Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/58"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 58 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 2: Line 2:
 
1. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f04194061.png ; $X _ { f }$ ; confidence 0.508
 
1. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f04194061.png ; $X _ { f }$ ; confidence 0.508
  
2. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001032.png ; $f \leq g$ ; confidence 0.508
+
2. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001032.png ; $f \preceq g$ ; confidence 1.000
  
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100127.png ; $\sigma ( L _ { C } ^ { \infty } ( \hat { G } ) , L _ { C } ^ { 1 } ( \hat { G } ) )$ ; confidence 0.508
+
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100127.png ; $\sigma ( L _ {\bf C } ^ { \infty } ( \hat { G } ) , L _ {\bf C } ^ { 1 } ( \hat { G } ) )$ ; confidence 1.000
  
4. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005049.png ; $1 \in C$ ; confidence 0.508
+
4. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005049.png ; $1 \in \bf C$ ; confidence 0.508
  
5. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) Z ( y ( n ) )$ ; confidence 0.508
+
5. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) .Z ( y ( n ) ).$ ; confidence 1.000
  
 
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
 
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006045.png ; $27$ ; confidence 0.508
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006045.png ; $\frak N$ ; confidence 1.000
  
8. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $Z ^ { * }$ ; confidence 0.508
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $\bf Z ^ { * }$ ; confidence 1.000
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k )$ ; confidence 0.508
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k ),$ ; confidence 0.508
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200903.png ; $\{ x \} ^ { G }$ ; confidence 0.508
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200903.png ; $\langle x \rangle ^ { G }$ ; confidence 1.000
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110125.png ; $v _ { i } \phi _ { , i } = ( v . \nabla ) \phi$ ; confidence 0.508
+
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110125.png ; $v _ { i } \phi _ { , i } = ( {\bf v} . \nabla ) \phi$ ; confidence 1.000
  
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210110.png ; $( Hom _ { a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 0.508
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210110.png ; $( \operatorname{Hom} _ {\frak a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 1.000
  
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110138.png ; $( v . \nabla ) v = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.508
+
13. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110138.png ; $( {\bf v} . \nabla ) {\bf v} = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } {\bf v} ) \times {\bf v}$ ; confidence 1.000
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286044.png ; $B _ { 1 }$ ; confidence 0.508
+
14. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286044.png ; $\beta _ { 1 }$ ; confidence 1.000
  
 
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.508
 
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.508
  
16. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011010.png ; $B _ { N } f$ ; confidence 0.507
+
16. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011010.png ; $B _ { n } f$ ; confidence 1.000
  
 
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010028.png ; $x \subseteq y$ ; confidence 0.507
 
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010028.png ; $x \subseteq y$ ; confidence 0.507
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \{ U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 0.507
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \langle U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 1.000
  
19. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x$ ; confidence 0.507
+
19. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x,$ ; confidence 0.507
  
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0$ ; confidence 0.507
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0.$ ; confidence 0.507
  
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202106.png ; $\alpha ^ { N } 0 \neq 0$ ; confidence 0.507
+
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202106.png ; $\alpha ^ { N_ 0} \neq 0$ ; confidence 1.000
  
22. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { i }$ ; confidence 0.507
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { ,i }$ ; confidence 1.000
  
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008037.png ; $h ( x ) \equiv 0$ ; confidence 0.507
+
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008037.png ; $h ( x ) \not\equiv 0$ ; confidence 1.000
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004083.png ; $GL$ ; confidence 0.507
+
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004083.png ; $\operatorname{GL}_l$ ; confidence 1.000
  
25. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034080.png ; $0 \in R ^ { x }$ ; confidence 0.507
+
25. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034080.png ; $0 \in {\bf R} ^ { n }$ ; confidence 1.000
  
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $\pi$ ; confidence 0.507
+
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $\hat{\pi}$ ; confidence 1.000
  
 
27. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012025.png ; $\theta > 0$ ; confidence 0.507
 
27. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012025.png ; $\theta > 0$ ; confidence 0.507
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510159.png ; $d _ { i n } < 2$ ; confidence 0.507
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510159.png ; $d _ { \text{in} } < 2$ ; confidence 1.000
  
29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ ; confidence 0.507
+
29. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K,$ ; confidence 0.507
  
 
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004048.png ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507
 
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004048.png ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507
  
31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n12007023.png ; $A _ { j n _ { k } } \subset B , \quad k \in N$ ; confidence 0.506
+
31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n12007023.png ; $A _ { j_{n _ { k } }} \subset B , \quad k \in \bf N$ ; confidence 1.000
  
 
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506
 
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024027.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) )$ ; confidence 0.506
+
33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024027.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ),$ ; confidence 0.506
  
34. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390141.png ; $\Pi _ { r }$ ; confidence 0.506
+
34. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390141.png ; $\Pi _ { \kappa }$ ; confidence 1.000
  
 
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
 
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200606.png ; $n \in N , \epsilon = \pm 1$ ; confidence 0.506
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200606.png ; $n \in {\bf N} , \epsilon = \pm 1.$ ; confidence 1.000
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }$ ; confidence 0.506
+
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }.$ ; confidence 0.506
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016023.png ; $\alpha = B / \overline { u } T$ ; confidence 0.506
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016023.png ; $a = B / \overline { u } T$ ; confidence 1.000
  
 
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506
 
39. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506
  
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016030.png ; $k$ ; confidence 0.506
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016030.png ; $k_G$ ; confidence 1.000
  
41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003032.png ; $IF ( x ; T , G )$ ; confidence 0.506
+
41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003032.png ; $\operatorname{IF} ( x ; T , G )$ ; confidence 1.000
  
42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008073.png ; $F \in \operatorname { Hol } ( B )$ ; confidence 0.506
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008073.png ; $F \in \operatorname { Hol } ( \bf B )$ ; confidence 1.000
  
 
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015940/b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506
 
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015940/b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506
Line 90: Line 90:
 
45. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506
 
45. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506
  
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302409.png ; $\langle a b | c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c | b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle$ ; confidence 0.506
+
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302409.png ; $\langle a b \lanlge c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle,$ ; confidence 1.000
  
47. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017019.png ; $\overline { X } = ( A , B )$ ; confidence 0.506
+
47. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017019.png ; $\hat { X } = ( A , B )$ ; confidence 1.000
  
 
48. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505
 
48. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505
  
49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001010.png ; $U ( g ) \varphi ; ( f ) U ( g ^ { - 1 } )$ ; confidence 0.505
+
49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001010.png ; $U ( g ) \varphi_j ( f ) U ( g ^ { - 1 } )$ ; confidence 1.000
  
 
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240547.png ; $T ^ { 2 }$ ; confidence 0.505
 
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240547.png ; $T ^ { 2 }$ ; confidence 0.505
Line 104: Line 104:
 
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505
 
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : \cal C ^ { \text{op} } \rightarrow C$ ; confidence 1.000
  
 
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
 
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $\Lamda M = M \Lambda ^ { t }$ ; confidence 1.000
  
56. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005048.png ; $S \subset M ^ { x }$ ; confidence 0.505
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005048.png ; $S \subset M ^ { n }$ ; confidence 1.000
  
 
57. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505
 
57. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060159.png ; $S _ { Y }$ ; confidence 0.505
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060159.png ; $S _ { \text{V} }$ ; confidence 1.000
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012028.png ; $\beta j > 0$ ; confidence 0.505
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012028.png ; $\beta_j > 0$ ; confidence 1.000
  
 
60. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150203.png ; $\{ B x _ { x } \}$ ; confidence 0.505
 
60. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150203.png ; $\{ B x _ { x } \}$ ; confidence 0.505
Line 124: Line 124:
 
62. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505
 
62. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004016.png ; $a _ { x } + 1$ ; confidence 0.505
+
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004016.png ; $a _ { n + 1 }$ ; confidence 1.000
  
64. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030780/d03078032.png ; $n + 2$ ; confidence 0.505
+
64. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030780/d03078032.png ; $n / 2$ ; confidence 1.000
  
 
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032015.png ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505
 
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032015.png ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505
  
66. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200304.png ; $\{ y _ { N } \}$ ; confidence 0.504
+
66. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200304.png ; $\{ y _ { n } \}$ ; confidence 1.000
  
 
67. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052040/i052040102.png ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504
 
67. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052040/i052040102.png ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040128.png ; $\phi ^ { \prime }$ ; confidence 0.504
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040128.png ; $\varphi ^ { \prime }$ ; confidence 1.000
  
 
69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504
 
69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504
Line 140: Line 140:
 
70. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
 
70. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203009.png ; $Y = [ 0,2 \pi [ ^ { N } ]$ ; confidence 0.504
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203009.png ; $Y = [ 0,2 \pi [ ^ { N } $ ; confidence 1.000
  
72. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002080.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in F ( S ^ { d } ) ^ { q }$ ; confidence 0.504
+
72. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002080.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in {\cal F} ( S ^ { d } ) ^ { q }$ ; confidence 1.000
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043075.png ; $k ^ { \prime } ( x _ { i } )$ ; confidence 0.504
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043075.png ; $k ^ { \prime } \langle x _ { i } \rangle$ ; confidence 1.000
  
74. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008051.png ; $E [ T _ { p } ] _ { p R } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 0.504
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008051.png ; $\operatorname{E} [ T _ { p } ] _ {\text{PR} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 1.000
  
 
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200152.png ; $\Pi ^ { \text { re } }$ ; confidence 0.504
 
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200152.png ; $\Pi ^ { \text { re } }$ ; confidence 0.504
Line 158: Line 158:
 
79. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520164.png ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504
 
79. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520164.png ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504
  
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019071.png ; $a \geq$ ; confidence 0.504
+
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019071.png ; $a_3$ ; confidence 1.000
  
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023010.png ; $[ \varphi \otimes x , \psi \otimes Y ] =$ ; confidence 0.504
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023010.png ; $[ \varphi \bigotimes x , \psi \bigotimes Y ] =$ ; confidence 1.000
  
82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230125.png ; $\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.504
+
82. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230125.png ; $+\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )+$ ; confidence 1.000
  
 
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
 
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $\varepsilon$ ; confidence 0.504
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $\cal E$ ; confidence 1.000
  
 
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
 
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
  
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \otimes \Lambda - A \otimes M ] =$ ; confidence 0.504
+
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \bigotimes \Lambda - A \bigotimes M ] =$ ; confidence 1.000
  
 
87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504
 
87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504
Line 176: Line 176:
 
88. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002067.png ; $\mu ( A ) = | A |$ ; confidence 0.504
 
88. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002067.png ; $\mu ( A ) = | A |$ ; confidence 0.504
  
89. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520213.png ; $GL _ { S } ( K )$ ; confidence 0.504
+
89. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520213.png ; $\operatorname{GL} _ { s } ( K )$ ; confidence 1.000
  
 
90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013045.png ; $T$ ; confidence 0.504
 
90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013045.png ; $T$ ; confidence 0.504
  
91. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0$ ; confidence 0.504
+
91. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0.$ ; confidence 0.504
  
92. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019036.png ; $R _ { x } ^ { 3 N } \times R _ { p } ^ { 3 N }$ ; confidence 0.504
+
92. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019036.png ; ${\bf R} _ { x } ^ { 3 N } \times {\bf R} _ { p } ^ { 3 N }$ ; confidence 1.000
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150111.png ; $E _ { P _ { n } } ( d ) = E _ { P _ { n } } ( d ^ { * } )$ ; confidence 0.504
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150111.png ; $\operatorname{E} _ { \operatorname{P} _ { n } } ( d ) = \operatorname{E} _ { \operatorname{P}_ { n } } ( d ^ { * } )$ ; confidence 1.000
  
 
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310100.png ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503
 
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310100.png ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503
  
95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024043.png ; $\left( \begin{array} { c c } { L ( \alpha , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , \alpha ) } \end{array} \right)$ ; confidence 0.503
+
95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024043.png ; $\left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right);$ ; confidence 1.000
  
 
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503
 
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503
Line 194: Line 194:
 
97. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503
 
97. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503
  
98. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008092.png ; $= - J - k _ { B } \operatorname { Tn } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.503
+
98. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008092.png ; $= - J - k _ { B }T \operatorname { ln } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }\],$ ; confidence 0.503
  
 
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503
 
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010233.png ; $\lambda$ ; confidence 0.503
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010233.png ; $\lambda_j$ ; confidence 1.000
  
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
  
102. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d03199091.png ; $R _ { 1 }$ ; confidence 0.503
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031990/d03199091.png ; $R _ { L }$ ; confidence 1.000
  
 
103. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042010.png ; $a \in B$ ; confidence 0.503
 
103. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042010.png ; $a \in B$ ; confidence 0.503
Line 208: Line 208:
 
104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503
 
104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503
  
105. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003016.png ; $( \epsilon \otimes id _ { A } ) \circ L = id _ { A }$ ; confidence 0.503
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003016.png ; $( \epsilon \bigotimes \operatorname{id} _ { A } ) \circ L = \operatorname{id} _ { A }$ ; confidence 1.000
  
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006042.png ; $u _ { N }$ ; confidence 0.503
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006042.png ; $u . v$ ; confidence 1.000
  
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090115.png ; $q _ { H _ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 0.503
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090115.png ; $q _ { A_ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 1.000
  
108. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001070.png ; $P P \subseteq P$ ; confidence 0.503
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001070.png ; $P .P \subseteq P$ ; confidence 1.000
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.503
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 )\bf R _ { + }$ ; confidence 1.000
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150106.png ; $\xi : X \rightarrow B O _ { N }$ ; confidence 0.503
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150106.png ; $\xi : X \rightarrow B O _ { n }$ ; confidence 1.000
  
 
111. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578014.png ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x }$ ; confidence 0.502
 
111. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578014.png ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x }$ ; confidence 0.502
  
112. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051092.png ; $O ( | M + | E | )$ ; confidence 0.502
+
112. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051092.png ; $O ( | V |+ | E | )$ ; confidence 1.000
  
 
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004046.png ; $h _ { \lambda _ { i } }$ ; confidence 0.502
 
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004046.png ; $h _ { \lambda _ { i } }$ ; confidence 0.502
  
114. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002063.png ; $\int _ { S O ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f$ ; confidence 0.502
+
114. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002063.png ; $\int _ { \operatorname{SO} ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f.$ ; confidence 1.000
  
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170177.png ; $W h ^ { x }$ ; confidence 0.502
+
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170177.png ; $\operatorname{Wh} ^ { * }$ ; confidence 1.000
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049048.png ; $m _ { N } : A \rightarrow [ 0 , + \infty )$ ; confidence 0.502
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049048.png ; $m _ { n } : {\cal A} \rightarrow [ 0 , + \infty )$ ; confidence 1.000
  
 
117. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090105.png ; $j = 1 , \dots , k$ ; confidence 0.502
 
117. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090105.png ; $j = 1 , \dots , k$ ; confidence 0.502
Line 238: Line 238:
 
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023062.png ; $X = C ( S \times T )$ ; confidence 0.502
 
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023062.png ; $X = C ( S \times T )$ ; confidence 0.502
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013990/a0139904.png ; $= X$ ; confidence 0.502
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013990/a0139904.png ; $\operatorname{E} X$ ; confidence 1.000
  
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016081.png ; $C = \operatorname { coc }$ ; confidence 0.502
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016081.png ; ${\cal C} = \operatorname { co }\cal C$ ; confidence 1.000
  
 
122. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419091.png ; $x \in U$ ; confidence 0.502
 
122. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419091.png ; $x \in U$ ; confidence 0.502
Line 248: Line 248:
 
124. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017067.png ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502
 
124. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017067.png ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861058.png ; $Sp ( n )$ ; confidence 0.502
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861058.png ; $\operatorname{Sp} ( n )$ ; confidence 1.000
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030072.png ; $K _ { 1 } ( O _ { N } ) = 0$ ; confidence 0.502
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030072.png ; $K _ { 1 } ( {\cal O} _ { n } ) = 0$ ; confidence 1.000
  
 
127. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502
 
127. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502
Line 256: Line 256:
 
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
 
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
  
129. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280183.png ; $\{ f , \}$ ; confidence 0.501
+
129. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280183.png ; $\{ f_j \}$ ; confidence 1.000
  
130. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501
+
130. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501 NOTE: should the bracket be also closed?
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007049.png ; $\operatorname { GCD } ( a , b ) = 1$ ; confidence 1.000
  
 
132. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014053.png ; $m$ ; confidence 0.501
 
132. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014053.png ; $m$ ; confidence 0.501
Line 266: Line 266:
 
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501
 
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501
  
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752038.png ; $a _ { i + 1 }$ ; confidence 0.501
+
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752038.png ; $d _ { i + 1 }$ ; confidence 1.000
  
 
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042083.png ; $q \in k$ ; confidence 0.501
 
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042083.png ; $q \in k$ ; confidence 0.501
Line 272: Line 272:
 
136. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020252.png ; $Z \subset X$ ; confidence 0.501
 
136. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020252.png ; $Z \subset X$ ; confidence 0.501
  
137. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006062.png ; $\rho ^ { 2 / 3 } = \Phi$ ; confidence 0.501
+
137. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006062.png ; $\gamma \rho ^ { 2 / 3 } = \Phi$ ; confidence 1.000
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001041.png ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V$ ; confidence 0.501
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001041.png ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V,$ ; confidence 0.501
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205304.png ; $K ( , s ) \in L ^ { 1 } ( \mu )$ ; confidence 0.501
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205304.png ; $K ( ., s ) \in L ^ { 1 } ( \mu )$ ; confidence 1.000
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201107.png ; $\varphi ( a , b , 1 ) = a. b$ ; confidence 1.000
  
 
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501
 
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501
  
142. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010012.png ; $p \in R$ ; confidence 0.501
+
142. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010012.png ; $p \in \bf R$ ; confidence 1.000
  
 
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
 
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
  
144. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +$ ; confidence 0.501
+
144. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +\dots$ ; confidence 1.000
  
 
145. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501
 
145. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501
Line 292: Line 292:
 
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501
 
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501
  
147. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940807.png ; $\pi _ { N } ( X ; A , B , x _ { 0 } )$ ; confidence 0.501
+
147. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940807.png ; $\pi _ { n } ( X ; A , B , x _ { 0 } )$ ; confidence 1.000
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029013.png ; $1 _ { A } ( M / q M )$ ; confidence 0.501
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029013.png ; ${\bf l} _ { A } ( M / q M )$ ; confidence 0.501
  
149. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002017.png ; $\delta _ { BDST } ^ { 2 } = 0$ ; confidence 0.500
+
149. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002017.png ; $\delta _ { \text{BRST} } ^ { 2 } = 0$ ; confidence 1.000
  
 
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007056.png ; $0 < m \leq n$ ; confidence 0.500
 
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007056.png ; $0 < m \leq n$ ; confidence 0.500
  
151. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442077.png ; $\overline { P }$ ; confidence 0.500
+
151. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442077.png ; $\tilde {\cal  P }$ ; confidence 1.000
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042039.png ; $V _ { 1 } \otimes \ldots \otimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \otimes \ldots \otimes V _ { \sigma ( n ) }$ ; confidence 0.500
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042039.png ; $V _ { 1 } \bigotimes \ldots \bigotimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \bigotimes \ldots \bigotimes V _ { \sigma ( n ) }$ ; confidence 1.000
  
153. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300405.png ; $W _ { loc } ^ { 1 , n } ( G )$ ; confidence 0.500
+
153. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300405.png ; $W _ { \text{loc} } ^ { 1 , n } ( G )$ ; confidence 1.000
  
 
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167078.png ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500
 
154. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167078.png ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042097.png ; $2 + 2 z$ ; confidence 0.500
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042097.png ; ${\bf Z} + 2 {\bf Z}$ ; confidence 1.000
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta )$ ; confidence 0.500
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ).$ ; confidence 0.500
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021027.png ; $\wedge ^ { k } ( a )$ ; confidence 0.500
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021027.png ; $\wedge ^ { k } (\frak a )$ ; confidence 1.000
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $\bf Z = X \Gamma + F$ ; confidence 1.000
  
 
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
 
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042085.png ; $\theta$ ; confidence 0.500
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042085.png ; $\operatorname{Vec}_n$ ; confidence 1.000
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240356.png ; $\operatorname{E} ( Z _ { 1 } ) = 0$ ; confidence 1.000
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / MS _ { e }$ ; confidence 0.500
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / \operatorname{MS} _ { e }$ ; confidence 1.000
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230117.png ; $\pi r$ ; confidence 0.500
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230117.png ; $TT'$ ; confidence 1.000
  
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { ap\square regular partition of } n$ ; confidence 0.500
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { a $p\squareregular partition of } n\}$ ; confidence 1.000
  
 
165. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500
 
165. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500
  
166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140151.png ; $\operatorname { prin } K l$ ; confidence 0.500
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140151.png ; $\operatorname { prin } K I$ ; confidence 1.000
  
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020025.png ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { \phi } ( k ) }$ ; confidence 0.500
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020025.png ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) }$ ; confidence 1.000
  
 
168. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499
 
168. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499
  
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011018.png ; $I ( w )$ ; confidence 0.499
+
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011018.png ; ${\bf l} ( w )$ ; confidence 1.000
  
170. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090116.png ; $\Delta ( \lambda ) = K GL _ { n } ( K ) z _ { \lambda }$ ; confidence 0.499
+
170. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090116.png ; $\Delta ( \lambda ) = K \operatorname{GL} _ { n } ( K ) z _ { \lambda },$ ; confidence 1.000
  
171. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005032.png ; $X , X D$ ; confidence 0.499
+
171. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005032.png ; $x,x_0$ ; confidence 1.000
  
172. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012093.png ; $V _ { \operatorname { sin } p } ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.499
+
172. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012093.png ; $V _ { \text { simp } } ( O _ { K , p } ) \neq \emptyset$ ; confidence 1.000
  
173. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067170/n06717077.png ; $t \in R +$ ; confidence 0.499
+
173. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067170/n06717077.png ; $t \in {\bf R}_ +$ ; confidence 1.000
  
174. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051320/i05132021.png ; $\pi$ ; confidence 0.499
+
174. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051320/i05132021.png ; $\pi '$ ; confidence 1.000
  
 
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
 
175. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036014.png ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }$ ; confidence 0.499
+
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036014.png ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }.$ ; confidence 0.499
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180190.png ; $C A$ ; confidence 0.499
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180190.png ; $\bf C A$ ; confidence 1.000
  
178. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001023.png ; $x _ { i } \in X$ ; confidence 0.499
+
178. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001023.png ; $x _ { i } \in \cal X$ ; confidence 1.000
  
 
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499
 
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230108.png ; $X : = U \wedge V$ ; confidence 0.499
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230108.png ; $X : = U \Lambda V,$ ; confidence 1.000
  
181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017067.png ; $k ( 0 ) = 1$ ; confidence 0.499
+
181. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017067.png ; $k ( 0 ) = I$ ; confidence 1.000
  
182. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200102.png ; $G = SL ( 2 , C ) \times R ^ { 4 }$ ; confidence 0.499
+
182. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200102.png ; $G = \operatorname{SL} ( 2 , {\bf C} ) \rtimes {\bf R} ^ { 4 }$ ; confidence 1.000
  
183. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001061.png ; $a \neq b \in C ^ { n }$ ; confidence 0.499
+
183. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001061.png ; $a \neq b \in {\bf C} ^ { n }$ ; confidence 1.000
  
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011098.png ; $p ( n )$ ; confidence 0.498
+
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011098.png ; $\operatorname{ Mp } ( n )$ ; confidence 1.000
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012029.png ; $F$ ; confidence 0.498
+
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012029.png ; $C_{abcd}$ ; confidence 1.000
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta } K ) \text { as } x \rightarrow \infty$ ; confidence 0.498
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta_K} ) \text { as } x \rightarrow \infty,$ ; confidence 1.000
  
 
187. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008029.png ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498
 
187. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008029.png ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498
  
188. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007051.png ; $GL _ { n } ( Z A )$ ; confidence 0.498
+
188. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007051.png ; $\operatorname{GL} _ { n } ( {\bf Z} A )$ ; confidence 1.000
  
 
189. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000130.png ; $M : \sigma$ ; confidence 0.498
 
189. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000130.png ; $M : \sigma$ ; confidence 0.498
Line 382: Line 382:
 
191. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001047.png ; $\overline { T G }$ ; confidence 0.498
 
191. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001047.png ; $\overline { T G }$ ; confidence 0.498
  
192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007045.png ; $f \in L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.498
+
192. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007045.png ; $f \in L ^ { 1 } ( {\bf R} ^ { 2 n } )$ ; confidence 1.000
  
 
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498
 
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040234.png ; $E ( \Gamma , \Delta ) \dashv _ {\cal  D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 1.000
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200204.png ; $O _ { s } + 2,2 ( R )$ ; confidence 0.498
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200204.png ; $O _ { s + 2,2} (\bf R )$ ; confidence 1.000
  
 
196. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000111.png ; $I _ { \epsilon } ( X )$ ; confidence 0.498
 
196. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000111.png ; $I _ { \epsilon } ( X )$ ; confidence 0.498
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K I ) \rightarrow \bf Z$ ; confidence 1.000
  
198. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004098.png ; $P _ { K _ { + } } ( v , z ) - P _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 0.497
+
198. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004098.png ; $\operatorname{P} _ { K _ { + } } ( v , z ) - \operatorname{P} _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 1.000
  
 
199. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497
 
199. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497
Line 400: Line 400:
 
200. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010105.png ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497
 
200. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010105.png ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103302.png ; $| X | ^ { r }$ ; confidence 1.000
  
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300902.png ; $\left. \begin{array} { l } { U _ { 0 } ( x ) = 0 } \\ { U _ { 1 } ( x ) = 1 } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3 } \end{array} \right.$ ; confidence 0.497
+
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300902.png ; $\left. \begin{cases} { U _ { 0 } ( x ) = 0 } \\ { U _ { 1 } ( x ) = 1 } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3 } \end{cases} \right.$ ; confidence 1.000
  
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558403.png ; $[ , ] : K \times K \rightarrow C$ ; confidence 0.497
+
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558403.png ; $[ .,. ] : \cal K \times K \rightarrow \bf C$ ; confidence 1.000
  
 
204. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497
 
204. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { A } ^ { * } = 0$ ; confidence 0.497
+
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { \cal A ^ { * } }= 0.$ ; confidence 1.000
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030052.png ; $( E _ { n } : n \in Z ^ { + } )$ ; confidence 0.497
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030052.png ; $( E _ { n } : n \in {\bf Z} ^ { + } )$ ; confidence 1.000
  
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006086.png ; $T _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi$ ; confidence 0.497
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006086.png ; ${\cal T} _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi.$ ; confidence 1.000
  
208. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
+
208. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \overset{\rightharpoonup}{ D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \overset{\rightharpoonup}{ D } ) } ( D )$ ; confidence 1.000
  
 
209. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050430/i0504302.png ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497
 
209. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050430/i0504302.png ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032040.png ; $E ( Y ) = 2 \theta - 1$ ; confidence 0.497
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032040.png ; $\operatorname{E} ( Y ) = 2 \theta - 1$ ; confidence 1.000
  
 
211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497
 
211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008075.png ; $P = ( P _ { s s ^ { \prime } } ) = ( \langle S | P | S ^ { \prime } \rangle )$ ; confidence 0.497
+
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008075.png ; ${\cal P} = ( P _ { s s ^ { \prime } } ) = ( \langle S | {\cal P} | S ^ { \prime } \rangle )$ ; confidence 1.000
  
213. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005020.png ; $\psi _ { N } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.497
+
213. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005020.png ; $\psi _ { n } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 1.000
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240445.png ; $y _ { 1 } , \dots , y _ { p }$ ; confidence 0.497
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240445.png ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { p }$ ; confidence 1.000
  
215. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { p | p } ( 1 - \chi \omega ^ { - n } ( p ) N p ^ { n - 1 } )$ ; confidence 0.497
+
215. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { {\frak p} | p } ( 1 - \chi \omega ^ { - n } ( {\frak p} ) N {\frak p} ^ { n - 1 } )$ ; confidence 1.000
  
 
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496
 
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496
  
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t s ( t ) s ( - t ) d t )$ ; confidence 0.496
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t \hat{s} ( t ) \hat{s} ( - t ) d t ).$ ; confidence 1.000
  
 
218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022032.png ; $\rho _ { d }$ ; confidence 0.496
 
218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022032.png ; $\rho _ { d }$ ; confidence 0.496
Line 442: Line 442:
 
221. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017046.png ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots$ ; confidence 0.496
 
221. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017046.png ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots$ ; confidence 0.496
  
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202401.png ; $\psi _ { X y } + u ( x , y ) \psi = 0$ ; confidence 0.496
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202401.png ; $\psi _ { x y } + u ( x , y ) \psi = 0$ ; confidence 1.000
  
223. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003023.png ; $x , b , x , y , z \in E$ ; confidence 0.496
+
223. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003023.png ; $a, b , x , y , z \in E$ ; confidence 1.000
  
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019047.png ; $M _ { n } = \operatorname { det } M _ { n }$ ; confidence 0.496
+
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019047.png ; ${\cal M} _ { n } = \operatorname { det } M _ { n }$ ; confidence 1.000
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \varnothing )$ ; confidence 0.496
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \otimes )$ ; confidence 1.000
  
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496
+
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; ${\cal H} *$ ; confidence 1.000
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031041.png ; $22$ ; confidence 0.496
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031041.png ; ${\cal Q}_2$ ; confidence 1.000
  
 
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
 
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
Line 458: Line 458:
 
229. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496
 
229. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031042.png ; $k$ ; confidence 0.496
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031042.png ; $E$ ; confidence 1.000
  
231. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010092.png ; $p \in R$ ; confidence 0.496
+
231. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010092.png ; $p \in \hat{K}$ ; confidence 1.000
  
 
232. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496
 
232. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496
  
233. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700064.png ; $( \lambda x y \cdot y x ) A B = B A$ ; confidence 0.496
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700064.png ; $( \lambda x y . y x ) A B = B A$ ; confidence 1.000
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( C )$ ; confidence 0.496
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( {\bf C} )$ ; confidence 1.000
  
235. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020110.png ; $\| X \| _ { * } \leq 1$ ; confidence 0.496
+
235. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020110.png ; $\| X \| { * } \leq 1$ ; confidence 1.000
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004042.png ; $\operatorname { Th } \cal D$ ; confidence 1.000
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } = \infty$ ; confidence 0.496
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma \tilde{g} ( \gamma ) \| _ { 2 } = \infty$ ; confidence 1.000
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010036.png ; $U ^ { ( n ) } t = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s } + x - k )$ ; confidence 0.496
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010036.png ; $U ^ { ( n )_ t} = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s + n - k} )$ ; confidence 1.000
  
239. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011070.png ; $( F ^ { x } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 0.496
+
239. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011070.png ; $( F ^ { n } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 1.000
  
 
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014042.png ; $s _ { i } ( z )$ ; confidence 0.496
 
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014042.png ; $s _ { i } ( z )$ ; confidence 0.496
Line 482: Line 482:
 
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496
 
241. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496
  
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010025.png ; $\{ t = t ; \} \cup K$ ; confidence 0.495
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010025.png ; $\{ t = t_j \} \cup K$ ; confidence 1.000
  
 
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495
 
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031082.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 0.495
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031082.png ; $\operatorname{lim\,sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 1.000
  
245. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001024.png ; $X _ { t } \sim X - t$ ; confidence 0.495
+
245. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001024.png ; ${\cal X} _ { t } \sim {\cal X}_{ - t }$ ; confidence 1.000
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060109.png ; $a \geq$ ; confidence 0.495
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060109.png ; $a _2$ ; confidence 1.000
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470223.png ; $\pi$ ; confidence 0.495
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470223.png ; $\tilde{\omega}$ ; confidence 1.000
  
 
248. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221105.png ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495
 
248. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221105.png ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495
  
249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001018.png ; $\varphi ; ( f )$ ; confidence 0.495
+
249. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001018.png ; $\varphi_j ( f )$ ; confidence 1.000
  
 
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200706.png ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495
 
250. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200706.png ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495
Line 502: Line 502:
 
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495
 
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495
  
252. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001017.png ; $( D )$ ; confidence 0.495
+
252. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001017.png ; $\operatorname{lbl} ( D )$ ; confidence 1.000
  
253. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060128.png ; $- ( \text { const } ) \int _ { R ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 0.495
+
253. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060128.png ; $- ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 1.000
  
254. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520275.png ; $h \in H$ ; confidence 0.495
+
254. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520275.png ; $h \in \cal  H$ ; confidence 1.000
  
 
255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495
 
255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495
  
256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011095.png ; $K \subset D ^ { \gamma }$ ; confidence 0.495
+
256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011095.png ; $K \subset D ^ { n }$ ; confidence 1.000
  
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y v , m )$ ; confidence 0.495
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y_{v , m} )$ ; confidence 1.000
  
258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010050.png ; $\hat { \Delta }$ ; confidence 0.495
+
258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010050.png ; $\overset{\rightharpoonup} { \Delta }$ ; confidence 1.000
  
 
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495
 
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495
  
260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \vec { x } , e ) \vec { x X } ^ { t } d H _ { \vec { \theta } } ( \vec { x } , y )$ ; confidence 0.495
+
260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \overset{\rightharpoonup}  { x } , e ) \overset{\rightharpoonup}  { x } \overset{\rightharpoonup} {X } ^ { t } d H _ { \overset{\rightharpoonup} { \theta } } ( \overset{\rightharpoonup}  { x } , y )$ ; confidence 1.000
  
 
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495
 
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044027.png ; $H ^ { N - 1 - k } ( S ^ { x } \backslash X )$ ; confidence 0.495
+
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044027.png ; $H ^ { N - 1 - k } ( S ^ { n } \backslash X )$ ; confidence 1.000
  
 
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
 
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
Line 528: Line 528:
 
264. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020119.png ; $\int _ { \partial D } \operatorname { exp } ( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | ) d \vartheta$ ; confidence 0.495
 
264. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020119.png ; $\int _ { \partial D } \operatorname { exp } ( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | ) d \vartheta$ ; confidence 0.495
  
265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003030.png ; $S _ { A } : A \times L A \rightarrow L A$ ; confidence 0.495
+
265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003030.png ; $s _ { A } : A \times L A \rightarrow L A$ ; confidence 1.000
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202806.png ; $( X _ { n } ) _ { n } > 0$ ; confidence 0.494
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202806.png ; $( X _ { n } ) _ { n \geq 0}$ ; confidence 1.000
  
 
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202902.png ; $\varphi ( q )$ ; confidence 0.494
 
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202902.png ; $\varphi ( q )$ ; confidence 0.494
  
268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005058.png ; $X = P ^ { d }$ ; confidence 0.494
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005058.png ; $X = {\bf P} ^ { d }$ ; confidence 1.000
  
269. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty$ ; confidence 0.494
+
269. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty.$ ; confidence 0.494
  
270. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520451.png ; $\lambda _ { i } < 0$ ; confidence 0.494
+
270. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520451.png ; $\operatorname{Re} \lambda _ { i } < 0$ ; confidence 1.000
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023081.png ; $\Omega \subset C ^ { x }$ ; confidence 0.494
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023081.png ; $\Omega \subset {\bf C} ^ { n }$ ; confidence 1.000
  
272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032055.png ; $F _ { k }$ ; confidence 0.494
+
272. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032055.png ; ${\cal F} _ { k }$ ; confidence 1.000
  
273. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702080.png ; $i \neq p$ ; confidence 0.494
+
273. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702080.png ; $l \neq p$ ; confidence 1.000
  
 
274. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494
 
274. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494
  
275. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004016.png ; $T ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 0.494
+
275. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004016.png ; $\tilde{i} ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 1.000
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003032.png ; $V ^ { 1 } , V ^ { 2 } , \dots$ ; confidence 0.494
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003032.png ; $V ^ { 1 } , V ^ { 2 } , \dots,$ ; confidence 0.494
  
277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014071.png ; $V _ { f } = \{ f ( a ) : a \in F _ { q } \}$ ; confidence 0.494
+
277. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014071.png ; $V _ { f } = \{ f ( a ) : a \in {\bf F} _ { q } \}$ ; confidence 1.000
  
278. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013098.png ; $x$ ; confidence 0.494
+
278. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013098.png ; $\operatorname{coh} \bf X$ ; confidence 1.000
  
279. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011060.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { P } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493
+
279. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011060.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { \operatorname{P} } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493
  
280. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011039.png ; $x = 1 , \dots , f ( 1 , n )$ ; confidence 0.493
+
280. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011039.png ; $x = 1 , \dots , f_{( 1 , n )}$ ; confidence 1.000
  
281. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013010.png ; $r j > 0$ ; confidence 0.493
+
281. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013010.png ; $r_j > 0$ ; confidence 1.000
  
282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005041.png ; $\sigma _ { T } ( A , X ) : = \{ \lambda \in C ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 0.493
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005041.png ; $\sigma _ { T } ( A , {\cal X} ) : = \{ \lambda \in {\bf C} ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 1.000
  
 
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493
 
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493
Line 568: Line 568:
 
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493
 
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026078.png ; $R ^ { n } \backslash K _ { 2 }$ ; confidence 0.493
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026078.png ; ${\bf R} ^ { n } \backslash K _ { 2 }$ ; confidence 1.000
  
 
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493
 
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493
Line 574: Line 574:
 
287. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493
 
287. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493
  
288. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493
+
288. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( {\cal E} ) = \dot { X }$ ; confidence 1.000
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015280/b01528024.png ; $A _ { 0 } , \ldots , A _ { N }$ ; confidence 0.493
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015280/b01528024.png ; $A _ { 0 } , \ldots , A _ { n }$ ; confidence 1.000
  
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180223.png ; $\in A ^ { 2 } \varepsilon \otimes A ^ { 2 } \varepsilon$ ; confidence 0.493
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180223.png ; $\in {\bf A} ^ { 2 } {\cal E} \bigotimes {\bf A} ^ { 2 } {\cal E}$ ; confidence 1.000
  
 
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493
 
291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493
Line 586: Line 586:
 
293. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492
 
293. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230172.png ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }$ ; confidence 0.492
+
294. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230172.png ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }.$ ; confidence 0.492
  
295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006026.png ; $\alpha _ { 2 } = 1 , \dots , \alpha _ { k - 1 } = k - 2$ ; confidence 0.492
+
295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006026.png ; $a _ { 2 } = 1 , \dots , a _ { k - 1 } = k - 2$ ; confidence 1.000
  
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.492
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots,$ ; confidence 0.492
  
 
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492
 
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492
Line 596: Line 596:
 
298. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492
 
298. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006081.png ; $( g f ( z ) )$ ; confidence 0.492
+
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006081.png ; $( g, f ( z ) )$ ; confidence 1.000
  
300. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014029.png ; $f t _ { 1 } \ldots t _ { \rho } ( f ) \in T$ ; confidence 0.492
+
300. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014029.png ; $f_{ t _ { 1 } \ldots t _ { \rho } ( f )} \in T$ ; confidence 1.000

Revision as of 10:25, 1 May 2020

List

1. f04194061.png ; $X _ { f }$ ; confidence 0.508

2. l11001032.png ; $f \preceq g$ ; confidence 1.000

3. f130100127.png ; $\sigma ( L _ {\bf C } ^ { \infty } ( \hat { G } ) , L _ {\bf C } ^ { 1 } ( \hat { G } ) )$ ; confidence 1.000

4. g12005049.png ; $1 \in \bf C$ ; confidence 0.508

5. z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) .Z ( y ( n ) ).$ ; confidence 1.000

6. b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508

7. c13006045.png ; $\frak N$ ; confidence 1.000

8. d12023076.png ; $\bf Z ^ { * }$ ; confidence 1.000

9. i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k ),$ ; confidence 0.508

10. c1200903.png ; $\langle x \rangle ^ { G }$ ; confidence 1.000

11. m130110125.png ; $v _ { i } \phi _ { , i } = ( {\bf v} . \nabla ) \phi$ ; confidence 1.000

12. b120210110.png ; $( \operatorname{Hom} _ {\frak a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 1.000

13. m130110138.png ; $( {\bf v} . \nabla ) {\bf v} = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } {\bf v} ) \times {\bf v}$ ; confidence 1.000

14. c02286044.png ; $\beta _ { 1 }$ ; confidence 1.000

15. l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.508

16. b13011010.png ; $B _ { n } f$ ; confidence 1.000

17. z13010028.png ; $x \subseteq y$ ; confidence 0.507

18. a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \langle U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 1.000

19. q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x,$ ; confidence 0.507

20. w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0.$ ; confidence 0.507

21. f1202106.png ; $\alpha ^ { N_ 0} \neq 0$ ; confidence 1.000

22. m130110115.png ; $\partial \phi / \partial x _ { i } = \phi _ { ,i }$ ; confidence 1.000

23. o13008037.png ; $h ( x ) \not\equiv 0$ ; confidence 1.000

24. s12004083.png ; $\operatorname{GL}_l$ ; confidence 1.000

25. f04034080.png ; $0 \in {\bf R} ^ { n }$ ; confidence 1.000

26. i130030142.png ; $\hat{\pi}$ ; confidence 1.000

27. h13012025.png ; $\theta > 0$ ; confidence 0.507

28. s130510159.png ; $d _ { \text{in} } < 2$ ; confidence 1.000

29. w120090122.png ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K,$ ; confidence 0.507

30. c12004048.png ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507

31. n12007023.png ; $A _ { j_{n _ { k } }} \subset B , \quad k \in \bf N$ ; confidence 1.000

32. s13014030.png ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506

33. f12024027.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ),$ ; confidence 0.506

34. h047390141.png ; $\Pi _ { \kappa }$ ; confidence 1.000

35. a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506

36. b1200606.png ; $n \in {\bf N} , \epsilon = \pm 1.$ ; confidence 1.000

37. t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }.$ ; confidence 0.506

38. a12016023.png ; $a = B / \overline { u } T$ ; confidence 1.000

39. b13030035.png ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506

40. f12016030.png ; $k_G$ ; confidence 1.000

41. m12003032.png ; $\operatorname{IF} ( x ; T , G )$ ; confidence 1.000

42. d13008073.png ; $F \in \operatorname { Hol } ( \bf B )$ ; confidence 1.000

43. b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506

44. i13003075.png ; $T _ { \text { vert } } ^ { * } Y$ ; confidence 0.506

45. g13002030.png ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506

46. f1302409.png ; $\langle a b \lanlge c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle,$ ; confidence 1.000

47. p12017019.png ; $\hat { X } = ( A , B )$ ; confidence 1.000

48. m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505

49. q12001010.png ; $U ( g ) \varphi_j ( f ) U ( g ^ { - 1 } )$ ; confidence 1.000

50. a130240547.png ; $T ^ { 2 }$ ; confidence 0.505

51. b12040064.png ; $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$ ; confidence 0.505

52. t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505

53. a1300103.png ; $( - ) ^ { * } : \cal C ^ { \text{op} } \rightarrow C$ ; confidence 1.000

54. a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505

55. t12013055.png ; $\Lamda M = M \Lambda ^ { t }$ ; confidence 1.000

56. f13005048.png ; $S \subset M ^ { n }$ ; confidence 1.000

57. k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505

58. a130060159.png ; $S _ { \text{V} }$ ; confidence 1.000

59. a12012028.png ; $\beta_j > 0$ ; confidence 1.000

60. f120150203.png ; $\{ B x _ { x } \}$ ; confidence 0.505

61. c13009034.png ; $b _ { N } = 0$ ; confidence 0.505

62. b13029038.png ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]$ ; confidence 0.505

63. t13004016.png ; $a _ { n + 1 }$ ; confidence 1.000

64. d03078032.png ; $n / 2$ ; confidence 1.000

65. a13032015.png ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505

66. d1200304.png ; $\{ y _ { n } \}$ ; confidence 1.000

67. i052040102.png ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504

68. a130040128.png ; $\varphi ^ { \prime }$ ; confidence 1.000

69. k1300409.png ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504

70. l05700041.png ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504

71. b1203009.png ; $Y = [ 0,2 \pi [ ^ { N } $ ; confidence 1.000

72. h13002080.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in {\cal F} ( S ^ { d } ) ^ { q }$ ; confidence 1.000

73. b12043075.png ; $k ^ { \prime } \langle x _ { i } \rangle$ ; confidence 1.000

74. q12008051.png ; $\operatorname{E} [ T _ { p } ] _ {\text{PR} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 1.000

75. b130200152.png ; $\Pi ^ { \text { re } }$ ; confidence 0.504

76. p13009015.png ; $\omega _ { n } = \frac { 2 \pi ^ { n / 2 } } { \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.504

77. b01593052.png ; $\mu _ { k }$ ; confidence 0.504

78. f12010035.png ; $\square ^ { t } a P a$ ; confidence 0.504

79. n067520164.png ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504

80. e12019071.png ; $a_3$ ; confidence 1.000

81. f12023010.png ; $[ \varphi \bigotimes x , \psi \bigotimes Y ] =$ ; confidence 1.000

82. f120230125.png ; $+\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )+$ ; confidence 1.000

83. a13013049.png ; $k$ ; confidence 0.504

84. c120180209.png ; $\cal E$ ; confidence 1.000

85. t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504

86. c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \bigotimes \Lambda - A \bigotimes M ] =$ ; confidence 1.000

87. g130040104.png ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504

88. i13002067.png ; $\mu ( A ) = | A |$ ; confidence 0.504

89. n067520213.png ; $\operatorname{GL} _ { s } ( K )$ ; confidence 1.000

90. p12013045.png ; $T$ ; confidence 0.504

91. l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0.$ ; confidence 0.504

92. w12019036.png ; ${\bf R} _ { x } ^ { 3 N } \times {\bf R} _ { p } ^ { 3 N }$ ; confidence 1.000

93. b120150111.png ; $\operatorname{E} _ { \operatorname{P} _ { n } } ( d ) = \operatorname{E} _ { \operatorname{P}_ { n } } ( d ^ { * } )$ ; confidence 1.000

94. b120310100.png ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503

95. f13024043.png ; $\left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right);$ ; confidence 1.000

96. t1202009.png ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503

97. h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503

98. i12008092.png ; $= - J - k _ { B }T \operatorname { ln } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }\],$ ; confidence 0.503

99. a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503

100. a110010233.png ; $\lambda_j$ ; confidence 1.000

101. a110420122.png ; $y \in H$ ; confidence 0.503

102. d03199091.png ; $R _ { L }$ ; confidence 1.000

103. c11042010.png ; $a \in B$ ; confidence 0.503

104. i130090218.png ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503

105. q12003016.png ; $( \epsilon \bigotimes \operatorname{id} _ { A } ) \circ L = \operatorname{id} _ { A }$ ; confidence 1.000

106. h13006042.png ; $u . v$ ; confidence 1.000

107. l120090115.png ; $q _ { A_ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 1.000

108. l11001070.png ; $P .P \subseteq P$ ; confidence 1.000

109. b12022081.png ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 )\bf R _ { + }$ ; confidence 1.000

110. b0150106.png ; $\xi : X \rightarrow B O _ { n }$ ; confidence 1.000

111. k05578014.png ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x }$ ; confidence 0.502

112. s13051092.png ; $O ( | V |+ | E | )$ ; confidence 1.000

113. s12004046.png ; $h _ { \lambda _ { i } }$ ; confidence 0.502

114. c12002063.png ; $\int _ { \operatorname{SO} ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f.$ ; confidence 1.000

115. l120170177.png ; $\operatorname{Wh} ^ { * }$ ; confidence 1.000

116. b12049048.png ; $m _ { n } : {\cal A} \rightarrow [ 0 , + \infty )$ ; confidence 1.000

117. f130090105.png ; $j = 1 , \dots , k$ ; confidence 0.502

118. a110610113.png ; $n _ { + }$ ; confidence 0.502

119. a13023062.png ; $X = C ( S \times T )$ ; confidence 0.502

120. a0139904.png ; $\operatorname{E} X$ ; confidence 1.000

121. c13016081.png ; ${\cal C} = \operatorname { co }\cal C$ ; confidence 1.000

122. a01419091.png ; $x \in U$ ; confidence 0.502

123. b13012085.png ; $f \in \operatorname { Lip } 1$ ; confidence 0.502

124. d13017067.png ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502

125. l05861058.png ; $\operatorname{Sp} ( n )$ ; confidence 1.000

126. c12030072.png ; $K _ { 1 } ( {\cal O} _ { n } ) = 0$ ; confidence 1.000

127. g13002010.png ; $e ^ { \pi z }$ ; confidence 0.502

128. a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501

129. h046280183.png ; $\{ f_j \}$ ; confidence 1.000

130. s13062098.png ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501 NOTE: should the bracket be also closed?

131. a13007049.png ; $\operatorname { GCD } ( a , b ) = 1$ ; confidence 1.000

132. p12014053.png ; $m$ ; confidence 0.501

133. n12012016.png ; $\operatorname { size } ( x ) = n$ ; confidence 0.501

134. n06752038.png ; $d _ { i + 1 }$ ; confidence 1.000

135. b12042083.png ; $q \in k$ ; confidence 0.501

136. d030020252.png ; $Z \subset X$ ; confidence 0.501

137. t12006062.png ; $\gamma \rho ^ { 2 / 3 } = \Phi$ ; confidence 1.000

138. c13001041.png ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V,$ ; confidence 0.501

139. b1205304.png ; $K ( ., s ) \in L ^ { 1 } ( \mu )$ ; confidence 1.000

140. a1201107.png ; $\varphi ( a , b , 1 ) = a. b$ ; confidence 1.000

141. c120300105.png ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501

142. l13010012.png ; $p \in \bf R$ ; confidence 1.000

143. a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501

144. k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +\dots$ ; confidence 1.000

145. f13007014.png ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501

146. f12021046.png ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501

147. t0940807.png ; $\pi _ { n } ( X ; A , B , x _ { 0 } )$ ; confidence 1.000

148. b13029013.png ; ${\bf l} _ { A } ( M / q M )$ ; confidence 0.501

149. f13002017.png ; $\delta _ { \text{BRST} } ^ { 2 } = 0$ ; confidence 1.000

150. h12007056.png ; $0 < m \leq n$ ; confidence 0.500

151. j05442077.png ; $\tilde {\cal P }$ ; confidence 1.000

152. b12042039.png ; $V _ { 1 } \bigotimes \ldots \bigotimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \bigotimes \ldots \bigotimes V _ { \sigma ( n ) }$ ; confidence 1.000

153. q1300405.png ; $W _ { \text{loc} } ^ { 1 , n } ( G )$ ; confidence 1.000

154. a01167078.png ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500

155. b12042097.png ; ${\bf Z} + 2 {\bf Z}$ ; confidence 1.000

156. s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ).$ ; confidence 0.500

157. b12021027.png ; $\wedge ^ { k } (\frak a )$ ; confidence 1.000

158. a130240336.png ; $\bf Z = X \Gamma + F$ ; confidence 1.000

159. i130060185.png ; $< 2 a$ ; confidence 0.500

160. b12042085.png ; $\operatorname{Vec}_n$ ; confidence 1.000

161. a130240356.png ; $\operatorname{E} ( Z _ { 1 } ) = 0$ ; confidence 1.000

162. a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / \operatorname{MS} _ { e }$ ; confidence 1.000

163. s120230117.png ; $TT'$ ; confidence 1.000

164. s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { a $p\square$ regular partition of } n\}$ ; confidence 1.000

165. c02211027.png ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k } - 1 , x _ { k } )$ ; confidence 0.500

166. t130140151.png ; $\operatorname { prin } K I$ ; confidence 1.000

167. t12020025.png ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) }$ ; confidence 1.000

168. l13008030.png ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499

169. s13011018.png ; ${\bf l} ( w )$ ; confidence 1.000

170. w120090116.png ; $\Delta ( \lambda ) = K \operatorname{GL} _ { n } ( K ) z _ { \lambda },$ ; confidence 1.000

171. v13005032.png ; $x,x_0$ ; confidence 1.000

172. l12012093.png ; $V _ { \text { simp } } ( O _ { K , p } ) \neq \emptyset$ ; confidence 1.000

173. n06717077.png ; $t \in {\bf R}_ +$ ; confidence 1.000

174. i05132021.png ; $\pi '$ ; confidence 1.000

175. t1200104.png ; $m$ ; confidence 0.499

176. b12036014.png ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }.$ ; confidence 0.499

177. a130180190.png ; $\bf C A$ ; confidence 1.000

178. m13001023.png ; $x _ { i } \in \cal X$ ; confidence 1.000

179. b12016044.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499

180. s120230108.png ; $X : = U \Lambda V,$ ; confidence 1.000

181. w13017067.png ; $k ( 0 ) = I$ ; confidence 1.000

182. q1200102.png ; $G = \operatorname{SL} ( 2 , {\bf C} ) \rtimes {\bf R} ^ { 4 }$ ; confidence 1.000

183. j12001061.png ; $a \neq b \in {\bf C} ^ { n }$ ; confidence 1.000

184. w12011098.png ; $\operatorname{ Mp } ( n )$ ; confidence 1.000

185. w12012029.png ; $C_{abcd}$ ; confidence 1.000

186. a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta_K} ) \text { as } x \rightarrow \infty,$ ; confidence 1.000

187. o13008029.png ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498

188. z13007051.png ; $\operatorname{GL} _ { n } ( {\bf Z} A )$ ; confidence 1.000

189. l057000130.png ; $M : \sigma$ ; confidence 0.498

190. t130050159.png ; $A _ { i } : = M _ { z _ { i } }$ ; confidence 0.498

191. m12001047.png ; $\overline { T G }$ ; confidence 0.498

192. w12007045.png ; $f \in L ^ { 1 } ( {\bf R} ^ { 2 n } )$ ; confidence 1.000

193. b1301008.png ; $K _ { Z } \in H$ ; confidence 0.498

194. a130040234.png ; $E ( \Gamma , \Delta ) \dashv _ {\cal D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 1.000

195. b130200204.png ; $O _ { s + 2,2} (\bf R )$ ; confidence 1.000

196. e035000111.png ; $I _ { \epsilon } ( X )$ ; confidence 0.498

197. t130140157.png ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K I ) \rightarrow \bf Z$ ; confidence 1.000

198. j13004098.png ; $\operatorname{P} _ { K _ { + } } ( v , z ) - \operatorname{P} _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 1.000

199. l12009094.png ; $[ P , ] _ { A }$ ; confidence 0.497

200. l110010105.png ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497

201. a0103302.png ; $| X | ^ { r }$ ; confidence 1.000

202. f1300902.png ; $\left. \begin{cases} { U _ { 0 } ( x ) = 0 } \\ { U _ { 1 } ( x ) = 1 } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3 } \end{cases} \right.$ ; confidence 1.000

203. k0558403.png ; $[ .,. ] : \cal K \times K \rightarrow \bf C$ ; confidence 1.000

204. h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497

205. b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { \cal A ^ { * } }= 0.$ ; confidence 1.000

206. a13030052.png ; $( E _ { n } : n \in {\bf Z} ^ { + } )$ ; confidence 1.000

207. w12006086.png ; ${\cal T} _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi.$ ; confidence 1.000

208. k13001035.png ; $f ( \overset{\rightharpoonup}{ D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \overset{\rightharpoonup}{ D } ) } ( D )$ ; confidence 1.000

209. i0504302.png ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497

210. a13032040.png ; $\operatorname{E} ( Y ) = 2 \theta - 1$ ; confidence 1.000

211. m120120102.png ; $u \in Q _ { 1 } ( R )$ ; confidence 0.497

212. i12008075.png ; ${\cal P} = ( P _ { s s ^ { \prime } } ) = ( \langle S | {\cal P} | S ^ { \prime } \rangle )$ ; confidence 1.000

213. h13005020.png ; $\psi _ { n } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 1.000

214. a130240445.png ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { p }$ ; confidence 1.000

215. i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { {\frak p} | p } ( 1 - \chi \omega ^ { - n } ( {\frak p} ) N {\frak p} ^ { n - 1 } )$ ; confidence 1.000

216. b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496

217. s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t \hat{s} ( t ) \hat{s} ( - t ) d t ).$ ; confidence 1.000

218. m13022032.png ; $\rho _ { d }$ ; confidence 0.496

219. b01512014.png ; $S ^ { n - 1 }$ ; confidence 0.496

220. z13011073.png ; $x \mu _ { x } ( x )$ ; confidence 0.496

221. d13017046.png ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots$ ; confidence 0.496

222. m1202401.png ; $\psi _ { x y } + u ( x , y ) \psi = 0$ ; confidence 1.000

223. j13003023.png ; $a, b , x , y , z \in E$ ; confidence 1.000

224. m13019047.png ; ${\cal M} _ { n } = \operatorname { det } M _ { n }$ ; confidence 1.000

225. b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \otimes )$ ; confidence 1.000

226. e12002023.png ; ${\cal H} *$ ; confidence 1.000

227. a13031041.png ; ${\cal Q}_2$ ; confidence 1.000

228. b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496

229. c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496

230. a12031042.png ; $E$ ; confidence 1.000

231. p13010092.png ; $p \in \hat{K}$ ; confidence 1.000

232. j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496

233. l05700064.png ; $( \lambda x y . y x ) A B = B A$ ; confidence 1.000

234. f13007027.png ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( {\bf C} )$ ; confidence 1.000

235. j120020110.png ; $\| X \| { * } \leq 1$ ; confidence 1.000

236. a13004042.png ; $\operatorname { Th } \cal D$ ; confidence 1.000

237. b12003049.png ; $\| t g ( t ) \| _ { 2 } \| \gamma \tilde{g} ( \gamma ) \| _ { 2 } = \infty$ ; confidence 1.000

238. b12010036.png ; $U ^ { ( n )_ t} = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s + n - k} )$ ; confidence 1.000

239. m12011070.png ; $( F ^ { n } , h : F \rightarrow F ) \rightarrow T ( h )$ ; confidence 1.000

240. b12014042.png ; $s _ { i } ( z )$ ; confidence 0.496

241. c12020067.png ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496

242. k12010025.png ; $\{ t = t_j \} \cup K$ ; confidence 1.000

243. s12023042.png ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495

244. b12031082.png ; $\operatorname{lim\,sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 1.000

245. q12001024.png ; ${\cal X} _ { t } \sim {\cal X}_{ - t }$ ; confidence 1.000

246. a014060109.png ; $a _2$ ; confidence 1.000

247. b017470223.png ; $\tilde{\omega}$ ; confidence 1.000

248. c0221105.png ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495

249. q12001018.png ; $\varphi_j ( f )$ ; confidence 1.000

250. d1200706.png ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495

251. s12027035.png ; $f \in A _ { s } ^ { + }$ ; confidence 0.495

252. j13001017.png ; $\operatorname{lbl} ( D )$ ; confidence 1.000

253. t120060128.png ; $- ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 1.000

254. n067520275.png ; $h \in \cal H$ ; confidence 1.000

255. e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495

256. f12011095.png ; $K \subset D ^ { n }$ ; confidence 1.000

257. s12027018.png ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y_{v , m} )$ ; confidence 1.000

258. r13010050.png ; $\overset{\rightharpoonup} { \Delta }$ ; confidence 1.000

259. a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495

260. m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \overset{\rightharpoonup} { x } , e ) \overset{\rightharpoonup} { x } \overset{\rightharpoonup} {X } ^ { t } d H _ { \overset{\rightharpoonup} { \theta } } ( \overset{\rightharpoonup} { x } , y )$ ; confidence 1.000

261. a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495

262. s13044027.png ; $H ^ { N - 1 - k } ( S ^ { n } \backslash X )$ ; confidence 1.000

263. a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495

264. j120020119.png ; $\int _ { \partial D } \operatorname { exp } ( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | ) d \vartheta$ ; confidence 0.495

265. n12003030.png ; $s _ { A } : A \times L A \rightarrow L A$ ; confidence 1.000

266. c1202806.png ; $( X _ { n } ) _ { n \geq 0}$ ; confidence 1.000

267. d1202902.png ; $\varphi ( q )$ ; confidence 0.494

268. k12005058.png ; $X = {\bf P} ^ { d }$ ; confidence 1.000

269. i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty.$ ; confidence 0.494

270. n067520451.png ; $\operatorname{Re} \lambda _ { i } < 0$ ; confidence 1.000

271. a12023081.png ; $\Omega \subset {\bf C} ^ { n }$ ; confidence 1.000

272. s12032055.png ; ${\cal F} _ { k }$ ; confidence 1.000

273. l05702080.png ; $l \neq p$ ; confidence 1.000

274. z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494

275. y12004016.png ; $\tilde{i} ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 1.000

276. c02003032.png ; $V ^ { 1 } , V ^ { 2 } , \dots,$ ; confidence 0.494

277. d12014071.png ; $V _ { f } = \{ f ( a ) : a \in {\bf F} _ { q } \}$ ; confidence 1.000

278. t13013098.png ; $\operatorname{coh} \bf X$ ; confidence 1.000

279. z13011060.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { \operatorname{P} } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493

280. z13011039.png ; $x = 1 , \dots , f_{( 1 , n )}$ ; confidence 1.000

281. h13013010.png ; $r_j > 0$ ; confidence 1.000

282. t13005041.png ; $\sigma _ { T } ( A , {\cal X} ) : = \{ \lambda \in {\bf C} ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 1.000

283. e120260135.png ; $\pi _ { v , p } ( d \theta ) P ( \theta , \mu ) ( d x )$ ; confidence 0.493

284. a12020052.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } }$ ; confidence 0.493

285. b13026078.png ; ${\bf R} ^ { n } \backslash K _ { 2 }$ ; confidence 1.000

286. s12023025.png ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493

287. w11006050.png ; $\Sigma n _ { j } = n$ ; confidence 0.493

288. l11003082.png ; $M ( {\cal E} ) = \dot { X }$ ; confidence 1.000

289. b01528024.png ; $A _ { 0 } , \ldots , A _ { n }$ ; confidence 1.000

290. c120180223.png ; $\in {\bf A} ^ { 2 } {\cal E} \bigotimes {\bf A} ^ { 2 } {\cal E}$ ; confidence 1.000

291. s12032011.png ; $x \otimes y \rightarrow x . y$ ; confidence 0.493

292. l05700019.png ; $\lambda x x \equiv \lambda x x \not \equiv \lambda x y$ ; confidence 0.493

293. d03215060.png ; $i = 0 , \ldots , N$ ; confidence 0.492

294. d120230172.png ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }.$ ; confidence 0.492

295. k13006026.png ; $a _ { 2 } = 1 , \dots , a _ { k - 1 } = k - 2$ ; confidence 1.000

296. s13059018.png ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots,$ ; confidence 0.492

297. b120400101.png ; $G \times ^ { R } V$ ; confidence 0.492

298. i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492

299. l12006081.png ; $( g, f ( z ) )$ ; confidence 1.000

300. e12014029.png ; $f_{ t _ { 1 } \ldots t _ { \rho } ( f )} \in T$ ; confidence 1.000

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/58. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/58&oldid=45626