Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/47"
(AUTOMATIC EDIT of page 47 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
(→List) |
||
Line 6: | Line 6: | ||
3. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696 | 3. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002073.png ; $\gamma \in F ( S )$ ; confidence | + | 4. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002073.png ; $\gamma \in {\cal F} ( S )$ ; confidence 1.000 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110253.png ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }$ ; confidence 0.695 | + | 5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110253.png ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }.$ ; confidence 0.695 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0$ ; confidence 0.695 | + | 6. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0.$ ; confidence 0.695 |
7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023060.png ; $g : Y \rightarrow S$ ; confidence 0.695 | 7. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023060.png ; $g : Y \rightarrow S$ ; confidence 0.695 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050127.png ; $M _ { \sigma _ { T } } ( B , X )$ ; confidence | + | 8. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050127.png ; $M _ { \sigma _ { T } } (\cal B , X )$ ; confidence 1.000 |
9. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008053.png ; $\{ - S _ { i } \}$ ; confidence 0.695 | 9. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008053.png ; $\{ - S _ { i } \}$ ; confidence 0.695 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021055.png ; $b _ { | + | 10. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021055.png ; $b _ { l0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { i } }$ ; confidence 1.000 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032028.png ; $\lambda _ { | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032028.png ; $\lambda _ { lj } ^ { ( i ) }$ ; confidence 1.000 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ { aug } )$ ; confidence | + | 12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ {\text{ aug} } )$ ; confidence 1.000 |
13. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452013.png ; $a b \in P$ ; confidence 0.694 | 13. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452013.png ; $a b \in P$ ; confidence 0.694 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020027.png ; $t ^ { | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020027.png ; $t ^ { N }$ ; confidence 1.000 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817011.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = P \{ \omega ^ { 2 } < \lambda \} =$ ; confidence | + | 15. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817011.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname{P} \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = \operatorname{P} \{ \omega ^ { 2 } < \lambda \} =$ ; confidence 1.000 |
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694 | 16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002087.png ; $Q +$ ; confidence | + | 17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002087.png ; ${\bf Q}_ +$ ; confidence 1.000 |
18. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694 | 18. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694 | ||
− | 19. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005020.png ; $\xi | + | 19. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005020.png ; $\xi ''$ ; confidence 1.000 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025016.png ; $L = L _ { 0 } \oplus | + | 20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025016.png ; ${\cal L} = L _ { 0 } \oplus L_1$ ; confidence 1.000 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050085.png ; $ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050085.png ; $\tilde{\bf Z}$ ; confidence 1.000 |
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694 | 22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694 | ||
Line 48: | Line 48: | ||
24. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694 | 24. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694 | ||
− | 25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016059.png ; $u _ { | + | 25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016059.png ; $u _ { t }$ ; confidence 1.000 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026093.png ; $\{ P ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence | + | 26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026093.png ; $\{ \operatorname{P} ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 1.000 |
27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520269.png ; $\overline { A } _ { 11 }$ ; confidence 0.694 | 27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520269.png ; $\overline { A } _ { 11 }$ ; confidence 0.694 | ||
− | 28. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029089.png ; $T \circ f ^ { \leftarrow } \geq S$ ; confidence | + | 28. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029089.png ; ${\cal T} \circ f ^ { \leftarrow } \geq \cal S$ ; confidence 1.000 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304402.png ; $[ W \wedge X , S ] _ { 0 }$ ; confidence 0.693 | + | 29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304402.png ; $[ W \wedge X , S ] _ { 0 },$ ; confidence 0.693 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c1301909.png ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in \text { | + | 30. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c1301909.png ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in N \text { for all } t \in \bf R \}$ ; confidence 1.000 |
31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693 | 31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693 | ||
− | 32. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008022.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in C ^ { n }$ ; confidence | + | 32. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008022.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in {\bf C} ^ { n }$ ; confidence 1.000 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; $P _ { SD } K$ ; confidence | + | 33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; ${\bf P} _ { \text{SD} } \operatorname{K}$ ; confidence 1.000 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004092.png ; $ | + | 34. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004092.png ; $a _ { 2 , 2} = 1$ ; confidence 1.000 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140177.png ; $Z ^ { ( | + | 35. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140177.png ; ${\bf Z} ^ { ( I _ { C } ) }$ ; confidence 1.000 |
36. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105073.png ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693 | 36. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105073.png ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693 | ||
Line 76: | Line 76: | ||
38. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193047.png ; $p \in M$ ; confidence 0.693 | 38. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193047.png ; $p \in M$ ; confidence 0.693 | ||
− | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence | + | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; ${\cal S} ( p )$ ; confidence 1.000 |
40. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693 | 40. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023030.png ; $f _ { 1 }$ ; confidence 0.693 | 41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023030.png ; $f _ { 1 }$ ; confidence 0.693 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005058.png ; $0 < \operatorname { liminf } _ { | + | 42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005058.png ; $0 < \operatorname { liminf } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1.$ ; confidence 1.000 |
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693 | 43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693 | ||
− | 44. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120331.png ; $A _ { | + | 44. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120331.png ; $A _ { P }$ ; confidence 1.000 |
45. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693 | 45. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693 | ||
− | 46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014073.png ; $0 < r < \text { dist } ( x , \partial D )$ ; confidence | + | 46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014073.png ; $0 < r < \text { dist } ( x , \partial \cal D )$ ; confidence 1.000 |
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693 | 47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693 | ||
− | 48. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170114.png ; $ | + | 48. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170114.png ; $C_0$ ; confidence 1.000 |
49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693 | 49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693 | ||
Line 102: | Line 102: | ||
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180126.png ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693 | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180126.png ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693 | ||
− | 52. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { * } ) )$ ; confidence | + | 52. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { \color{blue} * } ) )$ ; confidence 1.000 |
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026061.png ; $( a , a , \dots )$ ; confidence 0.693 | 53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026061.png ; $( a , a , \dots )$ ; confidence 0.693 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300106.png ; $R = \operatorname { limsup } _ { | + | 54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300106.png ; $R = \operatorname { limsup } _ { n \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 1.000 |
55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692 | 55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020106.png ; $( LP )$ ; confidence | + | 56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020106.png ; $( \operatorname{LP} )$ ; confidence 1.000 |
57. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057980/l05798033.png ; $\Gamma _ { f }$ ; confidence 0.692 | 57. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057980/l05798033.png ; $\Gamma _ { f }$ ; confidence 0.692 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030108.png ; $m \in Z$ ; confidence | + | 58. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030108.png ; $m \in \bf Z$ ; confidence 1.000 |
59. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692 | 59. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692 | ||
Line 122: | Line 122: | ||
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050109.png ; $\Sigma ^ { 2 }$ ; confidence 0.692 | 61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050109.png ; $\Sigma ^ { 2 }$ ; confidence 0.692 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220202.png ; $m = ( i + 1 ) | + | 62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220202.png ; $m = ( i + 1 ) / 2$ ; confidence 1.000 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021017.png ; $\sigma \in Sp ( E )$ ; confidence | + | 63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021017.png ; $\sigma \in \operatorname{Sp} ( E )$ ; confidence 1.000 |
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692 | 64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030057.png ; $0 \rightarrow K \rightarrow T _ { n } \rightarrow O _ { n } \rightarrow 0$ ; confidence | + | 65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030057.png ; $0 \rightarrow {\cal K} \rightarrow {\cal T} _ { n } \rightarrow {\cal O} _ { n } \rightarrow 0$ ; confidence 1.000 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027020.png ; $b _ { v , m } \in R$ ; confidence | + | 66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027020.png ; $b _ { v , m } \in \bf R$ ; confidence 1.000 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301104.png ; $f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence | + | 67. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301104.png ; $B_n f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 1.000 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002048.png ; $P ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence | + | 68. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002048.png ; $\operatorname{P} ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence 1.000 |
69. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691 | 69. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691 | ||
− | 70. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006055.png ; $F \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence | + | 70. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006055.png ; ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 1.000 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005089.png ; $ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005089.png ; $t_j$ ; confidence 1.000 |
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691 | 72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691 | ||
Line 150: | Line 150: | ||
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015086.png ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691 | 75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015086.png ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691 | ||
− | 76. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058038.png ; $ | + | 76. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058038.png ; $q_2$ ; confidence 1.000 |
77. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691 | 77. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691 | ||
Line 164: | Line 164: | ||
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027078.png ; $r _ { P } ( a )$ ; confidence 0.691 | 82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027078.png ; $r _ { P } ( a )$ ; confidence 0.691 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { | + | 83. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { i } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 1.000 |
84. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602034.png ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691 | 84. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602034.png ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691 | ||
− | 85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610120.png ; $- | + | 85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610120.png ; $- { k }$ ; confidence 1.000 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040629.png ; $D S _ { | + | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040629.png ; ${\cal D S }_ { P }$ ; confidence 1.000 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007078.png ; $n - | + | 87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007078.png ; $n - d$ ; confidence 1.000 |
88. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691 | 88. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691 | ||
− | 89. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212020.png ; $G _ { | + | 89. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212020.png ; $G _ { \alpha }$ ; confidence 1.000 |
90. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005049.png ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691 | 90. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005049.png ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204302.png ; $ | + | 91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204302.png ; $.: B \otimes B \rightarrow B$ ; confidence 1.000 |
92. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690 | 92. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690 | ||
− | 93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008095.png ; $F _ { | + | 93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008095.png ; $F _ { z _ { 0 } } ( x , R ) =$ ; confidence 1.000 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015041.png ; $E _ { P } ( d _ { 1 } ^ { * } ) = E _ { P } ( d _ { 2 } ^ { * } )$ ; confidence | + | 94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015041.png ; $\operatorname{E _ { P }} ( d _ { 1 } ^ { * } ) = \operatorname{E _ { P }} ( d _ { 2 } ^ { * } )$ ; confidence 1.000 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029065.png ; $M ( Q )$ ; confidence | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029065.png ; ${\cal M} ( Q )$ ; confidence 1.000 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200405.png ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , | + | 96. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200405.png ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , f_j ( x ) ) d x =$ ; confidence 1.000 |
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029079.png ; $i \neq s$ ; confidence 0.690 | 97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029079.png ; $i \neq s$ ; confidence 0.690 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010085.png ; $P | + | 98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010085.png ; $P \circ f$ ; confidence 1.000 |
99. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690 | 99. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004072.png ; $\lambda _ { 2 } ( \Omega ) | + | 100. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004072.png ; $\lambda _ { 2 } ( \Omega ) / \lambda _ { 1 } ( \Omega )$ ; confidence 1.000 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054050.png ; $\pi$ ; confidence | + | 101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054050.png ; $\operatorname{Ker} \pi$ ; confidence 1.000 |
102. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630101.png ; $a _ { i } > 1$ ; confidence 0.689 | 102. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630101.png ; $a _ { i } > 1$ ; confidence 0.689 | ||
Line 208: | Line 208: | ||
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007088.png ; $K _ { 3 }$ ; confidence 0.689 | 104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007088.png ; $K _ { 3 }$ ; confidence 0.689 | ||
− | 105. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230124.png ; $V = E ( x _ { 1 } x _ { 1 } ^ { \prime } )$ ; confidence | + | 105. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230124.png ; $V = \operatorname{E} ( {\bf x} _ { 1 } {\bf x} _ { 1 } ^ { \prime } )$ ; confidence 1.000 |
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689 | 106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689 | ||
− | 107. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007016.png ; $m | + | 107. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007016.png ; $m \equiv 0$ ; confidence 1.000 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031049.png ; $Q _ { 1 }$ ; confidence | + | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031049.png ; ${\cal Q} _ { 1 }$ ; confidence 1.000 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120197.png ; $( F / M ( t ) ) \cong G$ ; confidence | + | 109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120197.png ; $\operatorname{Gal}( F / M ( t ) ) \cong G$ ; confidence 1.000 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; $D ( K )$ ; confidence | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; ${\cal D} ( \operatorname{K} )$ ; confidence 1.000 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } | + | 111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } \geq x$ ; confidence 1.000 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline { Q } _ { p }$ ; confidence | + | 112. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline {\bf Q } _ { p }$ ; confidence 1.000 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004024.png ; $\Omega _ { \ | + | 113. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004024.png ; $\Omega _ { \pm }$ ; confidence 1.000 |
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689 | 114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689 | ||
− | 115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence | + | 115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { M } = \operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { N }$ ; confidence 1.000 |
116. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689 | 116. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689 | ||
Line 234: | Line 234: | ||
117. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005013.png ; $k = s \mu$ ; confidence 0.689 | 117. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005013.png ; $k = s \mu$ ; confidence 0.689 | ||
− | 118. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700099.png ; $+ 1 = | + | 118. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700099.png ; ${\bf zero}_?{\bf c}_{k+ 1} =\bf false$ ; confidence 1.000 |
119. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688 | 119. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688 | ||
− | 120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003020.png ; $\underline { \beta } ^ { ( | + | 120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003020.png ; $\underline { \beta } ^ { ( i ) } = ( \beta _ { 0 } ^ { ( i ) } , \beta _ { 1 } ^ { ( i ) } , \ldots )$ ; confidence 1.000 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021024.png ; $ | + | 121. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021024.png ; ${\bf I}_1 = 0$ ; confidence 1.000 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011023.png ; $\Gamma ( 1 - | + | 122. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011023.png ; $\Gamma ( 1 - a _ { j } + s )$ ; confidence 1.000 |
123. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900165.png ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688 | 123. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900165.png ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688 | ||
− | 124. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090118.png ; $ | + | 124. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090118.png ; $z_ \lambda$ ; confidence 1.000 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002075.png ; $\| A \| _ { 1 } = E [ A ^ { * } ]$ ; confidence | + | 125. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002075.png ; $\| A \| _ { 1 } = \operatorname{E} [ A ^ { * } ]$ ; confidence 1.000 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008085.png ; $ | + | 126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008085.png ; $t_3$ ; confidence 1.000 |
127. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688 | 127. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688 | ||
Line 256: | Line 256: | ||
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012078.png ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688 | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012078.png ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688 | ||
− | 129. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501011.png ; $\xi ^ { * } : X \rightarrow | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501011.png ; $\xi ^ { * } : X \rightarrow B_n$ ; confidence 1.000 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010070.png ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }$ ; confidence | + | 130. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010070.png ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }_-$ ; confidence 1.000 |
131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012013.png ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688 | 131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012013.png ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688 | ||
− | 132. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584075.png ; $ | + | 132. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584075.png ; $| \sigma |$ ; confidence 1.000 |
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687 | 133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687 | ||
− | 134. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021038.png ; $r _ { | + | 134. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021038.png ; $r _ { n } = 0$ ; confidence 1.000 |
135. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237058.png ; $[ L : K ]$ ; confidence 0.687 | 135. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237058.png ; $[ L : K ]$ ; confidence 0.687 | ||
− | 136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011027.png ; $G _ { | + | 136. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011027.png ; $G _ { n } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 1.000 |
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687 | 137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687 | ||
− | 138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028065.png ; $\rho \in X *$ ; confidence | + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028065.png ; $\rho \in {\cal X} *$ ; confidence 1.000 |
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687 | 139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w )$ ; confidence 0.687 | + | 140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w ).$ ; confidence 0.687 |
141. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687 | 141. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687 | ||
− | 142. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010053.png ; $H ^ { p } ( K , C ) = 0$ ; confidence | + | 142. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010053.png ; $H ^ { p } ( K , \bf C ) = 0$ ; confidence 1.000 |
143. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350258.png ; $A _ { t }$ ; confidence 0.687 | 143. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350258.png ; $A _ { t }$ ; confidence 0.687 | ||
− | 144. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780225.png ; $\ | + | 144. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780225.png ; $\tilde { K }$ ; confidence 0.687 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201307.png ; $\| f \| _ { p , G } ^ { p } = \ | + | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201307.png ; $\| f \| _ { p , G } ^ { p } = \int_G | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 1.000 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200179.png ; $\Lambda ( h _ { i } ) \in Z \geq 0$ ; confidence | + | 146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200179.png ; $\Lambda ( h _ { i } ) \in {\bf Z}_{ \geq 0}$ ; confidence 1.000 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202307.png ; $F \subseteq R ^ { m }$ ; confidence | + | 147. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202307.png ; $F \subseteq {\bf R} ^ { m }$ ; confidence 1.000 |
148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006020.png ; $u \in P ( x )$ ; confidence 0.687 | 148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006020.png ; $u \in P ( x )$ ; confidence 0.687 |
Revision as of 13:10, 29 April 2020
List
1. ; $( \partial _ { 1 } , \dots , \partial _ { n } )$ ; confidence 0.696
2. ; $u \in G ^ { S } ( \Omega )$ ; confidence 0.696
3. ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696
4. ; $\gamma \in {\cal F} ( S )$ ; confidence 1.000
5. ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }.$ ; confidence 0.695
6. ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0.$ ; confidence 0.695
7. ; $g : Y \rightarrow S$ ; confidence 0.695
8. ; $M _ { \sigma _ { T } } (\cal B , X )$ ; confidence 1.000
9. ; $\{ - S _ { i } \}$ ; confidence 0.695
10. ; $b _ { l0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { i } }$ ; confidence 1.000
11. ; $\lambda _ { lj } ^ { ( i ) }$ ; confidence 1.000
12. ; $\operatorname { log } L ( \mu , \Sigma | Y _ {\text{ aug} } )$ ; confidence 1.000
13. ; $a b \in P$ ; confidence 0.694
14. ; $t ^ { N }$ ; confidence 1.000
15. ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname{P} \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = \operatorname{P} \{ \omega ^ { 2 } < \lambda \} =$ ; confidence 1.000
16. ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694
17. ; ${\bf Q}_ +$ ; confidence 1.000
18. ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694
19. ; $\xi ''$ ; confidence 1.000
20. ; ${\cal L} = L _ { 0 } \oplus L_1$ ; confidence 1.000
21. ; $\tilde{\bf Z}$ ; confidence 1.000
22. ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
23. ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
24. ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694
25. ; $u _ { t }$ ; confidence 1.000
26. ; $\{ \operatorname{P} ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 1.000
27. ; $\overline { A } _ { 11 }$ ; confidence 0.694
28. ; ${\cal T} \circ f ^ { \leftarrow } \geq \cal S$ ; confidence 1.000
29. ; $[ W \wedge X , S ] _ { 0 },$ ; confidence 0.693
30. ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in N \text { for all } t \in \bf R \}$ ; confidence 1.000
31. ; $H = C _ { G } ( x )$ ; confidence 0.693
32. ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in {\bf C} ^ { n }$ ; confidence 1.000
33. ; ${\bf P} _ { \text{SD} } \operatorname{K}$ ; confidence 1.000
34. ; $a _ { 2 , 2} = 1$ ; confidence 1.000
35. ; ${\bf Z} ^ { ( I _ { C } ) }$ ; confidence 1.000
36. ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693
37. ; $( a , b ) = ( - \infty , \infty )$ ; confidence 0.693
38. ; $p \in M$ ; confidence 0.693
39. ; ${\cal S} ( p )$ ; confidence 1.000
40. ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693
41. ; $f _ { 1 }$ ; confidence 0.693
42. ; $0 < \operatorname { liminf } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1.$ ; confidence 1.000
43. ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693
44. ; $A _ { P }$ ; confidence 1.000
45. ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693
46. ; $0 < r < \text { dist } ( x , \partial \cal D )$ ; confidence 1.000
47. ; $F \subset G$ ; confidence 0.693
48. ; $C_0$ ; confidence 1.000
49. ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693
50. ; $\mu _ { f } ( \lambda ) = \mu \{ t \in \Omega : | f ( t ) | > \lambda \} = \mu _ { g } ( \lambda )$ ; confidence 0.693
51. ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693
52. ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { \color{blue} * } ) )$ ; confidence 1.000
53. ; $( a , a , \dots )$ ; confidence 0.693
54. ; $R = \operatorname { limsup } _ { n \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 1.000
55. ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692
56. ; $( \operatorname{LP} )$ ; confidence 1.000
57. ; $\Gamma _ { f }$ ; confidence 0.692
58. ; $m \in \bf Z$ ; confidence 1.000
59. ; $\sigma _ { \pi }$ ; confidence 0.692
60. ; $N < Z$ ; confidence 0.692
61. ; $\Sigma ^ { 2 }$ ; confidence 0.692
62. ; $m = ( i + 1 ) / 2$ ; confidence 1.000
63. ; $\sigma \in \operatorname{Sp} ( E )$ ; confidence 1.000
64. ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692
65. ; $0 \rightarrow {\cal K} \rightarrow {\cal T} _ { n } \rightarrow {\cal O} _ { n } \rightarrow 0$ ; confidence 1.000
66. ; $b _ { v , m } \in \bf R$ ; confidence 1.000
67. ; $B_n f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 1.000
68. ; $\operatorname{P} ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence 1.000
69. ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691
70. ; ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 1.000
71. ; $t_j$ ; confidence 1.000
72. ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691
73. ; $( i = 1 , \dots , m )$ ; confidence 0.691
74. ; $a = 2$ ; confidence 0.691
75. ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691
76. ; $q_2$ ; confidence 1.000
77. ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691
78. ; $I = [ a , b ]$ ; confidence 0.691
79. ; $G _ { \Gamma }$ ; confidence 0.691
80. ; $i _ { 2 } = \ldots = i _ { r } = 1$ ; confidence 0.691
81. ; $\pi _ { 1 } ( F , e ) \rightarrow \pi _ { 1 } ( E , e )$ ; confidence 0.691
82. ; $r _ { P } ( a )$ ; confidence 0.691
83. ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { i } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 1.000
84. ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691
85. ; $- { k }$ ; confidence 1.000
86. ; ${\cal D S }_ { P }$ ; confidence 1.000
87. ; $n - d$ ; confidence 1.000
88. ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691
89. ; $G _ { \alpha }$ ; confidence 1.000
90. ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691
91. ; $.: B \otimes B \rightarrow B$ ; confidence 1.000
92. ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690
93. ; $F _ { z _ { 0 } } ( x , R ) =$ ; confidence 1.000
94. ; $\operatorname{E _ { P }} ( d _ { 1 } ^ { * } ) = \operatorname{E _ { P }} ( d _ { 2 } ^ { * } )$ ; confidence 1.000
95. ; ${\cal M} ( Q )$ ; confidence 1.000
96. ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , f_j ( x ) ) d x =$ ; confidence 1.000
97. ; $i \neq s$ ; confidence 0.690
98. ; $P \circ f$ ; confidence 1.000
99. ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690
100. ; $\lambda _ { 2 } ( \Omega ) / \lambda _ { 1 } ( \Omega )$ ; confidence 1.000
101. ; $\operatorname{Ker} \pi$ ; confidence 1.000
102. ; $a _ { i } > 1$ ; confidence 0.689
103. ; $v \in V ^ { * }$ ; confidence 0.689
104. ; $K _ { 3 }$ ; confidence 0.689
105. ; $V = \operatorname{E} ( {\bf x} _ { 1 } {\bf x} _ { 1 } ^ { \prime } )$ ; confidence 1.000
106. ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689
107. ; $m \equiv 0$ ; confidence 1.000
108. ; ${\cal Q} _ { 1 }$ ; confidence 1.000
109. ; $\operatorname{Gal}( F / M ( t ) ) \cong G$ ; confidence 1.000
110. ; ${\cal D} ( \operatorname{K} )$ ; confidence 1.000
111. ; $x ^ { \prime } \geq x$ ; confidence 1.000
112. ; $\overline {\bf Q } _ { p }$ ; confidence 1.000
113. ; $\Omega _ { \pm }$ ; confidence 1.000
114. ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689
115. ; $\operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { M } = \operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { N }$ ; confidence 1.000
116. ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689
117. ; $k = s \mu$ ; confidence 0.689
118. ; ${\bf zero}_?{\bf c}_{k+ 1} =\bf false$ ; confidence 1.000
119. ; $y ( . , \lambda )$ ; confidence 0.688
120. ; $\underline { \beta } ^ { ( i ) } = ( \beta _ { 0 } ^ { ( i ) } , \beta _ { 1 } ^ { ( i ) } , \ldots )$ ; confidence 1.000
121. ; ${\bf I}_1 = 0$ ; confidence 1.000
122. ; $\Gamma ( 1 - a _ { j } + s )$ ; confidence 1.000
123. ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688
124. ; $z_ \lambda$ ; confidence 1.000
125. ; $\| A \| _ { 1 } = \operatorname{E} [ A ^ { * } ]$ ; confidence 1.000
126. ; $t_3$ ; confidence 1.000
127. ; $f _ { j } ( x )$ ; confidence 0.688
128. ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688
129. ; $\xi ^ { * } : X \rightarrow B_n$ ; confidence 1.000
130. ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }_-$ ; confidence 1.000
131. ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688
132. ; $| \sigma |$ ; confidence 1.000
133. ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687
134. ; $r _ { n } = 0$ ; confidence 1.000
135. ; $[ L : K ]$ ; confidence 0.687
136. ; $G _ { n } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 1.000
137. ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687
138. ; $\rho \in {\cal X} *$ ; confidence 1.000
139. ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687
140. ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w ).$ ; confidence 0.687
141. ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687
142. ; $H ^ { p } ( K , \bf C ) = 0$ ; confidence 1.000
143. ; $A _ { t }$ ; confidence 0.687
144. ; $\tilde { K }$ ; confidence 0.687
145. ; $\| f \| _ { p , G } ^ { p } = \int_G | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 1.000
146. ; $\Lambda ( h _ { i } ) \in {\bf Z}_{ \geq 0}$ ; confidence 1.000
147. ; $F \subseteq {\bf R} ^ { m }$ ; confidence 1.000
148. ; $u \in P ( x )$ ; confidence 0.687
149. ; $m | k$ ; confidence 0.687
150. ; $y _ { t + r } - \hat { y } _ { t , r } = \sum _ { j = 0 } ^ { r - 1 } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.687
151. ; $\| \rho \| _ { L } \propto ( R ) \leq L / m$ ; confidence 0.687
152. ; $( C ( T ) ) \approx Z$ ; confidence 0.687
153. ; $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.687
154. ; $\hat { f } _ { p } : = \frac { \partial \hat { f } } { \partial p }$ ; confidence 0.686
155. ; $\Lambda ^ { o p }$ ; confidence 0.686
156. ; $\cup x$ ; confidence 0.686
157. ; $PG ( k - n - 2 , q )$ ; confidence 0.686
158. ; $\partial u / \partial \overline { z } _ { j } = f$ ; confidence 0.686
159. ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } a _ { n } g ( S ^ { n } y )$ ; confidence 0.686
160. ; $\mu \equiv \sum \rho _ { i } \delta _ { z _ { i } }$ ; confidence 0.686
161. ; $[ T x , T x ] \geq 0$ ; confidence 0.686
162. ; $a \in \partial B$ ; confidence 0.686
163. ; $Q _ { x } = T W _ { x } / \operatorname { Im } ( d f _ { x } )$ ; confidence 0.686
164. ; $x ^ { \prime } = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.686
165. ; $[ \alpha ] + = \operatorname { max } \{ 0 , \alpha \}$ ; confidence 0.686
166. ; $x _ { n } \in X _ { n } , Q _ { n } f \in Y _ { n } , T _ { n } = ( Q _ { n } T ) | x _ { n }$ ; confidence 0.686
167. ; $f \in A ( D )$ ; confidence 0.686
168. ; $\rho$ ; confidence 0.686
169. ; $Z$ ; confidence 0.686
170. ; $\chi _ { V }$ ; confidence 0.686
171. ; $\langle e _ { i } , e _ { j } \rangle = 0$ ; confidence 0.686
172. ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686
173. ; $x , \theta$ ; confidence 0.685
174. ; $l , m = 1 , \dots , n$ ; confidence 0.685
175. ; $-$ ; confidence 0.685
176. ; $\{ A _ { 1 } , \dots , A _ { n } + 1 \}$ ; confidence 0.685
177. ; $| v | , | w | \in G$ ; confidence 0.685
178. ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685
179. ; $G ( \alpha ) = \operatorname { exp } ( [ \operatorname { log } \operatorname { det } a ] _ { 0 } )$ ; confidence 0.685
180. ; $i \in S$ ; confidence 0.685
181. ; $\Omega _ { 1 }$ ; confidence 0.685
182. ; $S ( V )$ ; confidence 0.685
183. ; $K _ { p }$ ; confidence 0.685
184. ; $| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f + ( x _ { 0 } ) + f - ( x _ { 0 } ) } { 2 } | = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0$ ; confidence 0.684
185. ; $y _ { 1 } , \dots , y _ { T }$ ; confidence 0.684
186. ; $| 1 | p - 1 / 2 | \geq 1 / ( n + 1 )$ ; confidence 0.684
187. ; $K _ { \rho }$ ; confidence 0.684
188. ; $G ( Q ) = \operatorname { Sp } ( 2 n , F )$ ; confidence 0.684
189. ; $\lambda \theta ^ { n }$ ; confidence 0.684
190. ; $L _ { 3 / 2 } ^ { 2 }$ ; confidence 0.684
191. ; $[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { 4 } ( X ) , f ) Y$ ; confidence 0.684
192. ; $z \mapsto \varepsilon _ { z } ^ { C U } ( f )$ ; confidence 0.684
193. ; $B _ { N } ( D ^ { \circ } ) < \frac { 0.446663 } { n }$ ; confidence 0.684
194. ; $V = V _ { 0 }$ ; confidence 0.684
195. ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
196. ; $\hat { f } ( w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { \infty } f ( x ) e ^ { i u x } d x$ ; confidence 0.684
197. ; $U | i \rangle$ ; confidence 0.684
198. ; $[ a , b ] = ( a | b ) x _ { \alpha }$ ; confidence 0.684
199. ; $V _ { i }$ ; confidence 0.684
200. ; $2 e g / \hbar = n$ ; confidence 0.684
201. ; $H * X = H * ( X , Z / p Z )$ ; confidence 0.684
202. ; $\operatorname { log } \alpha _ { n } = o ( n ^ { 1 / 3 } ) \text { as } n \rightarrow \infty$ ; confidence 0.683
203. ; $\lambda _ { y }$ ; confidence 0.683
204. ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right|$ ; confidence 0.683
205. ; $Q _ { \lambda } = \sum _ { T } x ^ { T } ,$ ; confidence 0.683
206. ; $\overline { a }$ ; confidence 0.683
207. ; $\beta$ ; confidence 0.683
208. ; $| A | ( n - l ) \leq | \nabla ( A ) | ( l + 1 )$ ; confidence 0.683
209. ; $D$ ; confidence 0.683
210. ; $m s$ ; confidence 0.683
211. ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
212. ; $E _ { n } ( X ) = \operatorname { lim } _ { k } \pi _ { n + k } ( X \wedge E _ { k } ) = \pi _ { n } ^ { S } ( X \wedge E )$ ; confidence 0.683
213. ; $i = 1 , \dots , n - 1$ ; confidence 0.683
214. ; $J \subset I$ ; confidence 0.683
215. ; $\Omega ( M ) = \oplus _ { k \geq 0 } \Omega ^ { k } ( M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Gamma ( \bigwedge T ^ { * } M )$ ; confidence 0.683
216. ; $( X , x , v )$ ; confidence 0.683
217. ; $\dot { k } = K / L$ ; confidence 0.683
218. ; $H ( . )$ ; confidence 0.683
219. ; $F = \{ f d \nu : f \in S \}$ ; confidence 0.683
220. ; $\theta _ { Y } : ( T W , d ) \rightarrow C * \Omega Y$ ; confidence 0.683
221. ; $\tilde { M } \otimes C = \tilde { M }$ ; confidence 0.683
222. ; $F X , Y$ ; confidence 0.682
223. ; $U = ( A - z _ { 0 } ) ( A - z _ { 0 } ) ^ { - 1 }$ ; confidence 0.682
224. ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } \alpha ( \frac { x + y } { 2 } , \xi ) u ( y ) d y d \xi$ ; confidence 0.682
225. ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682
226. ; $1$ ; confidence 0.682
227. ; $\operatorname { PSL } ( 2 , Z )$ ; confidence 0.682
228. ; $0 \leq e \leq 1$ ; confidence 0.682
229. ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.682
230. ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
231. ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
232. ; $H ( 2 )$ ; confidence 0.682
233. ; $U _ { S } \cap V$ ; confidence 0.682
234. ; $\Lambda _ { m } ^ { \alpha , \beta }$ ; confidence 0.682
235. ; $\xi _ { 1 } , \dots , \xi _ { k - 1 }$ ; confidence 0.682
236. ; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }$ ; confidence 0.682
237. ; $x \in X$ ; confidence 0.682
238. ; $\rho = | \alpha - x | / | b - x |$ ; confidence 0.682
239. ; $\dot { x } ( t ) = f ( t , \int _ { t - h ( t ) } ^ { t } K ( t , s , x ( s ) ) d s )$ ; confidence 0.682
240. ; $( x _ { i j } )$ ; confidence 0.682
241. ; $W _ { 2 } ^ { * } = \frac { 1 } { D _ { 2 } ^ { * } } = \operatorname { min } _ { i } \sqrt { m _ { i } ^ { 2 } + p _ { 2 } ^ { 2 } }$ ; confidence 0.681
242. ; $u ( x _ { i } , t ^ { n + 1 } )$ ; confidence 0.681
243. ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in C : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681
244. ; $V ^ { 2 x + 1 }$ ; confidence 0.681
245. ; $k ^ { \prime } = k _ { \chi } ( \mu _ { p } )$ ; confidence 0.681
246. ; $H _ { \epsilon } ( C )$ ; confidence 0.681
247. ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681
248. ; $L ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }$ ; confidence 0.681
249. ; $\Omega = \{ z : | z | < r \}$ ; confidence 0.681
250. ; $\pi T = 3111324$ ; confidence 0.681
251. ; $\psi ( x )$ ; confidence 0.681
252. ; $- [ \alpha _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , \alpha _ { 1 } ] = D _ { 1 } \alpha _ { 1 }$ ; confidence 0.681
253. ; $q _ { N } = n ^ { k }$ ; confidence 0.681
254. ; $\operatorname { Re } f ( z ) > 0$ ; confidence 0.681
255. ; $g \in S ^ { 2 } E$ ; confidence 0.681
256. ; $-$ ; confidence 0.681
257. ; $S ^ { \prime } \hookrightarrow Q$ ; confidence 0.681
258. ; $R ( x _ { i } ; a _ { 0 } , \dots , a _ { N } ) = 0$ ; confidence 0.681
259. ; $p \nmid q$ ; confidence 0.681
260. ; $NL = NSPACE [ \operatorname { log } n ]$ ; confidence 0.681
261. ; $= \int _ { a } ^ { b } E ( L ) ( \sigma ^ { 2 } ( x ) ) z ( x ) d x$ ; confidence 0.681
262. ; $u , v \in R ^ { N }$ ; confidence 0.681
263. ; $H ^ { * }$ ; confidence 0.681
264. ; $\{ e _ { 1 } , \dots , e _ { \epsilon } \}$ ; confidence 0.681
265. ; $\mu _ { s }$ ; confidence 0.680
266. ; $D _ { m } = \{ z : \Phi ^ { m } ( z , z ) < 0 \}$ ; confidence 0.680
267. ; $\lambda x \cdot f ( x )$ ; confidence 0.680
268. ; $\psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0$ ; confidence 0.680
269. ; $\tilde { f } \in H _ { b } ( E ^ { * * } )$ ; confidence 0.680
270. ; $M _ { E }$ ; confidence 0.680
271. ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
272. ; $H _ { B } ^ { 2 } ( X / R , A ( j ) )$ ; confidence 0.680
273. ; $R / 2 \pi Z$ ; confidence 0.680
274. ; $\int ( f _ { 1 } + f _ { 2 } ) d m = ( C ) \int f _ { 1 } d m + ( C ) \int f _ { 2 } d m$ ; confidence 0.680
275. ; $\vec { V } _ { n } = \vec { V } _ { n } ( T _ { m } )$ ; confidence 0.680
276. ; $\tilde { \chi } ( x ) = [ x ^ { 2 } - 1 - a ] _ { - b } ^ { b }$ ; confidence 0.680
277. ; $y ^ { ( n ) } + p ( x ) y = 0$ ; confidence 0.680
278. ; $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ ; confidence 0.680
279. ; $\| x z \| ^ { \prime } \leq \| x \| ^ { \prime } \| z \| ^ { \prime }$ ; confidence 0.680
280. ; $r _ { 1 } + r _ { 2 } < R$ ; confidence 0.679
281. ; $Ab ( Z ( C ) , M )$ ; confidence 0.679
282. ; $A ( D ) ^ { * } \simeq A ( \overline { D } )$ ; confidence 0.679
283. ; $D ^ { n } + i R ^ { n }$ ; confidence 0.679
284. ; $\cong 0.915965594177219015 \ldots$ ; confidence 0.679
285. ; $| \hat { k } | < 1$ ; confidence 0.679
286. ; $a _ { \delta } = \prod _ { i < j } ( x _ { i } - x _ { j } )$ ; confidence 0.679
287. ; $a ^ { i } b ^ { k } a ^ { - j }$ ; confidence 0.679
288. ; $( R )$ ; confidence 0.679
289. ; $\hat { f } | x , 0 , w \rangle \rightarrow | x , f ( x ) , w \rangle$ ; confidence 0.679
290. ; $\sum _ { n \in Z } x ^ { n }$ ; confidence 0.679
291. ; $\omega h _ { i } = - h$ ; confidence 0.679
292. ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679
293. ; $X < 0$ ; confidence 0.679
294. ; $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ ; confidence 0.679
295. ; $( L _ { D } )$ ; confidence 0.679
296. ; $D | _ { \Omega ^ { 0 } } ( M ) = 0$ ; confidence 0.679
297. ; $\partial ^ { 2 } p _ { i } ( \theta ) \nmid \partial \theta _ { j } \partial \theta _ { r }$ ; confidence 0.679
298. ; $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ ; confidence 0.678
299. ; $F = GF ( q )$ ; confidence 0.678
300. ; $L ( z ) \equiv 0$ ; confidence 0.678
Maximilian Janisch/latexlist/latex/NoNroff/47. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/47&oldid=45600