.
; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \otimes y ) = q y \otimes x$ ; confidence 0.176
63.
; $f _ { l } ^ { t } = \mathcal{F} ^ { - 1 } ( e ^ { i ( p ^ { 0 } - \omega ) t } \mathcal{F} ( f _ { l } ) )$ ; confidence 0.176
64.
; $E _ { * }$ ; confidence 0.176
65.
; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176
66.
; $M _ { N } = [ m _ { i j } ] _ { i , j = 0 } ^ { n }$ ; confidence 0.176
67.
; $f _ { i } ^{( t + 1 ) }= f _ { i }^{ ( t )} \sum _ { j } ( \frac { h _ { i j } } { \sum _ { k } f _ { k } ( t ) h _ { k j } ) } ) g _ { j } , t = 1,2 ,\dots $ ; confidence 0.176
68.
; $H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} \otimes C } ) \xrightarrow{\sim} H ^ { \bullet } ( \Gamma \backslash X , \Omega ^ { \bullet } ( \tilde { \mathcal{M} } _ { C } ) ),$ ; confidence 0.176
69.
; $\{ x \in \hat { K } _ { p } : | x - a | _ { p } \leq \epsilon \},$ ; confidence 0.176
70.
; $c _ { n }$ ; confidence 0.175
71.
; $e ^ { h |x | ^ { 1 / s } }$ ; confidence 0.175
72.
; $E [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175
73.
; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y \dot \eta } a ( x , \xi + \eta ) b ( y + x , \xi ) d y d \eta,$ ; confidence 0.175
74.
; $\rightarrow H ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \stackrel { r } { \rightarrow } H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } )\rightarrow \dots$ ; confidence 0.175
75.
; $\textbf{Fm} _ { P }$ ; confidence 0.175
76.
; $\mathcal{L}$ ; confidence 0.175
77.
; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { N } e ^ { i t p _ { N } } ) \in \Omega$ ; confidence 0.175
78.
; $= \{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175
79.
; $ \varphi^\vee ( \chi ) = \varphi ( \chi ^ { - 1 } )$ ; confidence 0.175
80.
; $H _ { \mathfrak{m} } ^ { i } ( R ) = [ H _ { \mathfrak{m} } ^ { i } ( R ) ] _ { 0 }$ ; confidence 0.175
81.
; $v ^ { \sharp }$ ; confidence 0.175
82.
; $Z ^ { \prime } = a _ { 0 } 1 + \ldots + a _ { r - 1 } Z ^ { r - 1 }$ ; confidence 0.174
83.
; $\alpha _ { j } \in V$ ; confidence 0.174
84.
; $1 , \dots , r _ { m } \in C [ z , z ]$ ; confidence 0.174
85.
; $\operatorname { Tr } A B = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } A _ { w } B _ { w } d x d p.$ ; confidence 0.174
86.
; $\mathcal{D} _ { n } ^ { r }$ ; confidence 0.174
87.
; $L^+G _ { C } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { C } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174
88.
; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.174
89.
; $\| T _ { 1 } + i t ( f ) \| _ { \infty } \leq C \| f \|_\infty$ ; confidence 0.173
90.
; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173
91.
; $\phi_{-} ^ { -1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P,$ ; confidence 0.173
92.
; $\Delta g = g \otimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 },$ ; confidence 0.173
93.
; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ],$ ; confidence 0.173
94.
; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \otimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n },$ ; confidence 0.173
95.
; $\Psi _ { V , W } ( v \otimes w ) = \beta ( | v | , | w | ) w \otimes v$ ; confidence 0.173
96.
; $k = ( k _ { 1 } , \dots , k _ { N } ) \in \mathbf{Z} ^ { m }$ ; confidence 0.172
97.
; $R _ { ab }$ ; confidence 0.172
98.
; $\mathcal{A} ( \eta ) = - \sum _ { k , l = 1 } ^ { N } ( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } ) ( \alpha _ { k l } ( y ) ( \frac { \partial } { \partial y _ { l } } + i \eta _ { l } ) )m$ ; confidence 0.172
99.
; $l \in V ^ { \prime }$ ; confidence 0.172
100.
; $\hat { F }$ ; confidence 0.172
101.
; $e _ { N } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }.$ ; confidence 0.172
102.
; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172
103.
; $V _ { \text { simp } }$ ; confidence 0.172
104.
; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172
105.
; $\lambda _ { 1 } \geq \frac { \pi { j } _ { 1 0 } ^ { 2 } } { A },$ ; confidence 0.172
106.
; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172
107.
; $T = ( \mathfrak { c } _ { i } - j ) _ { i , j=0 } ^ { n - 1 } $ ; confidence 0.172
108.
; $\tilde { \Omega } _ { D } F$ ; confidence 0.172
109.
; $Z ^ { n , n - 1 }$ ; confidence 0.172
110.
; $\mathfrak { q } \notin \bar { A }$ ; confidence 0.172
111.
; $\epsilon = ( \epsilon 0 , \dots , \epsilon _ { n } )$ ; confidence 0.171
112.
; $E [ W ] _ { P S } = \frac { \rho \dot { b } } { 1 - \rho },$ ; confidence 0.171
113.
; $b _ { n , n + 1} = 1$ ; confidence 0.171
114.
; $w _ v$ ; confidence 0.171
115.
; $( ( \_ ) \otimes _ { F_p } H ^ { * } Z )$ ; confidence 0.171
116.
; $\underline{v}$ ; confidence 0.171
117.
; $V ( \hat { K } _ { p } )$ ; confidence 0.171
118.
; $J ^ { \prime } _ { r_0} ( \mathbf{R} ^ { n } , \mathbf{R} )$ ; confidence 0.170
119.
; $E _^{r+1} + 1$ ; confidence 0.170
120.
; $T _ { z u}$ ; confidence 0.170
121.
; $U z$ ; confidence 0.170
122.
; $\Delta_{operatorname{ Dir}}$ ; confidence 0.170
123.
; $\hat{v} $ ; confidence 0.170
124.
; $ \begin{cases} { p _ { t } ( \alpha , t ) + p _ { \alpha } ( \alpha , t ) + \mu ( \alpha , S ( t ) ) p ( \alpha , t ) = 0 }, \\ { p ( 0 , t ) = \int ^ { + \infty_0 } \beta ( \sigma , s ( t ) ) p ( \sigma , t ) d \sigma }, \\ { p ( \alpha , 0 ) = p_ 0(a) }, \\ { S ( t ) = \int^{+\infty_0} \gamma ( \sigma ) p ( \sigma , t ) d \sigma } \end{cases}. $ ; confidence 0.169
125.
; $\|v \| _ { A _ { p } ( G ) } \leq C$ ; confidence 0.169
126.
; $\alpha _ { j } ( h _ { i } ) = \alpha _ {i j }$ ; confidence 0.169
127.
; $\mathcal{M} ( \tilde { x } , \tilde { y } ) / \mathbf{R}$ ; confidence 0.169
128.
; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { x } ^ { b } f ^ { ( y ) } ( x ) g ^ { ( y ) } ( x ) d x$ ; confidence 0.169
129.
; $\mathcal{N} _ { \epsilon}$ ; confidence 0.169
130.
; $\mathfrak{C}$ ; confidence 0.169
131.
; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \otimes S \mathfrak { g } ^ { * } \} ^ { K }.$ ; confidence 0.169
132.
; $e _ {i j k }$ ; confidence 0.169
133.
; $\operatorname { lim } _ { N \rightarrow \infty } \frac { \int _ { 0 } ^ { N } | y ( x , \lambda ) | ^ { 2 } d x } { \int _ { | v ( x , \lambda ) | ^ { 2 } d x } } = 0.$ ; confidence 0.169
134.
; $\| g _ { n } \|$ ; confidence 0.169
135.
; $\left(\begin{array} { c c } { T } & { ( I - T T ^ { * } ) ^ { 1 / 2 } } \\ { ( I - T ^ { * } T ) ^ { 1 / 2 } } & { T ^ { * } } \end{array} \right)$ ; confidence 0.169
136.
; $M ( P ) = | \alpha _ { 0 } | \prod _ { k = 1 } ^ { d } \operatorname { max } ( | \alpha _ { k } | , 1 )$ ; confidence 0.169
137.
; $\text{iff }\epsilon _ { i,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m,$ ; confidence 0.169
138.
; $\textbf{FTOP}$ ; confidence 0.169
139.
; $\mathfrak { U } [ \Lambda ]$ ; confidence 0.169
140.
; $\left\{ \begin{array} { l l } { \operatorname { min } } & { c ^ { T } x } \\ { s.t. } & { A x \leq b } \end{array} \right. .$ ; confidence 0.169
141.
; $\left. \begin{array} { l l l } { \square } & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169
142.
; $h \equiv 0$ ; confidence 0.169
143.
; $A \subset * B$ ; confidence 0.168
144.
; $X ^ { r }$ ; confidence 0.168
145.
; $M _ { i n s }$ ; confidence 0.168
146.
; $\hat{g} _ { m } ( \eta ) = \int _ { R ^ { N } } g ( y ) e ^ { - i \eta y \overline { \phi } } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }.$ ; confidence 0.168
147.
; $R _ { n , h } ( A )$ ; confidence 0.168
148.
; $\operatorname{det} \Phi$ ; confidence 0.168
149.
; $a _ { n }$ ; confidence 0.168
150.
; $J _ { b - a } ( \sqrt { x } ) Y _ { b - a } ( \sqrt { x } ) = - \sqrt { x } x ^ { - a } G _ { 13 } ^ { 20 } \left( x | \begin{array} { c } { a + 1 / 2 } \\ { b , a , 2 a - b } \end{array} \right).$ ; confidence 0.168
151.
; $\tilde{\pi} : \tilde{N} \rightarrow N$ ; confidence 0.168
152.
; $i _1 , \ldots , i _ { n }$ ; confidence 0.168
153.
; $L _ { D }$ ; confidence 0.168
154.
; $\psi ^ { * }$ ; confidence 0.168
155.
; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167
156.
; $\tilde { A } _ { n }$ ; confidence 0.167
157.
; $P ^ { n } \supset C ^ { n }$ ; confidence 0.167
158.
; $e ^ { i k \alpha \chi}$ ; confidence 0.167
159.
; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167
160.
; $\vdash_\mathcal{D} E ( \lambda x _ { 0 } , \ldots , x _ { n - 1} , \lambda y 0 , \ldots , y _ { n - 1} )$ ; confidence 0.167
161.
; $h \downarrow 0$ ; confidence 0.167
162.
; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha x - p } d \alpha d p,$ ; confidence 0.166
163.
; $J _ { a - b } ( 2 \sqrt { x } ) = x ^ { - ( a + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b ),$ ; confidence 0.166
164.
; $d_{ j k l}$ ; confidence 0.166
165.
; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) ,}\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int_{\Gamma} \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi .}\end{array} \right.$ ; confidence 0.166
166.
; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E^{ \otimes r }.$ ; confidence 0.166
167.
; $\lfloor m/ 2 \rfloor$ ; confidence 0.166
168.
; $\sum _ { l = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f \left( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } \right).$ ; confidence 0.166
169.
; $U _ { x }$ ; confidence 0.166
170.
; $g_{n,m}$ ; confidence 0.166
171.
; $\operatorname { supp } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166
172.
; $r ^ { 2 } = \sum \| A _ { j } \| ^ { 2 }$ ; confidence 0.166
173.
; $U = \sum _ { \mathcal{U} } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165
174.
; $d [ f / \| f \| , \partial K , S ^ { n - 1 } ]$ ; confidence 0.165
175.
; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | \alpha _ { i , j } |.$ ; confidence 0.165
176.
; $A _ { k l }$ ; confidence 0.165
177.
; $\cap _ { N = 1 } ^ { \infty } U _ { n } = \cap _ { N = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165
178.
; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | s D | - 1 }$ ; confidence 0.165
179.
; $Q ( r , s ) = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_r + i q _ { s - i}$ ; confidence 0.165
180.
; $r_i : \mathfrak{h}^ { e ^ { * } } \rightarrow \mathfrak{h} ^ { e ^ { * } }$ ; confidence 0.165
181.
; $j \neq i_ 1 , \ldots , i_l$ ; confidence 0.165
182.
; $P _ { \text { max } }$ ; confidence 0.165
183.
; $\alpha _ { H } ( \tilde{x} _ { + } ) - \alpha _ { H } ( \tilde{x} _ { - } )$ ; confidence 0.165
184.
; $\tilde{v} ( \tilde { u } _ { 1 } ) > 0$ ; confidence 0.165
185.
; $T P U$ ; confidence 0.165
186.
; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165
187.
; $\tilde{A} x$ ; confidence 0.165
188.
; $v _ { t + 1} = L _ { v_ t }$ ; confidence 0.165
189.
; $v$ ; confidence 0.165
190.
; $\mathcal{H} ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x , \xi }u , v \rangle _ { L^2 ( R ^ { n } )} , ( \sigma _ { x , \xi} u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi).$ ; confidence 0.164
191.
; $V ^ { \sharp } = \oplus _ { n } V _ { n }$ ; confidence 0.164
192.
; $a , b \in \mathbf{C} ^ { n }$ ; confidence 0.164
193.
; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } ( 2 \pi i ) ^ { - m } ( Ch ( [ a ] ) T ( M ) f ^ { * } \phi ) [ T ^ { * } M ].$ ; confidence 0.164
194.
; $S _ { N } ( f ; x ) = \sum _ { |k| \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164
195.
; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 ),$ ; confidence 0.164
196.
; $w _ { n - 1 } = ( \| s _ { n } - 1 \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w.$ ; confidence 0.164
197.
; $\mathbf{Q}$ ; confidence 0.164
198.
; $\sigma_{ U , V} ( u \otimes v ) = u ^ { ( 2 ) } . v \otimes u ^ { ( 1 ) }$ ; confidence 0.164
199.
; $F _ { 2 }$ ; confidence 0.164
200.
; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) ).$ ; confidence 0.164
201.
; $SL _ { n} ( Q _ { p } )$ ; confidence 0.164
202.
; $\vee _ { a } ^ { b } g _ { n }$ ; confidence 0.164
203.
; $f ( w ^ { H _ { i } } | { v ^ { H _ { i } } } ) = f ( w | v )$ ; confidence 0.164
204.
; $T _ { n } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164
205.
; $\tilde { D }$ ; confidence 0.164
206.
; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - q } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ],$ ; confidence 0.163
207.
; $s p \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163
208.
; $S _ { n + 1 } = \left\{ z \in C ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \right\},$ ; confidence 0.163
209.
; $C ^ { \infty_0 }(D)$ ; confidence 0.163
210.
; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163
211.
; $\mathcal{H}^ ( 1 )$ ; confidence 0.163
212.
; $f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T )$ ; confidence 0.163
213.
; $x \in y$ ; confidence 0.163
214.
; $\operatorname{mng}_ \tau$ ; confidence 0.163
215.
; $f : V ^ { n } \rightarrow W ^ { n }$ ; confidence 0.163
216.
; $U _ { h } ( t _ { n } )$ ; confidence 0.162
217.
; $\dot { i } = 1 , \ldots , r$ ; confidence 0.162
218.
; $d ^ { * } \in \cap_{ P \in \mathcal{P}} L _ { 2 } ( \Omega , \mathcal{A} , P )$ ; confidence 0.162
219.
; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162
220.
; $A ( C ; q , z ) = \sum _ { V \in C } z ^ { w (v) }$ ; confidence 0.162
221.
; $\operatorname { dim } \Lambda ^ { k } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162
222.
; $r_{j,1} / r_{j,2} $ ; confidence 0.162
223.
; $g x ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + \alpha ( X ) + H ( X ) ^ { 2 } \| \alpha ^ { \prime \prime } ( X ) \| ^ { 2 } G _ { X } ] ^ { 1 / 2 } }.$ ; confidence 0.162
224.
; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }.$ ; confidence 0.162
225.
; $( A , \overline { A } , t \sim t _ { \alpha } )$ ; confidence 0.162
226.
; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n } (1) } \end{array} \right)$ ; confidence 0.161
227.
; $\mathfrak{h}_R$ ; confidence 0.161
228.
; $\operatorname{det} JF \in \mathbf{C}^*$ ; confidence 0.161
229.
; $7$ ; confidence 0.161
230.
; $ \| x \| _ { 1 } | = \sum _ { i } | x_i |$ ; confidence 0.161
231.
; $\sigma ( T ) \backslash \sigma |_ { \text { Tre } } ( T )$ ; confidence 0.161
232.
; $\overline { v } = \infty$ ; confidence 0.161
233.
; $\{ S q ^ { i } : i \geq 0 \}$ ; confidence 0.161
234.
; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _{c},$ ; confidence 0.161
235.
; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161
236.
; $r _ { m - 2} \in S _ { \text{loc} } ^ { m - 2 } ( \Omega )$ ; confidence 0.161
237.
; $|F(0)|\geq |h(0)|$ ; confidence 0.161
238.
; $( K _ { s } ( \overline { \sigma } ) \cap K _ { totS } ) _ { ins }$ ; confidence 0.161
239.
; $\tilde { Q }_ p$ ; confidence 0.161
240.
; $\tilde { H }$ ; confidence 0.160
241.
; $l \in \mathbf{R} ^ { N }$ ; confidence 0.160
242.
; $\psi _ { \mathfrak { A } } ^ { 0 } \overline {a}$ ; confidence 0.160
243.
; $\operatorname{GL} ( m , C )$ ; confidence 0.160
244.
; $e _ { \lambda } ^ { ran } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { ran } ( Q _ { n } , F _ { d } )$ ; confidence 0.160
245.
; $\Psi _ { V , W } ( v \otimes w ) = q ^ { |v| | w | } w \otimes v$ ; confidence 0.160
246.
; $A ( t ) = t - S _ { N } ( t ) , R ( t ) = S _ { N ( t ) + 1 } - t,$ ; confidence 0.160
247.
; $|Q|$ ; confidence 0.160
248.
; $P _ { ll } ( x ) \in \mathbf{Z} [ x ]$ ; confidence 0.160
249.
; $H _ { k+1 } 1$ ; confidence 0.160
250.
; $\rightarrow \operatorname { Ext } _ { \mathcal{M} \mathcal{H} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { B } ^ { i } ( X ) , \mathbf{R} ( j ) ).$ ; confidence 0.159
251.
; $r : H _ { \mathcal{M} } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { \mathcal{D} } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159
252.
; $g_i$ ; confidence 0.159
253.
; $P _ { k } = ( u _ { i + 1} , \dots , u _ { i + k})$ ; confidence 0.159
254.
; $\dot { x } ^ { i }$ ; confidence 0.159
255.
; $F ( r , m ) = ( x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r - 1} = x _ { i + r } ),$ ; confidence 0.159
256.
; $\mathcal{D} = \{ F m , \vDash _ { \mathcal{D} } )$ ; confidence 0.159
257.
; $\lambda _ { 1 } = id , \lambda _ { W \otimes Z} = \lambda_{Z} \circ \lambda _ { W }$ ; confidence 0.159
258.
; $C / \Lambda$ ; confidence 0.159
259.
; $\mathbf{M} _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j. } )$ ; confidence 0.159
260.
; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159
261.
; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159
262.
; $\alpha \mapsto x _ { \alpha } \in \mathfrak{h}$ ; confidence 0.159
263.
; $m _ { r s } = g _ { ij} Q _ { r } ^ { i } Q _ { s } ^ { j }$ ; confidence 0.159
264.
; $\textbf{SFRM}$ ; confidence 0.158
265.
; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \otimes \alpha + ( 1 - q ^ { 2 } ) \beta \otimes \gamma,$ ; confidence 0.158
266.
; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { X } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { X } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { X } } & { 0 } \end{array} \right),$ ; confidence 0.158
267.
; $\operatorname { lim } _ { |z | \rightarrow \infty } \tilde { x } ( z ) = x ( 0 )$ ; confidence 0.158
268.
; $\kappa _ { n } > 0$ ; confidence 0.158
269.
; $c ( i , m ) \mathcal{L} ( i , m ) = \operatorname { det } _ { Q } r _ { D } ( H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } ),$ ; confidence 0.157
270.
; $\epsilon ^ { a } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0,$ ; confidence 0.157
271.
; $M _ { \alpha }$ ; confidence 0.157
272.
; $( Q _ { n_i } [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157
273.
; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n }} e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.157
274.
; $[ L : K ] \geq \sum _ { i = 1 } ^ { m } e ( w _ { i } | v ) . f ( w _ { l } | w ).$ ; confidence 0.157
275.
; $\| f |_ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }.$ ; confidence 0.157
276.
; $\sum _ { \alpha \in Z _+^ { n } } \frac { \alpha _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha },$ ; confidence 0.157
277.
; $\overline{x} = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot \tilde{x} ^ { ( k ) }$ ; confidence 0.156
278.
; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right).$ ; confidence 0.156
279.
; $a \sharp b \in S ( m _ { 1 } m _ { 2 } , G ),$ ; confidence 0.156
280.
; $T ^ { st }$ ; confidence 0.156
281.
; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
282.
; $( x , \xi ) \in W F ( v )$ ; confidence 0.156
283.
; $\mathfrak { S } _ { w }$ ; confidence 0.156
284.
; $F | _ { - k } ^ { V } M = F + p _ { M } , \forall M \in \Gamma,$ ; confidence 0.156
285.
; $\int _ { \overline{U M} } f ( u ) d u = \int _ { U ^ { + } \partial M } \int _ { 0 } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.156
286.
; $x _ { , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1 } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.156
287.
; $f _ { 1 } = \operatorname { gcd } ( x ^ {q } - x , f )$ ; confidence 0.156
288.
; $V ^ { n } \subset U ^ { n }$ ; confidence 0.156
289.
; $L _ { \alpha } ^ { 2 }$ ; confidence 0.156
290.
; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156
291.
; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { m }$ ; confidence 0.156
292.
; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m - i }( v _ { n } + i ( w ) ) - ( - 1 ) ^ { m } v _ { m + n - i }( u _ { i } ( w ) ) )$ ; confidence 0.155
293.
; $h_* $ ; confidence 0.155
294.
; $4 m$ ; confidence 0.155
295.
; $j_{m,1}$ ; confidence 0.155
296.
; $S _ { k } ( 0 )$ ; confidence 0.155
297.
; $K _ { n } . U _ { 1 }$ ; confidence 0.155
298.
; $e ^ { i k x }$ ; confidence 0.155
299.
; $\mathfrak{g} \subset \text { End } ( V )$ ; confidence 0.155
300.
; $E , A \in C ^ { n \times n }$ ; confidence 0.155
Maximilian Janisch/latexlist/latex/NoNroff/73. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/73&oldid=45798