Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/73"
(→List) |
(→List) |
||
| Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016011.png ; $L^+G _ { C } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { C } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174 | 87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016011.png ; $L^+G _ { C } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { C } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174 | ||
| − | 88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130100.png ; $f , g _ { 1 } , \dots , g _ { | + | 88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130100.png ; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.174 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066041.png ; $\| T _ { 1 } + | + | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066041.png ; $\| T _ { 1 } + i t ( f ) \| _ { \infty } \leq C \| f \|_\infty$ ; confidence 0.173 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum ^ { i _ { 1 } | + | 90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\ | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi_{-} ^ { -1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P,$ ; confidence 0.173 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007029.png ; $\Delta g = g \otimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 }$ ; confidence 0.173 | + | 92. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007029.png ; $\Delta g = g \otimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 },$ ; confidence 0.173 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300701.png ; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ]$ ; confidence 0.173 | + | 93. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300701.png ; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ],$ ; confidence 0.173 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043045.png ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \otimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n }$ ; confidence 0.173 | + | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043045.png ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \otimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n },$ ; confidence 0.173 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420103.png ; $\Psi _ { V , W } ( v \otimes w ) = \beta ( | v | , | w | ) w \ | + | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420103.png ; $\Psi _ { V , W } ( v \otimes w ) = \beta ( | v | , | w | ) w \otimes v$ ; confidence 0.173 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300108.png ; $k = ( k _ { 1 } , \dots , k _ { N } ) \in Z ^ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300108.png ; $k = ( k _ { 1 } , \dots , k _ { N } ) \in \mathbf{Z} ^ { m }$ ; confidence 0.172 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661029.png ; $R _ { | + | 97. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661029.png ; $R _ { ab }$ ; confidence 0.172 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030058.png ; $A ( \eta ) = - \sum _ { k , | + | 98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030058.png ; $\mathcal{A} ( \eta ) = - \sum _ { k , l = 1 } ^ { N } ( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } ) ( \alpha _ { k l } ( y ) ( \frac { \partial } { \partial y _ { l } } + i \eta _ { l } ) )m$ ; confidence 0.172 |
99. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002038.png ; $l \in V ^ { \prime }$ ; confidence 0.172 | 99. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002038.png ; $l \in V ^ { \prime }$ ; confidence 0.172 | ||
| Line 200: | Line 200: | ||
100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d03071034.png ; $\hat { F }$ ; confidence 0.172 | 100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d03071034.png ; $\hat { F }$ ; confidence 0.172 | ||
| − | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031031.png ; $e _ { N } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }$ ; confidence 0.172 | + | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031031.png ; $e _ { N } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }.$ ; confidence 0.172 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012096.png ; $V _ { \text { | + | 103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012096.png ; $V _ { \text { simp } }$ ; confidence 0.172 |
104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200904.png ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172 | 104. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200904.png ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172 | ||
| − | 105. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004013.png ; $\lambda _ { 1 } \geq \frac { \pi | + | 105. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004013.png ; $\lambda _ { 1 } \geq \frac { \pi { j } _ { 1 0 } ^ { 2 } } { A },$ ; confidence 0.172 |
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021030.png ; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172 | 106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021030.png ; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172 | ||
| − | 107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023013.png ; $T = ( \mathfrak { c } _ { i } - j ) _ { i , j } ^ { n - 1 } | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023013.png ; $T = ( \mathfrak { c } _ { i } - j ) _ { i , j=0 } ^ { n - 1 } $ ; confidence 0.172 |
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\tilde { \Omega } _ { D } F$ ; confidence 0.172 | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\tilde { \Omega } _ { D } F$ ; confidence 0.172 | ||
| − | 109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280139.png ; $Z ^ { | + | 109. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280139.png ; $Z ^ { n , n - 1 }$ ; confidence 0.172 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png ; $\mathfrak { q } \notin \ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png ; $\mathfrak { q } \notin \bar { A }$ ; confidence 0.172 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100102.png ; $\epsilon = ( \epsilon 0 , \dots , \epsilon _ { | + | 111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100102.png ; $\epsilon = ( \epsilon 0 , \dots , \epsilon _ { n } )$ ; confidence 0.171 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008078.png ; $E [ W ] _ { P S } = \frac { \rho \dot { b } } { 1 - \rho }$ ; confidence 0.171 | + | 112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008078.png ; $E [ W ] _ { P S } = \frac { \rho \dot { b } } { 1 - \rho },$ ; confidence 0.171 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041036.png ; $b _ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041036.png ; $b _ { n , n + 1} = 1$ ; confidence 0.171 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w _ v$ ; confidence 0.171 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003051.png ; $( ( | + | 115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003051.png ; $( ( \_ ) \otimes _ { F_p } H ^ { * } Z )$ ; confidence 0.171 |
116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020223.png ; $Y$ ; confidence 0.171 | 116. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020223.png ; $Y$ ; confidence 0.171 | ||
Revision as of 20:56, 8 May 2020
List
1.
; $Z _ { \ddot{\alpha} } f$ ; confidence 0.183
2.
; $\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182
3.
; $( \mathcal{S} ) $ ; unknown symbol
4.
; $\| \alpha \| _ { b t } = \| \alpha \| _ { b v } + \sum _ { n = 2 } ^ { \infty } | \sum _ { k = 1 } ^ { n / 2 } \frac { \Delta d _ { n - k } - \Delta d _ { n + k } | } { k }.$ ; confidence 0.182
5.
; $ad : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182
6.
; $v ^ { k }$ ; confidence 0.182
7.
; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
8.
; $T _ { N } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \frac { b _ { n } , j } { j } P _ { j } ^ { \prime } ( x ) , n \geq k + 1,$ ; confidence 0.181
9.
; $i = r j - 1 , \dots , r ; - 1$ ; confidence 0.181
10.
; $\textbf{Alg} _ { \vDash } ( \mathcal{L} ) \subseteq \textbf{Alg} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.181
11.
; $a _ { j } \in \mathcal{B}$ ; confidence 0.181
12.
; $[G:\operatorname{rist}_G ( n )]<\infty$ ; confidence 0.181
13.
; $\mathbf{C} ^ { n } \backslash D$ ; confidence 0.181
14.
; $\sum _ { l = 0 } ^ { m } \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] ( l _ { m } \otimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.181
15.
; $\int _ { E ^ { X } } dP( x ) = m$ ; confidence 0.181
16.
; $\langle z , w \rangle = \sum _ { j = 1 } ^ { x } z _ { j } w _ { j }$ ; confidence 0.181
17.
; $\operatorname { \underline{lim} } \leftarrow : \mathcal{A} ^ { C } \rightarrow A$ ; confidence 0.181
18.
; $\mathfrak{h}(S)\otimes \mathbf{C}$ ; confidence 0.181
19.
; $\leq \sum _ { I \subseteq \{ 1 , \ldots , k \} , I \neq \emptyset } ( - 1 ) ^ { | l | + 1 } \operatorname { Bel } ( \cap _ { i \in I } A _ { i } ).$ ; confidence 0.180
20.
; $2 ^ { \alpha } 3 ^ { b }$ ; confidence 0.180
21.
; $x \in D$ ; confidence 0.180
22.
; $P S L_n$ ; confidence 0.180
23.
; $w ^ { i }$ ; confidence 0.180
24.
; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
25.
; $a ( f ) = \int _ { M } a ( x ) f ( x ) d \sigma ( x ) , \quad \alpha ^ { * } ( f ) = \int _ { M } a ^ { * } ( x ) \overline { f } ( x ) d \sigma ( x ).$ ; confidence 0.180
26.
; $k _ { \overline{z} }$ ; confidence 0.180
27.
; $A _ { 1 } = A ^ { * } / \cap _ { i \in N } m ^ { i } A ^ { * }$ ; confidence 0.180
28.
; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180
29.
; $g _ { k } ( z )$ ; confidence 0.180
30.
; $\overline { c }$ ; confidence 0.180
31.
; $W _ { k } ^ { * }$ ; confidence 0.179
32.
; $\sim _ { c }$ ; confidence 0.179
33.
; $\frac { d } { d t } U _ { k } = F _ { k } ( t , U _ { k } ) , 0 < t , U _ { k } ( 0 ) = u ^ { 0 } h,$ ; confidence 0.179
34.
; $g ( z ) = z ^ { r } - ( a _ { 0 } + \ldots + a _ { r } - 1 ^ { r - 1 } )$ ; confidence 0.179
35.
; $p x$ ; confidence 0.179
36.
; $( \oplus _ { b } G _ { = B } b )$ ; confidence 0.179
37.
; $A _ {M}$ ; confidence 0.179
38.
; $\text{Pf}$ ; confidence 0.179
39.
; $\rho _ { c \varepsilon } ( g ) = g ( \sqrt { \alpha } ) / \sqrt { \alpha }$ ; confidence 0.179
40.
; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } 0 } = ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } + ( \frac { \partial \phi } { \partial x _ { i } } ) | _ { t } ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }.$ ; confidence 0.179
41.
; $Id _ { i j } = \{ q \in \square ^ { \omega } U : q_i = q_j \}$ ; confidence 0.179
42.
; $C_{B ( m , n )} ( G )$ ; confidence 0.179
43.
; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1_3 } \nabla A ( g ) \in \bigotimes \square ^ { 3 } \epsilon$ ; confidence 0.179
44.
; $b \in F$ ; confidence 0.178
45.
; $A = \sum _ { m , n \geq 0 } \int K _ { q , m } ( x _ { 1 } , \ldots , x _ { n } ; y _ { 1 } , \ldots , y _ { m } ) \times$ ; confidence 0.178
46.
; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k 1 } \rangle \rangle \ldots ( 1 + \langle z , \alpha _ { k n } \rangle ) },$ ; confidence 0.178
47.
; $u _ { t } + u _ { x } + u u _ { x } + u _ { X X X } = 0$ ; confidence 0.178
48.
; $k _ { n } ( z )$ ; confidence 0.178
49.
; $\pi_ 1 M_0$ ; confidence 0.178
50.
; $\pi _ { \kappa}$ ; confidence 0.178
51.
; $\times \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } s _ { j } d s _ { 1 } \wedge \ldots \wedge [ d s _ { j } ] \wedge \ldots \wedge d s _ { n } \wedge \omega ( \zeta ),$ ; confidence 0.178
52.
; $[ [ \lambda x \cdot M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178
53.
; $a_{k + 1}$ ; confidence 0.177
54.
; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n } - 1 + \ldots + \frac { 1 } { i k _ { 1 } } }.$ ; confidence 0.177
55.
; $\mathcal{Q}$ ; confidence 0.177
56.
; $\operatorname { lim } _ { n } a _ { n } = \frac { \sum _ { 0 } ^ { \infty } b _ { j } } { \sum _ { 0 } ^ { \infty } j p _ { j } }.$ ; confidence 0.177
57.
; $j_{0,1} = 2.4048\dots$ ; confidence 0.177
58.
; $\operatorname{ind} ( P ) : = \operatorname { dim } ( \operatorname{ker} ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) ).$ ; confidence 0.177
59.
; $L _ { \alpha } ^ { p } ( G )$ ; confidence 0.177
60.
; $m D$ ; confidence 0.176
61.
; $\hat { g }$ ; confidence 0.176
62.
; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \otimes y ) = q y \otimes x$ ; confidence 0.176
63.
; $f _ { l } ^ { t } = \mathcal{F} ^ { - 1 } ( e ^ { i ( p ^ { 0 } - \omega ) t } \mathcal{F} ( f _ { l } ) )$ ; confidence 0.176
64.
; $E _ { * }$ ; confidence 0.176
65.
; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176
66.
; $M _ { N } = [ m _ { i j } ] _ { i , j = 0 } ^ { n }$ ; confidence 0.176
67.
; $f _ { i } ^{( t + 1 ) }= f _ { i }^{ ( t )} \sum _ { j } ( \frac { h _ { i j } } { \sum _ { k } f _ { k } ( t ) h _ { k j } ) } ) g _ { j } , t = 1,2 ,\dots $ ; confidence 0.176
68.
; $H ^ { \bullet } ( \Gamma \backslash X , \widetilde { \mathcal{M} \otimes C } ) \xrightarrow{\sim} H ^ { \bullet } ( \Gamma \backslash X , \Omega ^ { \bullet } ( \tilde { \mathcal{M} } _ { C } ) ),$ ; confidence 0.176
69.
; $\{ x \in \hat { K } _ { p } : | x - a | _ { p } \leq \epsilon \},$ ; confidence 0.176
70.
; $c _ { n }$ ; confidence 0.175
71.
; $e ^ { h |x | ^ { 1 / s } }$ ; confidence 0.175
72.
; $E [ X _ { \infty } \operatorname { log } ^ { + } X _ { \infty } ]$ ; confidence 0.175
73.
; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y \dot \eta } a ( x , \xi + \eta ) b ( y + x , \xi ) d y d \eta,$ ; confidence 0.175
74.
; $\rightarrow H ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \stackrel { r } { \rightarrow } H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } )\rightarrow \dots$ ; confidence 0.175
75.
; $\textbf{Fm} _ { P }$ ; confidence 0.175
76.
; $\mathcal{L}$ ; confidence 0.175
77.
; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { N } e ^ { i t p _ { N } } ) \in \Omega$ ; confidence 0.175
78.
; $= \{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175
79.
; $ \varphi^\vee ( \chi ) = \varphi ( \chi ^ { - 1 } )$ ; confidence 0.175
80.
; $H _ { \mathfrak{m} } ^ { i } ( R ) = [ H _ { \mathfrak{m} } ^ { i } ( R ) ] _ { 0 }$ ; confidence 0.175
81.
; $v ^ { \sharp }$ ; confidence 0.175
82.
; $Z ^ { \prime } = a _ { 0 } 1 + \ldots + a _ { r - 1 } Z ^ { r - 1 }$ ; confidence 0.174
83.
; $\alpha _ { j } \in V$ ; confidence 0.174
84.
; $1 , \dots , r _ { m } \in C [ z , z ]$ ; confidence 0.174
85.
; $\operatorname { Tr } A B = \int _ { \mathbf{R} ^ { 3 N } \times \mathbf{R} ^ { 3 N } } A _ { w } B _ { w } d x d p.$ ; confidence 0.174
86.
; $\mathcal{D} _ { n } ^ { r }$ ; confidence 0.174
87.
; $L^+G _ { C } = \left\{ \begin{array}{l}{ \\ \gamma \in L G _ { C } :\\ }\end{array} \begin{array}{c}{ \gamma \text{ extends} \\ \text{ holomorphically in the disc } }\\{ \text { to a group } "\square" \text{valued mapping }}\end{array} \right\}.$ ; confidence 0.174
88.
; $f , g _ { 1 } , \dots , g _ { m } \in \mathbf{Z} [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.174
89.
; $\| T _ { 1 } + i t ( f ) \| _ { \infty } \leq C \| f \|_\infty$ ; confidence 0.173
90.
; $\sum ^ { i _ { 1 } , \dots , i _ { s }}$ ; confidence 0.173
91.
; $\phi_{-} ^ { -1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P,$ ; confidence 0.173
92.
; $\Delta g = g \otimes g , \epsilon g = 1 , S g = g ^ { - 1 } = g ^ { n - 1 },$ ; confidence 0.173
93.
; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ],$ ; confidence 0.173
94.
; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \otimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n },$ ; confidence 0.173
95.
; $\Psi _ { V , W } ( v \otimes w ) = \beta ( | v | , | w | ) w \otimes v$ ; confidence 0.173
96.
; $k = ( k _ { 1 } , \dots , k _ { N } ) \in \mathbf{Z} ^ { m }$ ; confidence 0.172
97.
; $R _ { ab }$ ; confidence 0.172
98.
; $\mathcal{A} ( \eta ) = - \sum _ { k , l = 1 } ^ { N } ( \frac { \partial } { \partial y _ { k } } + i \eta _ { k } ) ( \alpha _ { k l } ( y ) ( \frac { \partial } { \partial y _ { l } } + i \eta _ { l } ) )m$ ; confidence 0.172
99.
; $l \in V ^ { \prime }$ ; confidence 0.172
100.
; $\hat { F }$ ; confidence 0.172
101.
; $e _ { N } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }.$ ; confidence 0.172
102.
; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu n } ) \text { as } n \rightarrow \infty.$ ; confidence 0.172
103.
; $V _ { \text { simp } }$ ; confidence 0.172
104.
; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172
105.
; $\lambda _ { 1 } \geq \frac { \pi { j } _ { 1 0 } ^ { 2 } } { A },$ ; confidence 0.172
106.
; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172
107.
; $T = ( \mathfrak { c } _ { i } - j ) _ { i , j=0 } ^ { n - 1 } $ ; confidence 0.172
108.
; $\tilde { \Omega } _ { D } F$ ; confidence 0.172
109.
; $Z ^ { n , n - 1 }$ ; confidence 0.172
110.
; $\mathfrak { q } \notin \bar { A }$ ; confidence 0.172
111.
; $\epsilon = ( \epsilon 0 , \dots , \epsilon _ { n } )$ ; confidence 0.171
112.
; $E [ W ] _ { P S } = \frac { \rho \dot { b } } { 1 - \rho },$ ; confidence 0.171
113.
; $b _ { n , n + 1} = 1$ ; confidence 0.171
114.
; $w _ v$ ; confidence 0.171
115.
; $( ( \_ ) \otimes _ { F_p } H ^ { * } Z )$ ; confidence 0.171
116.
; $Y$ ; confidence 0.171
117.
; $V ( \hat { K } _ { p } )$ ; confidence 0.171
118.
; $J ^ { \prime } _ { 0 } ( R ^ { n } , R )$ ; confidence 0.170
119.
; $E _ { i } ^ { * } + 1$ ; confidence 0.170
120.
; $T _ { z x }$ ; confidence 0.170
121.
; $U z$ ; confidence 0.170
122.
; $\Delta Dir$ ; confidence 0.170
123.
; $v ^ { n }$ ; confidence 0.170
124.
; $\left. \begin{array} { l } { p _ { t } ( \alpha , t ) + p _ { \alpha } ( \alpha , t ) + \mu ( \alpha , S ( t ) ) p ( \alpha , t ) = 0 } \\ { p ( 0 , t ) = \int ^ { + \infty } \beta ( \sigma , s ( t ) ) p ( \sigma , t ) d \sigma } \\ { p ( \alpha , 0 ) = p 0 } \\ { S ( t ) = \int \gamma ( \sigma ) p ( \sigma , t ) d \sigma } \end{array} \right.$ ; confidence 0.169
125.
; $u \| _ { A _ { p } ( G ) } \leq C$ ; confidence 0.169
126.
; $\alpha _ { j } ( h _ { i } ) = \alpha _ { j }$ ; confidence 0.169
127.
; $M ( \tilde { x } , \tilde { y } ) / R$ ; confidence 0.169
128.
; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { x } ^ { b } f ^ { ( y ) } ( x ) g ^ { ( y ) } ( x ) d x$ ; confidence 0.169
129.
; $N _ { c }$ ; confidence 0.169
130.
; $1$ ; confidence 0.169
131.
; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \otimes S \mathfrak { g } ^ { * } \} ^ { K }$ ; confidence 0.169
132.
; $e _ { j k }$ ; confidence 0.169
133.
; $\operatorname { lim } _ { N \rightarrow \infty } \frac { \int _ { 0 } ^ { N } | y ( x , \lambda ) | ^ { 2 } d x } { \int _ { | v ( x , \lambda ) | ^ { 2 } d x } } = 0$ ; confidence 0.169
134.
; $\| g _ { x } \|$ ; confidence 0.169
135.
; $\left.\begin{array} { c c } { T } & { ( I - T T ^ { * } ) ^ { 1 / 2 } } \\ { ( I - T ^ { * } T ) ^ { 1 / 2 } } & { T ^ { * } } \end{array} \right\}$ ; confidence 0.169
136.
; $M ( P ) = | \alpha _ { 0 } | \prod _ { k = 1 } ^ { \phi } \operatorname { max } ( | \alpha _ { k } | , 1 )$ ; confidence 0.169
137.
; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
138.
; $f ^ { \prime } O p$ ; confidence 0.169
139.
; $\mathfrak { Q } [ \Lambda ]$ ; confidence 0.169
140.
; $\left\{ \begin{array} { l l } { \operatorname { min } } & { c ^ { T } x } \\ { s.t. } & { A x \leq b } \end{array} \right.$ ; confidence 0.169
141.
; $\left. \begin{array} { l l l } { \square } & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169
142.
; $h \equiv 0$ ; confidence 0.169
143.
; $A \subset \not B$ ; confidence 0.168
144.
; $X ^ { Y }$ ; confidence 0.168
145.
; $M _ { i n s }$ ; confidence 0.168
146.
; $g _ { m } ( \eta ) = \int _ { R ^ { N } } g ( y ) e ^ { - i \eta y \overline { \phi } } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }$ ; confidence 0.168
147.
; $R _ { x , h } ( A )$ ; confidence 0.168
148.
; $\Phi$ ; confidence 0.168
149.
; $a _ { n }$ ; confidence 0.168
150.
; $J _ { b - a } ( \sqrt { x } ) Y _ { b - a } ( \sqrt { x } ) = - \sqrt { x } x ^ { - a } G _ { 13 } ^ { 20 } ( x | \begin{array} { c } { a + 1 / 2 } \\ { b , a , 2 a - b } \end{array} )$ ; confidence 0.168
151.
; $\pi : N \rightarrow N$ ; confidence 0.168
152.
; $i 1 , \ldots , i _ { n }$ ; confidence 0.168
153.
; $L _ { D }$ ; confidence 0.168
154.
; $y ^ { * }$ ; confidence 0.168
155.
; $c ( x ) = c ^ { a } ( x ) T _ { a }$ ; confidence 0.167
156.
; $\hat { A } _ { y }$ ; confidence 0.167
157.
; $P ^ { n } \supset C ^ { n }$ ; confidence 0.167
158.
; $e ^ { i k ^ { n } \alpha x }$ ; confidence 0.167
159.
; $R _ { 1 } = R ^ { * } / \cap _ { i \in N } a ^ { i } R ^ { * }$ ; confidence 0.167
160.
; $\operatorname { tg } E ( \lambda x _ { 0 } , \ldots , x _ { x } - 1 , \lambda y 0 , \ldots , y _ { n } - 1 )$ ; confidence 0.167
161.
; $h \downarrow 0$ ; confidence 0.167
162.
; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } _ { p } ( \alpha , p ) } { \alpha x - p } d \alpha d p$ ; confidence 0.166
163.
; $J _ { x - \phi } ( 2 \sqrt { x } ) = x ^ { - ( x + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b )$ ; confidence 0.166
164.
; $d j k d$ ; confidence 0.166
165.
; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) }\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi }\end{array} \right.$ ; confidence 0.166
166.
; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E \otimes ^ { \gamma }$ ; confidence 0.166
167.
; $\operatorname { ln } \nmid 2 \rfloor$ ; confidence 0.166
168.
; $\sum _ { l = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h f ( \sum _ { i = 0 } ^ { k } \beta _ { i } x _ { m + i } , \sum _ { i = 0 } ^ { k } \beta _ { i } y _ { m + i } )$ ; confidence 0.166
169.
; $U _ { y }$ ; confidence 0.166
170.
; $y _ { 1 } , x _ { 2 }$ ; confidence 0.166
171.
; $\operatorname { app } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166
172.
; $r ^ { 2 } = \sum \| A _ { j } | ^ { 2 }$ ; confidence 0.166
173.
; $U = \sum _ { i j } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165
174.
; $d [ f / \| f \| , \partial K , S ^ { x - 1 } ]$ ; confidence 0.165
175.
; $r _ { i } ( A ) : = \sum _ { j = 1 \atop j \neq i } ^ { n } | \alpha _ { i , j } |$ ; confidence 0.165
176.
; $A _ { k ^ { \prime } }$ ; confidence 0.165
177.
; $\cap _ { N = 1 } ^ { \infty } U _ { n } = \cap _ { N = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165
178.
; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | S D | - 1 }$ ; confidence 0.165
179.
; $Q ( r , s ) = q r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q + i q _ { s } - i$ ; confidence 0.165
180.
; $r : b ^ { e ^ { x } } \rightarrow b ^ { e ^ { x } }$ ; confidence 0.165
181.
; $j \neq i 1 , \ldots , i$ ; confidence 0.165
182.
; $P _ { \text { ynav } }$ ; confidence 0.165
183.
; $\alpha _ { H } ( x _ { + } ) - \alpha _ { H } ( x _ { - } )$ ; confidence 0.165
184.
; $\gamma ( \tilde { u } _ { 1 } ) > 0$ ; confidence 0.165
185.
; $T P U$ ; confidence 0.165
186.
; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165
187.
; $A x$ ; confidence 0.165
188.
; $v _ { t } + 1 = L _ { v t }$ ; confidence 0.165
189.
; $Y$ ; confidence 0.165
190.
; $H ( u , v ) ( x , \xi ) = 2 ^ { n } \langle \sigma _ { x } , \xi u , v \rangle _ { L } ^ { 2 } ( R ^ { n } ) , ( \sigma _ { x } , \xi u ) ( y ) = u ( 2 x - y ) \operatorname { exp } ( - 4 i \pi ( x - y ) . \xi$ ; confidence 0.164
191.
; $V ^ { 4 } = \oplus _ { n } V _ { n }$ ; confidence 0.164
192.
; $a , b \in C ^ { x }$ ; confidence 0.164
193.
; $\phi _ { * } ( \text { ind } ( D ) ) = ( - 1 ) ^ { n } ( 2 \pi i ) ^ { - m } ( Ch ( [ a ] ) T ( M ) f ^ { * } \phi ) [ T ^ { * } M ]$ ; confidence 0.164
194.
; $S _ { N } ( f ; x ) = \sum _ { k \backslash k < N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.164
195.
; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
196.
; $w _ { n - 1 } = ( \| s _ { n } - 1 \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w$ ; confidence 0.164
197.
; $D$ ; confidence 0.164
198.
; $\sigma U , V ^ { \prime } ( u \otimes v ) = u ^ { ( 2 ) } , v \otimes u ^ { ( 1 ) }$ ; confidence 0.164
199.
; $F _ { 2 }$ ; confidence 0.164
200.
; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) )$ ; confidence 0.164
201.
; $SL _ { \eta } ( Q _ { p } )$ ; confidence 0.164
202.
; $V _ { i x } ^ { b } g _ { x }$ ; confidence 0.164
203.
; $f ( w ^ { H _ { i } } | _ { v ^ { H _ { i } } } ) = f ( w | v )$ ; confidence 0.164
204.
; $T _ { R } ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.164
205.
; $\overline { D }$ ; confidence 0.164
206.
; $n ( \epsilon , F _ { d } ) \leq K . d ^ { p } . \epsilon ^ { - \gamma } , \quad \forall d = 1,2 , \dots , \forall \epsilon \in ( 0,1 ]$ ; confidence 0.163
207.
; $s p \hat { T } = ( \operatorname { supp } T ) ^ { - 1 }$ ; confidence 0.163
208.
; $S _ { n + 1 } = \{ z \in C ^ { n + 1 } : \operatorname { Im } z _ { n + 1 } > \sum ^ { n _ { j = 1 } } | z _ { j } | ^ { 2 } \}$ ; confidence 0.163
209.
; $c ^ { \infty } 0$ ; confidence 0.163
210.
; $\int _ { a } ^ { b } p ^ { - 1 } \times \int _ { a } ^ { b } | q | < 4$ ; confidence 0.163
211.
; $\gamma _ { l } ( 1 )$ ; confidence 0.163
212.
; $f _ { 1 } ( T ) = W ^ { ( x - \gamma _ { 1 } - \ldots - x _ { s } ) / 2 } f ( T )$ ; confidence 0.163
213.
; $X \in y$ ; confidence 0.163
214.
; $s \tau$ ; confidence 0.163
215.
; $f : V ^ { N } \rightarrow W ^ { X }$ ; confidence 0.163
216.
; $U _ { R } ( t _ { R } )$ ; confidence 0.162
217.
; $\dot { i } = 1 , \ldots , r$ ; confidence 0.162
218.
; $d ^ { * } \in \cap P \in P L _ { 2 } ( \Omega , A , P )$ ; confidence 0.162
219.
; $[ h _ { i j } e _ { k } ] = \delta _ { i j } a _ { i k } e _ { k }$ ; confidence 0.162
220.
; $A ( C , q , z ) = \sum _ { V \in C } z ^ { w / v }$ ; confidence 0.162
221.
; $\operatorname { dim } \Lambda ^ { k ^ { * } } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162
222.
; $r , 1 / r , 2$ ; confidence 0.162
223.
; $g x ( T ) = \frac { G _ { X } ( T ) } { H ( X ) [ 1 + \alpha ( X ) + H ( X ) ^ { 2 } \| \alpha ^ { \prime \prime } ( X ) \| ^ { 2 } G _ { X } ] ^ { 1 / 2 } }$ ; confidence 0.162
224.
; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }$ ; confidence 0.162
225.
; $( A , \overline { A } , t \sim t _ { \alpha } )$ ; confidence 0.162
226.
; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n ( \lambda } ) } \end{array} \right)$ ; confidence 0.161
227.
; $5 \sqrt { 3 }$ ; confidence 0.161
228.
; $y _ { 1 }$ ; confidence 0.161
229.
; $N$ ; confidence 0.161
230.
; $| | x | _ { 1 } | = \sum _ { i } | x |$ ; confidence 0.161
231.
; $\sigma ( T ) \backslash \sigma _ { \text { Tre } } ( T )$ ; confidence 0.161
232.
; $\overline { p } = \infty$ ; confidence 0.161
233.
; $\{ s _ { \mathfrak { q } ^ { \prime } } ^ { i } : i \geq 0 \}$ ; confidence 0.161
234.
; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
235.
; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161
236.
; $r _ { m } - 2 \in S _ { 0 c } ^ { m - 2 } ( \Omega )$ ; confidence 0.161
237.
; $\pi ( 0 ) + 2 \pi ( 0 )$ ; confidence 0.161
238.
; $( K _ { s } ( \overline { \sigma } ) \cap K _ { tot } s ) _ { ins }$ ; confidence 0.161
239.
; $\hat { Q } p$ ; confidence 0.161
240.
; $\vec { H }$ ; confidence 0.160
241.
; $l \in R ^ { N }$ ; confidence 0.160
242.
; $\psi _ { \mathfrak { A } } ^ { \mathfrak { d } } \overline { \mathfrak { a } }$ ; confidence 0.160
243.
; $sL ( m , C )$ ; confidence 0.160
244.
; $e _ { \lambda } ^ { ran } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ^ { ran } ( Q _ { n } , F _ { d } )$ ; confidence 0.160
245.
; $\Psi _ { V , W } ( v \otimes w ) = q ^ { p | w | } w \otimes v$ ; confidence 0.160
246.
; $A ( t ) = t - S _ { N } ( t ) , R ( t ) = S _ { N ( t ) + 1 } - t$ ; confidence 0.160
247.
; $101$ ; confidence 0.160
248.
; $P _ { \ell } ( x ) \in Z [ x ]$ ; confidence 0.160
249.
; $H _ { i } + 1$ ; confidence 0.160
250.
; $\rightarrow \operatorname { Ext } _ { M H _ { R } ^ { + } } ( R ( 0 ) , H _ { B } ^ { i } ( X ) , R ( j ) )$ ; confidence 0.159
251.
; $r : H _ { M } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { D } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159
252.
; $\underline { \sigma }$ ; confidence 0.159
253.
; $P _ { k } = ( u _ { t } + 1 , \dots , u _ { t } + k )$ ; confidence 0.159
254.
; $\dot { X } ^ { \dot { \ell } }$ ; confidence 0.159
255.
; $F ( r , m ) = \langle x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r } - 1 = x _ { i + r } \rangle$ ; confidence 0.159
256.
; $D = \{ F m , \dagger _ { D } )$ ; confidence 0.159
257.
; $\lambda _ { 1 } = id , \lambda _ { W } \otimes z = \lambda z \circ \lambda _ { W }$ ; confidence 0.159
258.
; $C \nmid \Lambda$ ; confidence 0.159
259.
; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
260.
; $K = \kappa _ { 1 } \quad \kappa _ { 2 }$ ; confidence 0.159
261.
; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159
262.
; $\alpha \mapsto x _ { \alpha } \in h$ ; confidence 0.159
263.
; $m _ { r s } = g _ { l } g _ { r } ^ { i } Q _ { s } ^ { j }$ ; confidence 0.159
264.
; $2$ ; confidence 0.158
265.
; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \otimes \alpha + ( 1 - q ^ { 2 } ) \beta \otimes \gamma$ ; confidence 0.158
266.
; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { X } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { X } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { X } } & { 0 } \end{array} \right)$ ; confidence 0.158
267.
; $\operatorname { lim } _ { z | \rightarrow \infty } \overline { x } ( z ) = x ( 0 )$ ; confidence 0.158
268.
; $r _ { \gamma } > 0$ ; confidence 0.158
269.
; $c ( i , m ) L ( i , m ) = \operatorname { det } _ { Q } r _ { D } ( H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } )$ ; confidence 0.157
270.
; $E ^ { i t } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0$ ; confidence 0.157
271.
; $M _ { y }$ ; confidence 0.157
272.
; $( Q _ { n } , [ f ] ) _ { i = 1,2 , \ldots }$ ; confidence 0.157
273.
; $\hat { f } ( \xi ) = \int _ { R ^ { 2 n } e ^ { - i x } \xi } f ( x ) d x$ ; confidence 0.157
274.
; $[ L : K ] \geq \sum _ { l = 1 } ^ { m } e ( w _ { l } | v ) \cdot f ( w _ { l } | w )$ ; confidence 0.157
275.
; $\| f _ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }$ ; confidence 0.157
276.
; $\sum _ { \alpha \in Z ^ { n } } \frac { \alpha _ { \alpha } } { ( | \alpha | ! ) ^ { s - 1 } } x ^ { \alpha }$ ; confidence 0.157
277.
; $x = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot x ^ { ( k ) }$ ; confidence 0.156
278.
; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right)$ ; confidence 0.156
279.
; $a _ { n } ^ { + } b \in S ( m _ { 1 } m _ { 2 } , G )$ ; confidence 0.156
280.
; $T ^ { st }$ ; confidence 0.156
281.
; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
282.
; $( x , \xi ) \in W F ( v )$ ; confidence 0.156
283.
; $\mathfrak { S } _ { w }$ ; confidence 0.156
284.
; $F | _ { - k } ^ { V } M = F + p _ { M } , \forall M \in \Gamma$ ; confidence 0.156
285.
; $\int _ { U M } f ( u ) d u = \int _ { U ^ { + } \partial M ^ { 0 } } \int _ { U } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t ( v , N _ { x } ) d v d x$ ; confidence 0.156
286.
; $x _ { , j } = \left\{ \begin{array} { l l } { 1 , } & { \text { if } i + j = m + 1 } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.156
287.
; $f _ { 1 } = \operatorname { gcd } ( x ^ { \not y } - x , f )$ ; confidence 0.156
288.
; $V ^ { \aleph } \subset U ^ { X }$ ; confidence 0.156
289.
; $L _ { O } ^ { 2 }$ ; confidence 0.156
290.
; $\alpha = \frac { b \sigma ( a ) } { \alpha \varphi ( b ) }$ ; confidence 0.156
291.
; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { \mathfrak { K } }$ ; confidence 0.156
292.
; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m } - i ( v _ { n } + i ( w ) ) - ( - 1 ) ^ { m } v _ { m + n } - i ( u _ { i } ( w ) ) )$ ; confidence 0.155
293.
; $b \times$ ; confidence 0.155
294.
; $4 r r$ ; confidence 0.155
295.
; $\dot { m } , 1$ ; confidence 0.155
296.
; $S _ { T } ( 0 )$ ; confidence 0.155
297.
; $K _ { x } \cdot U _ { 1 }$ ; confidence 0.155
298.
; $e ^ { i \hbar x }$ ; confidence 0.155
299.
; $g \subset \text { End } ( V )$ ; confidence 0.155
300.
; $E , A \in C ^ { r \times n }$ ; confidence 0.155
Maximilian Janisch/latexlist/latex/NoNroff/73. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/73&oldid=45793