Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/75"
Rui Martins (talk | contribs) |
Rui Martins (talk | contribs) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007078.png ; $( 2 \pi ) ^ { - 2 n } \int _ { \mathbf{R} ^ { 2 n } } e ^ { i q \ | + | 1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007078.png ; $( 2 \pi ) ^ { - 2 n } \int _ { \mathbf{R} ^ { 2 n } } e ^ { i q \mathcal{X} } e ^ { i p \mathcal{D} } \hat { \sigma } ( p , q ) d p d q,$ ; confidence 0.122 |
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042046.png ; $\Psi _ { V , W }$ ; confidence 0.122 | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042046.png ; $\Psi _ { V , W }$ ; confidence 0.122 | ||
Line 6: | Line 6: | ||
3. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007054.png ; $( \nabla ^ { 2 } + k ^ { 2_0 } + k ^ { 2_0 }v ( x ) ) u ( x , y , k _ { 0 } ) = - \delta ( x - y ) \text { in } \mathbf{R} ^ { 3 },$ ; confidence 0.122 | 3. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007054.png ; $( \nabla ^ { 2 } + k ^ { 2_0 } + k ^ { 2_0 }v ( x ) ) u ( x , y , k _ { 0 } ) = - \delta ( x - y ) \text { in } \mathbf{R} ^ { 3 },$ ; confidence 0.122 | ||
− | 4. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070136.png ; $= ( ( F ( . ) , h ( . , x ) ) _ { \ | + | 4. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070136.png ; $= ( ( F ( . ) , h ( . , x ) ) _ { \mathcal{H} } , ( h ( \text{..} , y ) , h ( \text{..} , x ) ) _ { mathca{H} } ) _ { H } =$ ; confidence 0.122 |
5. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002080.png ; $( H , ( . | . ) )$ ; confidence 0.122 | 5. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002080.png ; $( H , ( . | . ) )$ ; confidence 0.122 | ||
Line 26: | Line 26: | ||
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020064.png ; $r_1 , \ldots , r_n$ ; confidence 0.121 | 13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020064.png ; $r_1 , \ldots , r_n$ ; confidence 0.121 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k13004011.png ; $ c _ { 1 } / a _ { 1 } \geq \ldots \geq | + | 14. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k13004011.png ; $ c _ { 1 } / a _ { 1 } \geq \ldots \geq c _ { n } / a _ { n }$ ; confidence 0.121 |
15. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q1300204.png ; $| i \rangle$ ; confidence 0.121 | 15. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q1300204.png ; $| i \rangle$ ; confidence 0.121 | ||
Line 68: | Line 68: | ||
34. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003080.png ; $\operatorname { Hom}_{K_\infty}( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , \mathcal{A} ( \Gamma \backslash G ( \mathbf{R} ) ) \bigotimes \mathcal{M} _ { \text{C} } ) \overset{\sim}{\rightarrow}$ ; confidence 0.119 | 34. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003080.png ; $\operatorname { Hom}_{K_\infty}( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , \mathcal{A} ( \Gamma \backslash G ( \mathbf{R} ) ) \bigotimes \mathcal{M} _ { \text{C} } ) \overset{\sim}{\rightarrow}$ ; confidence 0.119 | ||
− | 35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040654.png ; $ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040654.png ; $\mathbf{Me} ^ { * \text{L} _{\mathfrak { N }}}_{\mathcal{S}_P }$ ; confidence 0.119 |
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043042.png ; $\Psi ( x ^ { n } \bigotimes x ^ { m } ) = q ^ { n m } x ^ { m } \bigotimes x ^ { n }$ ; confidence 0.119 | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043042.png ; $\Psi ( x ^ { n } \bigotimes x ^ { m } ) = q ^ { n m } x ^ { m } \bigotimes x ^ { n }$ ; confidence 0.119 | ||
Line 110: | Line 110: | ||
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200204.png ; $\int _ { 0 } ^ { \infty } \frac { f * u _ { t } * v _ { t } } { t } d t = c _ { u , v } f,$ ; confidence 0.117 | 55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200204.png ; $\int _ { 0 } ^ { \infty } \frac { f * u _ { t } * v _ { t } } { t } d t = c _ { u , v } f,$ ; confidence 0.117 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026011.png ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ) ) = \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} L ^ { 2 } ( \mathbf{R} ) \hat { \bigotimes } ^ { n } \simeq \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} \ | + | 56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026011.png ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ) ) = \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} L ^ { 2 } ( \mathbf{R} ) \hat { \bigotimes } ^ { n } \simeq \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} \widehat{ L ^ { 2 } ( \mathbf{R} ^ { n } ) }.$ ; confidence 0.117 |
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * S} \mathcal{D}= \operatorname { Mod } ^ { * \text{L}} \mathcal{ D }$ ; confidence 0.117 | 57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * S} \mathcal{D}= \operatorname { Mod } ^ { * \text{L}} \mathcal{ D }$ ; confidence 0.117 | ||
Line 158: | Line 158: | ||
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040057.png ; $\mathfrak { g } _ { \alpha }$ ; confidence 0.115 | 79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040057.png ; $\mathfrak { g } _ { \alpha }$ ; confidence 0.115 | ||
− | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009052.png ; $=\frac { m } { 1 + a ^ { 2 } } \left\{ \int _ { 0 } ^ { z } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s ^ { 1 - \frac { m } { 1 + a i } } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { s } \frac { p _ { 0 } ( t ) - 1 } { t } d t } d s + + \frac { 1 + a ^ { 2 } } { m } z ^ { \frac { m } { 1 + a i } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t} \right}$ ; confidence 0.115 | + | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009052.png ; $=\frac { m } { 1 + a ^ { 2 } } \left\{ \int _ { 0 } ^ { z } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s ^ { 1 - \frac { m } { 1 + a i } } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { s } \frac { p _ { 0 } ( t ) - 1 } { t } d t } d s + + \frac { 1 + a ^ { 2 } } { m } z ^ { \frac { m } { 1 + a i } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t} \right\}$ ; confidence 0.115 |
81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016034.png ; $u = \left\{ \begin{array} { c c } { \overline { u } } & { \text { for } \frac { i T } { k } \leq t < ( i + a ) \frac { T } { k }; } \\ { } & { 0 \leq i \leq k - 1, } \\ { 0 } & { \text { for } ( i + a ) \frac { T } { k } \leq t \leq ( i + 1 ) \frac { T } { k }, } \\ { } & { \text { and for } \ t = T ; 0 \leq i \leq k - 1. } \end{array} \right.$ ; confidence 0.115 | 81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016034.png ; $u = \left\{ \begin{array} { c c } { \overline { u } } & { \text { for } \frac { i T } { k } \leq t < ( i + a ) \frac { T } { k }; } \\ { } & { 0 \leq i \leq k - 1, } \\ { 0 } & { \text { for } ( i + a ) \frac { T } { k } \leq t \leq ( i + 1 ) \frac { T } { k }, } \\ { } & { \text { and for } \ t = T ; 0 \leq i \leq k - 1. } \end{array} \right.$ ; confidence 0.115 | ||
Line 166: | Line 166: | ||
83. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009039.png ; $u _ { t } + a ( t ) u _ { x } + b ( t ) u ^ { p } u _ { x } - u _ { xxt } = 0$ ; confidence 0.114 | 83. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009039.png ; $u _ { t } + a ( t ) u _ { x } + b ( t ) u ^ { p } u _ { x } - u _ { xxt } = 0$ ; confidence 0.114 | ||
− | 84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040184.png ; $\Sigma _ { n = 1 } ^ { \infty } \| T _ { | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040184.png ; $\Sigma _ { n = 1 } ^ { \infty } \| T _ { x _ { n } } \| _ { X } ^ { r } < \infty$ ; confidence 0.114 |
85. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006083.png ; $\overset{\rightharpoonup}{ P _ { i } P _ { \text{l}_1 } } , \overset{\rightharpoonup}{ P _ { \text{l}_1 } P _ { \text{l}_2 } } , \dots , \overset{\rightharpoonup}{ P _ { \text{l}_m } P _ { \text{l}_{m+1} } },$ ; confidence 0.114 | 85. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006083.png ; $\overset{\rightharpoonup}{ P _ { i } P _ { \text{l}_1 } } , \overset{\rightharpoonup}{ P _ { \text{l}_1 } P _ { \text{l}_2 } } , \dots , \overset{\rightharpoonup}{ P _ { \text{l}_m } P _ { \text{l}_{m+1} } },$ ; confidence 0.114 | ||
Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003023.png ; $f \in \operatorname { Car } | _ { \text{loc} } ( I \times G )$ ; confidence 0.114 | 87. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003023.png ; $f \in \operatorname { Car } | _ { \text{loc} } ( I \times G )$ ; confidence 0.114 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180124.png ; $= \{ \langle b _ { 0 } , \dots , b _ { i - 1} , a , b _ { | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180124.png ; $= \{ \langle b _ { 0 } , \dots , b _ { i - 1} , a , b _ { i + 1} , \dots , b _ { n - 1 } \rangle : a \in U \ \text{and}$ ; confidence 0.114 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002013.png ; $\overline { A } _ { 1 } , \dots , \overline { A } _ { | + | 89. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002013.png ; $\overline { A } _ { 1 } , \dots , \overline { A } _ { n }$ ; confidence 0.114 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012025.png ; $ | + | 90. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012025.png ; $p_3$ ; confidence 0.114 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201506.png ; $x _ { 11 } ( . ) , \ldots , x _ { p | + | 91. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201506.png ; $x _ { 11 } ( . ) , \ldots , x _ { p n } ( . )$ ; confidence 0.113 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070106.png ; $= \sum _ { j n , m _ { n } } ^ { J _ { n } } K ( y _ { m _ { n } } , y _ { j _ { n } } ) c _ { j _ { n } } \overline { | + | 92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070106.png ; $= \sum _ { j _ { n } , m _ { n } } ^ { J _ { n } } K ( y _ { m _ { n } } , y _ { j _ { n } } ) c _ { j _ { n } } \overline { c_{m _ { n }}} =$ ; confidence 0.113 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011078.png ; $x \rightarrow \underline { f } | + | 93. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011078.png ; $x \rightarrow \underline { f } \square__{\alpha} ( x )$ ; confidence 0.113 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007046.png ; $\operatorname { ch } V ( \lambda ) = \frac { \sum _ { w \in W } ( - 1 ) ^ { l ( w ) } e ^ { w ( \lambda + \rho ) - \rho } } { \prod _ { \alpha \in \Delta ^ { - } ( 1 - e ^ { \alpha } ) ^ { d i m g _ { \alpha } } } }$ ; confidence 0.113 | + | 94. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007046.png ; $\operatorname { ch } V ( \lambda ) = \frac { \sum _ { w \in W } ( - 1 ) ^ { l ( w ) } e ^ { w ( \lambda + \rho ) - \rho } } { \prod _ { \alpha \in \Delta ^ { - } ( 1 - e ^ { \alpha } ) ^ { d i m g _ { \alpha } } } }.$ ; confidence 0.113 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032023.png ; $B _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { s + 1 } } R _ { l + 1 } ^ { ( s + 1 ) } ( z ) \lambda _ { l j } ^ { ( s + 1 ) }$ ; confidence 0.113 | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032023.png ; $B _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { s + 1 } } R _ { l + 1 } ^ { ( s + 1 ) } ( z ) \lambda _ { l j } ^ { ( s + 1 ) },$ ; confidence 0.113 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059120/l0591204.png ; $SL _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059120/l0591204.png ; $\operatorname { SL} _ { n } ( K )$ ; confidence 0.113 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180111.png ; $\exists v _ { i } \varphi ( v _ { 0 } , \dots , v _ { | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180111.png ; $\exists v _ { i } \varphi ( v _ { 0 } , \dots , v _ { n - 1} )$ ; confidence 0.113 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012049.png ; $\ | + | 98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012049.png ; $\h _ { z }$ ; confidence 0.113 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007013.png ; $\{ M ( \alpha ) \text { pr } _ { \text { dom } \alpha } - \text { | + | 99. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007013.png ; $\{ M ( \alpha ) \text { pr } _ { \text { dom } \alpha } - \text { pr_{ codom } \alpha} \}_{ \alpha} \quad \text { for } n = 0,$ ; confidence 0.112 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140104.png ; $ | + | 100. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140104.png ; $q_{ R} ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } r _ { i , j } x _ { i } x _ { j },$ ; confidence 0.112 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020086.png ; $X | + | 101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020086.png ; $\mathcal{X} / J$ ; confidence 0.112 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $ | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $\operatorname { FMod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.112 |
103. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005093.png ; $Y ( L ( - 1 ) v , x ) = ( d / d x ) Y ( v , x )$ ; confidence 0.112 | 103. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005093.png ; $Y ( L ( - 1 ) v , x ) = ( d / d x ) Y ( v , x )$ ; confidence 0.112 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008010.png ; $\sum _ { i , j = 1 } ^ { m } | + | 104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008010.png ; $\sum _ { i , j = 1 } ^ { m } a _ { i , j } ( x ) \xi _ { i } \xi _ { j } \geq \delta | \xi | ^ { 2 }$ ; confidence 0.112 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031040.png ; $e _ { | + | 105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031040.png ; $e _ { n } ( H _ { d } ^ { k } ) \leq c _ { k , d , \delta} .n ^ { - k + \delta } , \forall n,$ ; confidence 0.112 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203006.png ; $\psi ( y + 2 \pi p ) = e ^ { 2 \pi i \eta | + | 106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203006.png ; $\psi ( y + 2 \pi p ) = e ^ { 2 \pi i \eta . p } \psi ( y ) \text { for a.e.y } \in \mathbf{R} ^ { N }$ ; confidence 0.112 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001036.png ; $\alpha _ { 1 } , \dots , a _ { | + | 107. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001036.png ; $\alpha _ { 1 } , \dots , a _ { n } \in G$ ; confidence 0.112 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002053.png ; $( LD ) v ^ { * } = \left\{ \begin{array} { c l } { \operatorname { max } } & { q } \\ { s.t. } & { q \leq c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ) } \\ { } & { \forall k \in P } \\ { 0 \leq } & { c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } A _ { 1 } x ^ { ( k ) } , \forall k \in R } \\ { u _ { 1 } \geq 0 } \end{array} \right.$ ; confidence 0.111 | + | 108. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002053.png ; $( \text{LD} ) v ^ { * } = \left\{ \begin{array} { c l } { \operatorname { max } } & { q } \\ { s.t. } & { q \leq c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ), } \\ { } & { \forall k \in P, } \\ { 0 \leq } & { c ^ { T } \tilde{x} ^ { ( k ) } + u _ { 1 } ^ { T } A _ { 1 } \tilde{x} ^ { ( k ) } , \forall k \in R, } \\ { u _ { 1 } \geq 0. } \end{array} \right.$ ; confidence 0.111 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002068.png ; $x = \ | + | 109. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002068.png ; $x = \tilde { x }$ ; confidence 0.111 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049030.png ; $F _ { m | + | 110. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049030.png ; $F _ { m n } = \frac { \chi _ { m } ^ { 2 } / m } { \chi _ { n } ^ { 2 } / n },$ ; confidence 0.111 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300804.png ; $q _ { | + | 111. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300804.png ; $q _ { m } ( x )$ ; confidence 0.111 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004040.png ; $( \cap _ { | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004040.png ; $( \cap _ { n = 0 } ^ { \infty } W _ { n } ) \cap E \neq \emptyset$ ; confidence 0.111 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001019.png ; $( d H ) ^ { c _ { | + | 113. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001019.png ; $( d H ) ^ { c _ { n } d ^ { n^{2} } }$ ; confidence 0.111 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042027.png ; $\bigotimes | + | 114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042027.png ; $\operatorname { id} \bigotimes r _ { W } = \Phi _ { V , 1 , W } \circ ( l _ { V } \bigotimes \text { id } ).$ ; confidence 0.111 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021092.png ; $\Lambda _ { | + | 115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021092.png ; $\Lambda _ { n } - h ^ { \prime } T _ { n } \rightarrow - h ^ { \prime } \Gamma h / 2$ ; confidence 0.111 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840343.png ; $H ^ { | + | 116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840343.png ; $\mathcal{H} ^ { n}$ ; confidence 0.111 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020042.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { | + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020042.png ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { r _ { m } } ; \quad q _ { i } ( t ) = \left\{ \frac { ( t - t _ { i } ) ^ { r _ { i } } } { P ( t ) } \right\} _ { ( r _ { i } - 1 ; t _ { i } ) };$ ; confidence 0.111 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301405.png ; $ | + | 118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301405.png ; $d \sigma _ { r }$ ; confidence 0.110 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010133.png ; $ | + | 119. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010133.png ; $C^{ 2 , \lambda }$ ; confidence 0.110 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010015.png ; $E | W ^ { | + | 120. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010015.png ; $\mathsf{E} | W ^ { a } ( t ) | \sim \left\{ \begin{array} { l l } { \sqrt { \frac { 8 t } { \pi } } , } & { d = 1, } \\ { \frac { 2 \pi t } { \operatorname { log } t } , } & { d = 2, } \\ { \kappa _ { a } t , } & { d \geq 3, } \end{array} \right.$ ; confidence 0.110 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001040.png ; $P ^ { | + | 121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001040.png ; $\mathbf{P} ^ { n }$ ; confidence 0.110 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $ | + | 122. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $\mathbf{b}$ ; confidence 0.110 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006036.png ; $\omega _ { WP } = \Sigma _ { j } d l _ { j } | + | 123. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006036.png ; $\omega _ { WP } = \Sigma _ { j } d \text{l} _ { j } \bigwedge d \tau _ { j },$ ; confidence 0.110 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070140.png ; $\langle . , . \rangle : A \otimes H \rightarrow | + | 124. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070140.png ; $\langle . , . \rangle : A \otimes H \rightarrow k $ ; confidence 0.110 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004018.png ; $g _ { | + | 125. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004018.png ; $g _ { k , 1} ( z ) = g _ { k } ( z );$ ; confidence 0.110 |
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036028.png ; $T R F$ ; confidence 0.109 | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036028.png ; $T R F$ ; confidence 0.109 | ||
− | 127. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003048.png ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { M } ) = H ^ { 0 } \oplus H ^ { 1 } \ | + | 127. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003048.png ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) = H ^ { 0 } \oplus H ^ { 1 } \overset{\sim}{\rightarrow} \mathbf{Q} ^ { k } \oplus \mathbf{Q} ^ { h }.$ ; confidence 0.109 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007046.png ; $J ( z ) = \sum _ { n } \operatorname { Tr } ( e | | + | 128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007046.png ; $J ( z ) = \sum _ { n } \operatorname { Tr } ( e | _{V _ { n }} ) q ^ { n }$ ; confidence 0.109 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005094.png ; $u \in \ | + | 129. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005094.png ; $u \in \mathfrak { F }$ ; confidence 0.109 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t1202106.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } ( x - 1 ) ^ { r ( M ) - | + | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t1202106.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( S )}.$ ; confidence 0.109 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028035.png ; $ | + | 131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028035.png ; $\operatorname { max} \Pi_ { \tilde{\mathbf{c}}^{ \text{T} \mathbf{x} } ( \tilde { G } )$ ; confidence 0.109 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007066.png ; $Y ^ { | + | 132. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007066.png ; $Y ^ { e } = X ^ { d }$ ; confidence 0.109 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021082.png ; $ | + | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021082.png ; $\mathfrak{b}$ ; confidence 0.109 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030034.png ; $3 ^ { C _ { | + | 134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030034.png ; $3 ^ { C _ { m} ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.109 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100152.png ; $\ | + | 135. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100152.png ; $L_{ \gamma , 1}$ ; confidence 0.109 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s1301105.png ; $Z ^ { + } [ x _ { 1 } , \ldots , x _ { n } ] ^ { S _ { n } }$ ; confidence 0.109 | + | 136. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s1301105.png ; $\mathbf{Z} ^ { + } [ x _ { 1 } , \ldots , x _ { n } ] ^ { \mathcal{S} _ { n } }$ ; confidence 0.109 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004014.png ; $F _ { L _ { D } } ( a , x ) = | + | 137. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004014.png ; $F _ { L _ { D } } ( a , x ) = a ^ { - \text { Tait } ( L _ { D } ) } \Lambda _ { D } ( a , x )$ ; confidence 0.108 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011047.png ; $ | + | 138. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011047.png ; $ \Xi = ( \hat { x } , \hat { \xi } )$ ; confidence 0.108 |
139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013038.png ; $w _ { 2 ^ { n } - 2 ^ { i } } ( \rho ) = c _ { n , i }$ ; confidence 0.108 | 139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013038.png ; $w _ { 2 ^ { n } - 2 ^ { i } } ( \rho ) = c _ { n , i }$ ; confidence 0.108 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160161.png ; $y _ { i t } = \alpha y _ { i , t - 1 } + \sum _ { j = 1 } ^ { N } k _ { j t } | + | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160161.png ; $y _ { i t } = \alpha y _ { i , t - 1 } + \sum _ { j = 1 } ^ { N } k _ { j t } e _ { i j } x _ { i t };$ ; confidence 0.108 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002010.png ; $L _ { \ | + | 141. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002010.png ; $L _ { x ^ \alpha} ( x ; t ) = \partial _ { x ^ \alpha} ( g ( x ; t ) * f ( x ) ),$ ; confidence 0.108 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006067.png ; $ | + | 142. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006067.png ; $T _ { B \otimes A}$ ; confidence 0.107 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230189.png ; $S ( \phi ) = \sum _ { | \alpha | = 0 } ^ { k - 1 } S _ { \alpha i } ^ { | + | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230189.png ; $S ( \phi ) = \sum _ { | \alpha | = 0 } ^ { k - 1 } S _ { \alpha i } ^ { a } ( \phi ) \omega _ { \alpha } ^ { a } \bigwedge \left( \frac { \partial } { \partial x _ { i } } \lrcorner ( d x _ { 1 } \bigwedge \ldots \bigwedge d x _ { n } ) \right).$ ; confidence 0.107 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006047.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / | + | 144. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006047.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 0,1\dots.$ ; confidence 0.107 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003039.png ; $\| | + | 145. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003039.png ; $\| a \square b ^ { * } \| \leq \| a \| . \| b \|$ ; confidence 0.107 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230133.png ; $+ \frac { ( - 1 ) ^ { k | + | 146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230133.png ; $+ \frac { ( - 1 ) ^ { k \text{l} } } { ( k - 1 ) ! \text{l}! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times K ( [ L ( X _ { \sigma 1 } , \ldots , X _ { \sigma \text{l} } ) , X _ { \sigma ( \text{l} + 1 ) } ] , X _ { \sigma ( \text{l} + 2 ) } , \ldots ) +$ ; confidence 0.107 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001015.png ; $Q _ { D } ( v _ { 1 } v _ { 2 } , z ) = \sum _ { f \in | + | 147. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001015.png ; $Q _ { D } ( v _ { 1 } v _ { 2 } , z ) = \sum _ { f \in \text{lbl} ( D ) }$ ; confidence 0.107 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302603.png ; $ | + | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a1302603.png ; $a _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) ^ { 2 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } , \quad b _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 }$ ; confidence 0.107 |
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016045.png ; $c _ { i k }$ ; confidence 0.107 | 149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016045.png ; $c _ { i k }$ ; confidence 0.107 | ||
− | 150. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180399.png ; $\tilde { \nabla } ^ { | + | 150. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180399.png ; $\tilde { \nabla } ^ { q } R ( \tilde { g } )$ ; confidence 0.107 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \ | + | 151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \vdash_{\mathcal{D}} \varphi$ ; confidence 0.107 |
152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021020.png ; $w _ { 1 }$ ; confidence 0.107 | 152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021020.png ; $w _ { 1 }$ ; confidence 0.107 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005068.png ; $ | + | 153. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005068.png ; $\mathfrak{H} \oplus \mathfrak{G}$ ; confidence 0.107 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022088.png ; $ | + | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022088.png ; $ \Xi = \mathbf{R} ^ { N } \times [ 0 , \infty [$ ; confidence 0.106 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040548.png ; $ | + | 155. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040548.png ; $\mathsf{Q}$ ; confidence 0.106 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650305.png ; $ | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650305.png ; $\mathfrak{F}$ ; confidence 0.106 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012017.png ; $R _ { | + | 157. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012017.png ; $R _ { a b } \equiv R _ { a c b } ^ { c }$ ; confidence 0.106 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012067.png ; $Q _ { s } ( R ) = \{ q \in | + | 158. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012067.png ; $Q _ { s } ( R ) = \{ q \in Q_{\text{l} } ( R ) : q B \subseteq R \ \text { for some } \ 0 \neq B \lhd R \}$ ; confidence 0.106 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016027.png ; $H ( q , d ) = \cup _ { q - d + 1 \leq | | + | 159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016027.png ; $H ( q , d ) = \cup _ { q - d + 1 \leq | j | \leq q } ( X ^ { j _ { 1 } } \times \ldots \times X ^ { j _ { d } } ),$ ; confidence 0.106 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022079.png ; $ | + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022079.png ; $w _ { t }$ ; confidence 0.106 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006067.png ; $p _ { i + 1 } = a _ { i - 1 } p _ { i } + p _ { i - 1 } , i = 1,2 ,$ ; confidence 0.106 | + | 161. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006067.png ; $p _ { i + 1 } = a _ { i - 1 } p _ { i } + p _ { i - 1 } , i = 1,2, \dots .$ ; confidence 0.106 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711024.png ; $z ^ { | + | 162. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711024.png ; $z ^ { n }$ ; confidence 0.106 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017016.png ; $C ^ { | + | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017016.png ; $\mathbf{C} ^ { k }$ ; confidence 0.105 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300201.png ; $c ^ { | + | 164. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300201.png ; $c ^ { a } ( x )$ ; confidence 0.105 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300801.png ; $P _ { 1 } , \ldots , P _ { m } \in Z [ x _ { 1 } , \ldots , x _ { | + | 165. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300801.png ; $P _ { 1 } , \ldots , P _ { m } \in \mathbf{Z} [ x _ { 1 } , \ldots , x _ { n } ]$ ; confidence 0.105 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060127.png ; $\sigma ( \Omega ( A ) ) \subseteq \cup _ { i , j = 1 \atop j \neq j } ^ { n } K _ { i j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.105 | + | 166. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060127.png ; $\sigma ( \Omega ( A ) ) \subseteq \cup _ { i , j = 1 \atop j \neq j } ^ { n } K _ { i,j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.105 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090249.png ; $g = \sum _ { | + | 167. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090249.png ; $\mathfrak{g} = \sum _ { \alpha \in \Phi ^ { - } } ^{ \bigoplus} \mathfrak{g} _ { \alpha } \mathfrak{h} \bigoplus \sum_ { \gamma \in \Phi ^ { + } } ^{\oplus} \mathfrak{g} _ { \gamma }$ ; confidence 0.105 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520446.png ; $| f ( V ) | \leq | + | 168. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520446.png ; $| f ( V ) | \leq c _ { 1 } | V | ^ { \gamma } \quad \text { and } \quad | \sum _ { j = 1 } ^ { n } \frac { \partial f } { \partial v _ { j } } \tilde { \phi }_{j} | > c _ { 2 } | V | ^ { \gamma + m },$ ; confidence 0.105 |
169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006038.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.105 | 169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006038.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.105 | ||
− | 170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016039.png ; $C ^ { | + | 170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016039.png ; $\mathcal{C} ^ { m }$ ; confidence 0.104 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540031.png ; $G = SL _ { n } ( K )$ ; confidence 0.104 | + | 171. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540031.png ; $G = \operatorname {SL} _ { n } ( K )$ ; confidence 0.104 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015014.png ; $Z _ { | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015014.png ; $Z _ { G }$ ; confidence 0.104 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702022.png ; $Z _ { l } ( m ) _ { X } = ( \mu _ { l ^ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702022.png ; $\mathbf{Z} _ { l } ( m ) _ { X } = ( \mu _ { l ^ { n } , X } ^ { \otimes^m } ) _ { n \in \mathbf{N} }$ ; confidence 0.104 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070160.png ; $\| f \| = ( f , f ) | + | 174. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070160.png ; $\| f \| = ( f , f ) ^ { 1 / 2 } _ { H }$ ; confidence 0.104 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010016.png ; $T = \{ ( t _ { 1 } , \dots , t _ { m } ) : t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } } , | + | 175. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010016.png ; $T = \{ ( t _ { 1 } , \dots , t _ { m } ) : t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } } , t_{j} \text{non} \square \text{critical} \}$ ; confidence 0.104 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018026.png ; $- \{ d y ^ { 1 } \ | + | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018026.png ; $- \{ d y ^ { 1 } \bigotimes d y ^ { 1 } + \ldots + d y ^ { q } \bigotimes d y ^ { q } \}$ ; confidence 0.104 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340110.png ; $( x _ { + } , u _ { - } \ | + | 177. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340110.png ; $( x _ { + } , u _ { - } \sharp w ) \equiv \tilde{x} _ { + }$ ; confidence 0.104 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220118.png ; $r _ { D } : H _ { M } ^ { i } ( X , Q ( j ) ) _ { Z } \rightarrow H _ { D } ^ { i } ( X _ { / R } , R ( j ) )$ ; confidence 0.103 | + | 178. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220118.png ; $r _ { \mathcal{D} } : H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) _ { \mathcal{Z} } \rightarrow H _ { \mathcal{D} } ^ { i } ( X _ { / \mathcal{R} } , \mathcal{R} ( j ) )$ ; confidence 0.103 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010093.png ; $L _ { \gamma | + | 179. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010093.png ; $L _ { \gamma , n _ { 1 }}$ ; confidence 0.103 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210142.png ; $\theta _ { \tau _ { | + | 180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210142.png ; $\theta _ { \tau _ { n } } = \theta + h \tau _ { n } ^ { - 1 / 2 }$ ; confidence 0.103 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \ | + | 181. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \widehat { \varphi u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300502.png ; $\ | + | 182. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300502.png ; $a \leftrightarrowa b ^ { \pm 1 }_ { n }$ ; confidence 0.103 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020109.png ; $\ | + | 183. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020109.png ; $\hat{c}_{k} ^ { 2 } \geq 0$ ; confidence 0.103 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003056.png ; $\operatorname { ind } _ { g } ( P ) = ( - 1 ) ^ { n } \operatorname { Ch } ( [ a | _ { T ^ { * } M ^ { g } } ] ) T ( M ^ { g } ) L ( N , g ) [ T ^ { * } M ^ { g } ]$ ; confidence 0.103 | + | 184. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003056.png ; $\operatorname { ind } _ { g } ( P ) = ( - 1 ) ^ { n } \operatorname { Ch } ( [ a | _ { T ^ { * } M ^ { g } } ] ) \mathcal{T} ( M ^ { g } ) L ( N , g ) [ T ^ { * } M ^ { g } ].$ ; confidence 0.103 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031029.png ; $C _ { | + | 185. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031029.png ; $C _ { d } ^ { k }$ ; confidence 0.103 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200207.png ; $\times G _ { p + 2 , q } ^ { q - m , p - n + 2 } \left\ | + | 186. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200207.png ; $\times G _ { p + 2 , q } ^ { q - m , p - n + 2 } \left( \left| \begin{array} { c } { \mu + i \tau , \mu - i \tau , - ( \alpha _ { p } ^ { n + 1 } ) , - ( \alpha _ { n } ) } \\ { - ( \beta _ { q } ^ { m + 1 } ) , - ( \beta _ { m } ) } \end{array} \right. \right);$ ; confidence 0.103 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029057.png ; $HF _ { | + | 187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029057.png ; $\operatorname{HF} _ { * } ^ { \text { symp } } ( M , \text { id } ) \cong H ^ { * } ( M )$ ; confidence 0.103 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009090.png ; $\varphi : X \rightarrow \Lambda ^ { r } \ | + | 188. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009090.png ; $\varphi : X \rightarrow \Lambda ^ { r } \bigoplus\bigoplus _ { i = 1 } ^ { s } \Lambda / ( f _ { i } ( T ) ^ { l _i} ) \bigoplus \bigoplus _ { j = 1 } ^ { t } \Lambda / ( \pi ^ { m _ { j } } )$ ; confidence 0.103 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004017.png ; $g _ { | + | 189. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004017.png ; $g _ { k , p } ( z )$ ; confidence 0.102 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005089.png ; $\ldots - ( i _ { r | + | 190. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005089.png ; $\ldots - ( i _ { r - 1} - i _ { r } ) . \mu _ { i _ { r } },$ ; confidence 0.102 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013028.png ; $x \in \ | + | 191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013028.png ; $\overline{x} \in \tilde { \mathbf{Q} } _ { p } ^ { n }$ ; confidence 0.102 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510155.png ; $ | + | 192. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510155.png ; $O ( | V | | E | )$ ; confidence 0.101 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150137.png ; $( k _ { 1 } , \dots , k _ { | + | 193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150137.png ; $( k _ { 1 } , \dots , k _ { m } ) \in ( \mathbf{N} \cup \{ 0 \} ) ^ { m }$ ; confidence 0.101 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230123.png ; $E ^ { | + | 194. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230123.png ; $\mathcal{E} ^ { a } ( L ) = \sum _ { | \alpha | = 0 } ^ { k } ( - 1 ) ^ { | \alpha | } \gamma ^ { - 1 } D ^ { \alpha } \left( \gamma \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \right).$ ; confidence 0.101 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060129.png ; $Bel _ { X } = \operatorname { Bel } ^ { | + | 195. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060129.png ; $ \operatorname { Bel } _ { X } = \operatorname { Bel } ^ { \downarrow X - R _ { T | X - T - R} } \bigoplus \operatorname { Bel } ^ { \downarrow X - T _ { R | X - T - R} } \bigoplus \operatorname { Bel } ^ { \downarrow X - T - R _ { X } }.$ ; confidence 0.101 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { | + | 196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $\mathcal{E} ( L ) = \mathcal{E} ^ { a } ( L ) \omega ^ { a } \bigotimes \Delta,$ ; confidence 0.101 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070127.png ; $ | + | 197. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070127.png ; $\operatorname { dim } \tilde { H } ^ { 1 } = \operatorname { dim } C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) + \operatorname { dim } C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} )$ ; confidence 0.101 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044910/g04491082.png ; $ | + | 198. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044910/g04491082.png ; $v_0$ ; confidence 0.101 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012057.png ; $d = \{ | + | 199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012057.png ; $d = \{ d_{ k } \} ^ { \infty } _ { k = - \infty}$ ; confidence 0.101 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020071.png ; $T x _ { j } = t _ { j } x _ { j } \text { for } x | + | 200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020071.png ; $T x _ { j } = t _ { j } x _ { j } \text { for } x _ { j } \in X _ { j } \quad ( j = 1 , \dots , n ).$ ; confidence 0.101 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220181.png ; $r _ { D } \ | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220181.png ; $r _ { \mathcal{D} } \bigoplus z _ { \mathcal{D} } : R \bigoplus ( N S ( X ) \bigotimes \mathbf{Q} ) \rightarrow H _ { \mathcal{D} } ^ { 3 } ( X , \mathbf{R} ( 2 ) )$ ; confidence 0.101 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013065.png ; $L _ { | + | 202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013065.png ; $L _ { a } ^ { 1 * } \cong B$ ; confidence 0.100 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018053.png ; $( L ) = | + | 203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018053.png ; $ \mathbf{SP\mathsf{Alg}} _{\models}( \mathcal{L} ) = \mathbf{SP\mathsf{Alg}} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.100 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023041.png ; $\operatorname { cos } \alpha = \operatorname { sup } \left\{ \begin{array} { r l } { u \in U | + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023041.png ; $\operatorname { cos } \alpha = \operatorname { sup } \left\{ \begin{array} { r l } {} &{ u \in U \bigcap V ^ { \perp }, } \\ { \langle u , v \rangle : } & { v \in V \cap U ^ { \perp }, } \\{} & { \| u \| , \| v \| \leq 1 } \end{array} \right\}.$ ; confidence 0.100 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230118.png ; $\omega ^ { | + | 205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230118.png ; $\omega ^ { a } = d y ^ { s } - y _ { e _ { i } } ^ { s } d x _ { i }$ ; confidence 0.100 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018068.png ; $ | + | 206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018068.png ; $\mathbf{\mathsf{RCA}}_{ \omega}$ ; confidence 0.099 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201707.png ; $\left\{ \begin{array} { l } { | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201707.png ; $\left\{ \begin{array} { l } { p_{ t } ( a , t ) + p _ { a } ( a , t ) + \mu ( a ) p ( a , t ) = 0, } \\ { p ( 0 , t ) = \int _ { 0 } ^ { + \infty } \beta ( a ) p ( a , t ) d a, } \\ { p ( a , 0 ) = p _ { 0 } ( a ) \geq 0, } \end{array} \right.$ ; confidence 0.099 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180352.png ; $= g ^ { - 1 } \{ 1,4 \} \nabla C ( g ) - g ^ { - 1 } \{ 1,3 ; 2,5 \} ( A ( g ) \ | + | 208. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180352.png ; $= g ^ { - 1 } \{ 1,4 \} \nabla C ( g ) - g ^ { - 1 } \{ 1,3 ; 2,5 \} ( A ( g ) \bigotimes W ( g ) ) \subset \subset \bigotimes \square ^ { 2 } \mathcal{E},$ ; confidence 0.099 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012030.png ; $ | + | 209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012030.png ; $d ^ { \prime }$ ; confidence 0.099 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210108.png ; $A _ { | + | 210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210108.png ; $\mathcal{A} _ { n } = \sigma ( X _ { 0 } , \dots , X _ { n } )$ ; confidence 0.099 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020123.png ; $\ | + | 211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020123.png ; $\hat { c } _ { l } ^ { 1 } = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q } < 0$ ; confidence 0.098 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170262.png ; $d _ { 1 } ( e _ { 1 } ^ { | + | 212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170262.png ; $d _ { 1 } ( e _ { 1 } ^ { i } ) = g _ { i } e _ { 0 } - e _ { 0 }$ ; confidence 0.098 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020198.png ; $\ | + | 213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020198.png ; $\tilde{v} ( \tilde { u } _ { 1 } )$ ; confidence 0.098 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020250.png ; $\overline { | + | 214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020250.png ; $\overline { u }_1$ ; confidence 0.098 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018020.png ; $\Gamma \ | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018020.png ; $\Gamma \vdash_{\mathcal{ L}} \phi$ ; confidence 0.098 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023079.png ; $H = I \ | + | 216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023079.png ; $H = \tilde{I} \tilde { H } \square ^{*}$ ; confidence 0.098 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024022.png ; $( X _ { 1 } \vee \ldots \vee X _ { k } ) = | + | 217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024022.png ; $\operatorname{varprojlim}_{k}( X _ { 1 } \vee \ldots \vee X _ { k } ) = \operatorname{Cl} _ { i = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } ).$ ; confidence 0.098 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043013.png ; $( a \ | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043013.png ; $( a \bigotimes c ) ( b \bigotimes d ) = a . \Psi _ { C , B } ( c \bigotimes b ) . d$ ; confidence 0.098 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059055.png ; $c _ { | + | 219. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059055.png ; $c _ { n } = q ^ { - n - n ^ { 2 } / 2 } , n = 0 , \pm 1 , \pm 2 , \ldots ,$ ; confidence 0.098 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430175.png ; $\partial _ { q , y } ( x ^ { n } y ^ { m } ) = q ^ { n } [ m ] _ { q ^ { 2 } } x ^ { n } y ^ { m - 1 }$ ; confidence 0.097 | + | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430175.png ; $\partial _ { q , y } ( x ^ { n } y ^ { m } ) = q ^ { n } [ m ] _ { q ^ { 2 } } x ^ { n } y ^ { m - 1 }.$ ; confidence 0.097 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059040.png ; $\frac { F _ { 1 } z } { 1 + G _ { 1 } z } \square _ { + } \frac { F _ { 2 } z } { 1 + G _ { 2 } z } \square _ { + } \frac { F _ { 3 } } { 1 + G _ { 3 } z } \square$ ; confidence 0.097 | + | 221. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059040.png ; $\frac { F _ { 1 } z } { 1 + G _ { 1 } z } \square _ { + } \frac { F _ { 2 } z } { 1 + G _ { 2 } z } \square _ { + } \frac { F _ { 3 } } { 1 + G _ { 3 } z } \square _ { + } \dots$ ; confidence 0.097 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043089.png ; $\Psi ( E _ { i } \bigotimes E _ { j } ) = q ^ { | + | 222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043089.png ; $\Psi ( E _ { i } \bigotimes E _ { j } ) = q ^ { a _ { i j} } E _ { j } \bigotimes E _ { i }$ ; confidence 0.097 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200306.png ; $f ( x ) = \sum _ { n \in Z } \sum _ { m \in Z } c _ { n , m } ( f ) g _ { n , m } ( x )$ ; confidence 0.097 | + | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200306.png ; $f ( x ) = \sum _ { n \in \mathbf{Z} } \sum _ { m \in \mathbf{Z} } c _ { n , m } ( f ) g _ { n , m } ( x ),$ ; confidence 0.097 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200166.png ; $V = \ | + | 224. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200166.png ; $V = \bigoplus _ { \lambda \in \mathfrak { h } ^ { e * } } V ^ { \lambda },$ ; confidence 0.097 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028037.png ; $\pi : | + | 225. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028037.png ; $\pi : \mathcal{FT} \text{op} \rightarrow \mathcal{C} \text{rs}$ ; confidence 0.097 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060134.png ; $\ | + | 226. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060134.png ; $\tilde { \mathfrak{E} } ( \mu )$ ; confidence 0.096 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301202.png ; $\hat { f } ( m ) = ( 2 \pi ) ^ { - 1 } \int _ { - \ | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301202.png ; $\hat { f } ( m ) = ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } f ( u ) e ^ { - i m u } d u$ ; confidence 0.096 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001041.png ; $R _ { S } ^ { * } = \{ x \in Q : | x | _ { v } = 1 , \forall | | + | 228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001041.png ; $R _ { S } ^ { * } = \{ x \in \mathbf{Q} : | x | _ { v } = 1 , \forall | . | _ { v } \notin S \}$ ; confidence 0.096 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059029.png ; $ | + | 229. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059029.png ; $u_{xx}$ ; confidence 0.096 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019017.png ; $\pi$ ; confidence 0.096 | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019017.png ; $\pi /n$ ; confidence 0.096 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029018.png ; $\ | + | 231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029018.png ; $T_{\text{min}} \times T_{\text{prod}}$ ; confidence 0.096 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015036.png ; $d _ { 0 } \in \cap _ { P \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.096 | + | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015036.png ; $d _ { 0 } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.096 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540030.png ; $\hat { | + | 233. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540030.png ; $\hat { p }$ ; confidence 0.096 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110175.png ; $a _ { m - 1 } = b _ { m - 1 } - \frac { 1 } { 2 \iota } \sum _ { 1 \leq j \leq n } \frac { \partial ^ { 2 } b _ { m } } { \partial x _ { j } \partial \xi _ { j } } = h _ { m - 1 } ^ { s }$ ; confidence 0.096 | + | 234. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110175.png ; $a _ { m - 1 } = b _ { m - 1 } - \frac { 1 } { 2 \iota } \sum _ { 1 \leq j \leq n } \frac { \partial ^ { 2 } b _ { m } } { \partial x _ { j } \partial \xi _ { j } } = h _ { m - 1 } ^ { s }.$ ; confidence 0.096 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027039.png ; $z _ { 1 } ^ { ( 1 ) } , \dots , z _ { 1 } ^ { ( | + | 235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027039.png ; $z _ { 1 } ^ { ( 1 ) } , \dots , z _ { 1 } ^ { ( M ) }$ ; confidence 0.096 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023048.png ; $\langle | + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023048.png ; $\langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.095 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011072.png ; $\mu _ { | + | 237. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011072.png ; $\mu _ { n } ( x ) / \mu _ { n }$ ; confidence 0.095 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029067.png ; $f _ { L } \rightarrow | + | 238. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029067.png ; $f _ { L } ^ {\rightarrow} \dashv f _ { L } ^ { \leftarrow }$ ; confidence 0.095 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290197.png ; $[ H _ { M } ^ { | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290197.png ; $[ H _ { \mathfrak{M} } ^ { i } ( R ) ] _ { n }$ ; confidence 0.095 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064039.png ; $H ( | + | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064039.png ; $H ( a ) = ( a _ { 1 + j + k} )_{ j,k = 0}^{\infty}$ ; confidence 0.095 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \ | + | 241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \varphi_{0} , \ldots , \varphi _ { n - 1}$ ; confidence 0.095 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004010.png ; $ | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004010.png ; $I_{0}$ ; confidence 0.095 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004016.png ; $H ^ { m } ( E ) = \operatorname { sup } _ { \delta > 0 } \operatorname { inf } \{ c _ { m } \sum _ { i } | E _ { i } | ^ { m } : \quad \begin{array} { c } { E \subset \cup _ { i } E _ { i } } \\ { | E _ { i } | < \delta \text { for | + | 243. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004016.png ; $\mathcal{H} ^ { m } ( E ) = \operatorname { sup } _ { \delta > 0 } \operatorname { inf } \left\{ c _ { m } \sum _ { i } | E _ { i } | ^ { m } : \quad \begin{array} { c } { E \subset \cup _ { i } E _ { i } } \\ { | E _ { i } | < \delta \text { for all } } \ i \end{array} \right\},$ ; confidence 0.095 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $ | + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $g_{l}$ ; confidence 0.095 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120120/c1201202.png ; $ | + | 245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120120/c1201202.png ; $L _ { t }$ ; confidence 0.095 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007040.png ; $( A _ { i | + | 246. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007040.png ; $( A _ { i , r + j} , A _ { i + 1 , r + j} , \dots , A _ { r, r + j} ; \Delta \mathbf{e} _ { j } ) , j = 1 , \dots , l - r,$ ; confidence 0.095 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g1300101.png ; $E | + | 247. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g1300101.png ; $E / F$ ; confidence 0.095 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { | + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { rm ^ { 2 } \geq 2 } ^ { 2 } \zeta ( m ^ { 2 } ) = 2.49 \dots$ ; confidence 0.094 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110370/c11037053.png ; $ | + | 249. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110370/c11037053.png ; $h _ { 2 }$ ; confidence 0.094 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301804.png ; $L = \{ Fm _ { L } , \operatorname { Mod } _ { L } , \vDash _ { L } , \operatorname { mng } _ { L } , | + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301804.png ; $\mathcal{L} = \langle \operatorname{Fm} _ { \mathcal{L} } , \operatorname { Mod } _ { \mathcal{L} } , \vDash _ { \mathcal{L} } , \operatorname { mng } _ { \mathcal{L} } , \vdash _ { \mathcal{L} } \langle ,$ ; confidence 0.094 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014038.png ; $\tilde { D } _ { n }$ ; confidence 0.094 | + | 251. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014038.png ; $\tilde { \mathbf{D} } _ { n }$ ; confidence 0.094 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027042.png ; $\left\{ \begin{array} { l } { x _ { 1 } ^ { 3 } + \sum _ { i + j + k \leq 2 } a _ { j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \\ { x _ { 2 } ^ { 3 } + \sum _ { i + j + k \leq 2 } b _ { j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \\ { x _ { 3 } ^ { 3 } + \sum _ { i + j + k \leq 2 } c _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \end{array} \right.$ ; confidence 0.094 | + | 252. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027042.png ; $\left\{ \begin{array} { l } { x _ { 1 } ^ { 3 } + \sum _ { i + j + k \leq 2 } a _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \\ { x _ { 2 } ^ { 3 } + \sum _ { i + j + k \leq 2 } b _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \\ { x _ { 3 } ^ { 3 } + \sum _ { i + j + k \leq 2 } c _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \end{array} \right.$ ; confidence 0.094 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013970/a01397010.png ; $\epsilon _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013970/a01397010.png ; $\epsilon _ { n }$ ; confidence 0.093 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040331.png ; $\ | + | 254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040331.png ; $\vdash_{\mathcal{D}} E ( x , x ) \text { and } x , E ( x , y )\vdash_{\mathcal{D}} y$ ; confidence 0.093 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010040.png ; $L _ { \frac { 3 } { 2 } , n } = L _ { \frac { 3 } { 2 } } ^ { c } | + | 255. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010040.png ; $L _ { \frac { 3 } { 2 } , n } = L _ { \frac { 3 } { 2 } , n } ^ { c }$ ; confidence 0.093 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201406.png ; $ | + | 256. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201406.png ; $a _ { n } = N \left( \frac { a _ { n - 1} ^ { 2 } } { a _ { n - 2} } \right)$ ; confidence 0.093 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004087.png ; $ | + | 257. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004087.png ; $a_{ ( n _ { + } - n _ { - } - s ( D _ { L } ) + 1 ) , ( n - s ( D _ { L } ) + 1 ) } \neq 0$ ; confidence 0.093 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280155.png ; $g _ { | + | 258. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280155.png ; $g _ { u } \in A / B$ ; confidence 0.093 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130316.png ; $K _ { | + | 259. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130316.png ; $K _ { x }$ ; confidence 0.093 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018022.png ; $\Delta H \ | + | 260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018022.png ; $\Delta H \vdash_{\mathcal{L}} \phi $ ; confidence 0.093 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301309.png ; $r = ( r _ { 1 } , \dots , r _ { | + | 261. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301309.png ; $\mathbf{r} = ( r _ { 1 } , \dots , r _ { n } ) \in \mathbf{R} ^ { n }$ ; confidence 0.093 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010051.png ; $ | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010051.png ; $L^{\infty}$ ; confidence 0.093 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340116.png ; $\ | + | 263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340116.png ; $\tilde { x } _ { + }$ ; confidence 0.093 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840308.png ; $U = \left( \begin{array} { l l } { U _ { 11 } } & { U _ { 12 } } \\ { U _ { 21 } } & { U _ { 22 } } \end{array} \right) : K \oplus \ | + | 264. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840308.png ; $U = \left( \begin{array} { l l } { U _ { 11 } } & { U _ { 12 } } \\ { U _ { 21 } } & { U _ { 22 } } \end{array} \right) : \mathcal{K} \oplus \mathcal{K} _ { 1 } \rightarrow \mathcal{K} \oplus \mathcal{K} _ { 2 },$ ; confidence 0.092 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200209.png ; $F ( x ) = \frac { x ^ { - | + | 265. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200209.png ; $F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times$ ; confidence 0.092 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004048.png ; $\operatorname { lim } _ { r \rightarrow 0 } \frac { H ^ { m } ( \{ y \in E \cap B ( x , r ) : \ | + | 266. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004048.png ; $\operatorname { lim } _ { r \rightarrow 0 } \frac { \mathcal{H} ^ { m } \left( \left\{ y \in E \cap B ( x , r ) : \begin{array} { l } { \text { dist } ( y - x , V ) >}\\{> s | y - x |}\end{array} \right\} \left) } { r^m } ) = 0.$ ; confidence 0.092 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009042.png ; $\| \theta _ { n } ( h _ { 1 } \ | + | 267. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009042.png ; $\left\| \theta _ { n } ( h _ { 1 } \bigotimes \ldots \bigotimes h _ { n } ) \right\| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } \left| h _ { 1 } \hat{\bigotimes} \ldots \hat{\bigotimes} h _ { n } \right| _ { H ^{ \obigtimes n }}.$ ; confidence 0.092 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040538.png ; $\varphi _ { 0 } ^ { 0 } , \ldots , \varphi _ { n _ { 0 } } ^ { 0 } | + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040538.png ; $\varphi _ { 0 } ^ { 0 } , \ldots , \varphi _ { n _ { 0 } - 1} ^ { 0 } \rhd \psi ^ { 0 } ; \ldots ; \varphi _ { 0 } ^ { m - 1 } , \ldots , \varphi _ { n _ { m - 1 } -1 } ^ { m - 1 } \rhd \psi ^ { m - 1 } \vdash _ { \mathcal{G} }$ ; confidence 0.092 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015046.png ; $d _ { j } ^ { * } \in \cap _ { \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.092 | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015046.png ; $d _ { j } ^ { * } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.092 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300701.png ; $[ - \nabla ^ { 2 } + q ( x ) - k ^ { 2 } ] u = 0 \operatorname { in } R ^ { 3 } , k = const > 0$ ; confidence 0.092 | + | 270. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300701.png ; $[ - \nabla ^ { 2 } + q ( x ) - k ^ { 2 } ] u = 0 \operatorname { in } \mathbf{R} ^ { 3 } , k = \text{const} > 0,$ ; confidence 0.092 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180482.png ; $W ( \ | + | 271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180482.png ; $W ( \tilde { g } ) = R ( \tilde { g } ) \in \mathsf{A} ^ { 2 } \tilde{\mathcal{E}} \otimes \mathsf{A} ^ { 2 } \tilde{\mathcal{E}}$ ; confidence 0.092 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020170.png ; $c E [ | U _ { \tau } ^ { * } | ^ { | + | 272. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020170.png ; $c \mathsf{E} \left[ \left| U _ { \tau } ^ { * } \right| ^ { p } \right] \leq \operatorname { sup } _ { 0 < r < 1 } \int _ { \partial D } | f ( r e ^ { i \vartheta } ) | ^ { p } \frac { d \vartheta } { 2 \pi } \leq C \mathsf{E} \left[ \left| U _ { \tau } ^ { * } \right| ^ { p } \right],$ ; confidence 0.092 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060108.png ; $ | + | 273. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060108.png ; $a_1$ ; confidence 0.091 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008032.png ; $F ( D _ { | + | 274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008032.png ; $F ( D _ { a } ) \subset D _ { a }$ ; confidence 0.091 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008038.png ; $A = [ | + | 275. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008038.png ; $A = [ A_{l} , A _ { 2 } ] \in C ^ { mn \times ( m n + p )}$ ; confidence 0.091 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017071.png ; $ | + | 276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017071.png ; $Z ^ { i } Z ^ { j }$ ; confidence 0.091 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900176.png ; $\| T \| = \ | + | 277. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900176.png ; $\| T \| =\underset{ S \in Z }{ \operatorname { ess } \operatorname { sup }} \| T ( \zeta ) \| . $ ; confidence 0.091 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016027.png ; $R _ { | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016027.png ; $R _ { ab } = 0$ ; confidence 0.091 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160130.png ; $\forall x _ { n | + | 279. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160130.png ; $\forall x _ { n + 1} \vee \{ \psi _ { \mathfrak { A } } ^ { l } \overline { a } a : a \in A \}.$ ; confidence 0.091 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202304.png ; $E ^ { | + | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202304.png ; $\mathcal{E} ^ { a } ( L )$ ; confidence 0.091 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024049.png ; $\ | + | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024049.png ; $\widehat { CH \square } ^ { 1 } ( \operatorname { Spec } ( \mathbf{Z} ) ) = \mathbf{R}$ ; confidence 0.091 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b1202805.png ; $\prod _ { j = 1 } ^ { \infty } \frac { | | + | 282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b1202805.png ; $\prod _ { j = 1 } ^ { \infty } \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad \sum ( 1 - | a _ { j } | ) < \infty .$ ; confidence 0.091 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005013.png ; $\{ e _ { | + | 283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005013.png ; $\{ e _ { i_1 } , \ldots , e _ { i_k } , i , 1 \leq i _ { 1 } < \ldots < i _ { k } \leq n \}$ ; confidence 0.091 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002046.png ; $P _ { \operatorname { min } } \leq P ( A _ { 1 } \ | + | 284. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002046.png ; $P _ { \operatorname { min } } \leq \mathsf{P} ( A _ { 1 } \bigcup \dots \bigcup A _ { n } ) \leq P _ { \text{max} }$ ; confidence 0.090 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015092.png ; $d ^ { * } \in \cap _ { P \in P } L _ { 1 } ( \Omega , A , P ) \cap L _ { 2 } ( \Omega , A , P _ { 0 } )$ ; confidence 0.090 | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015092.png ; $d ^ { * } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 1 } ( \Omega , \mathcal{A} , \mathsf{P} ) \cap L _ { 2 } ( \Omega ,\mathcal{A} , \mathsf{P}_ { 0 } )$ ; confidence 0.090 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004056.png ; $ | + | 286. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004056.png ; $ f _ { i + 1 / 2 } ^ { \text{waf} } = \frac { 1 } { \Delta x } \int _ { - \frac { 1 } { 2 } \Delta x } ^ { \frac { 1 } { 2 } \Delta x } f \left[ u _ { i + 1 / 2 } \left( x , \frac { 1 } { 2 } \Delta t \right) ] d x, $ ; confidence 0.090 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322030.png ; $B _ { | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322030.png ; $B _ { k }$ ; confidence 0.090 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035037.png ; $= X _ { N - 1 } + \mu _ { N } Q _ { 2 } ( X _ { N } | + | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035037.png ; $\left\{ \begin{array} { c c c c }{ \hat{ \theta }_{N} =\hat{\theta } }\\{X_{N}= X _ { N - 1 } + \mu _ { N } Q _ { 2 } ( X _ { N-1} ,y(N), u(N)), }\end{array} \right. $ ; confidence 0.090 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001050.png ; $\sum _ { k } \sum _ { l } \overline { c } _ { k } | + | 289. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001050.png ; $\sum _ { k } \sum _ { l } \overline { c } _ { k } c_{ l} S ( \theta ( f _ { k } ) - f _ { l } ) \geq 0$ ; confidence 0.090 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110200/b11020015.png ; $ | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110200/b11020015.png ; $\tau ^ { * }$ ; confidence 0.090 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101107.png ; $a _ { | + | 291. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101107.png ; $a _ { r }$ ; confidence 0.090 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009076.png ; $N _ { k , | + | 292. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009076.png ; $N _ { k , r }$ ; confidence 0.090 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011026.png ; $( | + | 293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011026.png ; $( a ^ { w } ) ^ { * } = \operatorname { Op } ( J ( \overline { ( J ^ { 1 / 2 } a ) } ) = \operatorname { Op } ( J ^ { 1 / 2 } \overline { a } ) = ( \overline { a } ) ^ { w },$ ; confidence 0.090 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040083.png ; $w | + | 294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040083.png ; $w C ^ { + }$ ; confidence 0.089 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002046.png ; $( X \ | + | 295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002046.png ; $\operatorname { map }_{ *}( X \bigwedge Z , Y ) \approx \operatorname { map }_{ *} ( X , \operatorname { map } _ { * } ( Z , Y ) ),$ ; confidence 0.089 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090335.png ; $ | + | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090335.png ; $\mathfrak{U} ( \mathfrak{g} )$ ; confidence 0.089 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011019.png ; $\alpha y = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { i } & { 0 } \\ { 0 } & { - i } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { 0 } & { \ | + | 297. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011019.png ; $\alpha y = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { i } & { 0 } \\ { 0 } & { - i } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { \mathbf{0} } & { \sigma_ y } \\ { \sigma_ y } & { \mathbf{0} } \end{array} \right) , \alpha _ { z } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \\ { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { \mathbf{0} } & { \sigma _ { z } } \\ { \sigma _ { z } } & { \mathbf{0} } \end{array} \right),$ ; confidence 0.089 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011045.png ; $\mathfrak { S } _ { | + | 298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011045.png ; $\mathfrak { S } _ { u } = x _ {1 } ^ {m }$ ; confidence 0.089 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left | + | 299. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left\{ \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } \left( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } \right), }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } \left( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } \right). }\end{array} \right.$ ; confidence 0.089 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008058.png ; $E [ W ] _ { gated } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) } { 2 ( 1 - \rho ) } , E [ W ] _ { lim } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) + P \lambda \delta ^ { 2 } } { 2 ( 1 - \rho - P \lambda r ) }$ ; confidence 0.089 | + | 300. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008058.png ; $\mathsf{E} [ W ] _ { \text{gated} } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) } { 2 ( 1 - \rho ) } , \mathsf{E} [ W ] _ { \text{lim} } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) + P \lambda \delta ^ { 2 } } { 2 ( 1 - \rho - P \lambda r ) },$ ; confidence 0.089 |
Revision as of 18:01, 25 April 2020
List
1. ; $( 2 \pi ) ^ { - 2 n } \int _ { \mathbf{R} ^ { 2 n } } e ^ { i q \mathcal{X} } e ^ { i p \mathcal{D} } \hat { \sigma } ( p , q ) d p d q,$ ; confidence 0.122
2. ; $\Psi _ { V , W }$ ; confidence 0.122
3. ; $( \nabla ^ { 2 } + k ^ { 2_0 } + k ^ { 2_0 }v ( x ) ) u ( x , y , k _ { 0 } ) = - \delta ( x - y ) \text { in } \mathbf{R} ^ { 3 },$ ; confidence 0.122
4. ; $= ( ( F ( . ) , h ( . , x ) ) _ { \mathcal{H} } , ( h ( \text{..} , y ) , h ( \text{..} , x ) ) _ { mathca{H} } ) _ { H } =$ ; confidence 0.122
5. ; $( H , ( . | . ) )$ ; confidence 0.122
6. ; $\mathfrak{h} _ { R } ^ { * }$ ; confidence 0.122
7. ; $r _ { i } s _ { j } \in C _ { ( i + j ) \operatorname { mod } 2}$ ; confidence 0.122
8. ; $\langle T [ \phi ] , [ \psi ] \rangle _ { L _ { \text{C} } ^ { p } ( G ) , L _ { \text{C} } ^ { p^{\prime} } ( G ) } \neq 0.$ ; confidence 0.122
9. ; $\| G \| _ { \infty } = \operatorname { sup } _ { \| x \| _ { 2 } \leq 1 } \| y \| _ { 2 }.$ ; confidence 0.122
10. ; $d \hat { \Omega } _ { n } = P _ { + } ^ { n / N } \left( \frac { d w } { w } \right)$ ; confidence 0.122
11. ; $c_L$ ; confidence 0.121
12. ; $\left\{ \begin{array} { l } { \Delta v = 0 } & {\text{in} \mathbf{C}^{n} \ \overline{D}, }\\ { v = \phi} & { \text { on } \partial D, } \\ { | v | \leq \frac { c } { | z | ^ { 2 n - 2 } }. } \end{array} \right.$ ; confidence 0.121
13. ; $r_1 , \ldots , r_n$ ; confidence 0.121
14. ; $ c _ { 1 } / a _ { 1 } \geq \ldots \geq c _ { n } / a _ { n }$ ; confidence 0.121
15. ; $| i \rangle$ ; confidence 0.121
16. ; $\mathcal{K} =\mathcal{ I} _ { 1 } \lhd \ldots \lhd \mathcal{ I}_ { r } \lhd \mathcal{T} ( S )$ ; confidence 0.121
17. ; $\| p _ {n } ^ { ( \alpha - 1 , \beta - 1 ) } \| _ { \mu _ { 0 } } = o( n )$ ; confidence 0.121
18. ; $u_2$ ; confidence 0.121
19. ; $* : \mathcal{G} \text{l} _ { Q } ( d ) \times \mathcal{A} _ { Q } ( d ) \rightarrow \mathcal{A} _ { Q } ( d )$ ; confidence 0.120
20. ; $\tilde { a } ( e ^ { i \theta } ) = a ( e ^ { - i \theta } )$ ; confidence 0.120
21. ; $\mathbf{C} ^ { n } \subset \mathbf{P} ^ { n }$ ; confidence 0.120
22. ; $p _ { i } ( z ) z ^ { \lambda } = \sum _ { n = 0 } ^ { N } a ^ { n _ { i } } z ^ { n } ( \frac { \partial } { \partial z } ) ^ { n } z ^ { \lambda }.$ ; confidence 0.120
23. ; $b ( . , . )$ ; confidence 0.120
24. ; $l w \equiv 0$ ; confidence 0.120
25. ; $= \operatorname { lim } _ { n \rightarrow 0 } \left( \sum _ { j_n = 1 } ^ { J _ { n } } K ( x , y _ { j _n } ) c _ { j _n } , \sum _ { m_n = 1 } ^ { J _ { n } } K ( x , y _ { m_n } ) c _ { m_n } \right) _ { 1 } =$ ; confidence 0.120
26. ; $\Updownarrow a x - x c = 0 \text { and } b x - x d = 0,$ ; confidence 0.120
27. ; $e _ { 1 } , \dots , e _ { k }$ ; confidence 0.120
28. ; $\mathcal{H} _ { uc } ^ { \infty } ( B _ { E } ) \equiv$ ; confidence 0.120
29. ; $t ^ { * } : H ^ { n } ( S ^ { n } ) \rightarrow H ^ { n } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
30. ; $\lfloor n / 2 \rfloor$ ; confidence 0.119
31. ; $\left( \begin{array} { c } { 0 } \\ { G _ { i + 1 } } \end{array} \right) = \left\{ G _ { i } + Z _ { i } G _ { i } \frac { J g _ { i } ^ { * } g _ { i } } { g _ { j } J g _ { i } ^ { * } } \right\} \Theta _ { i }$ ; confidence 0.119
32. ; $UM$ ; confidence 0.119
33. ; $\hat { \tau }_1 = \nabla \tau , \hat { \tau } _ { n } = \sum _ { i + j = n } \phi ( \hat { \tau } _ { i } \bigcup \hat { \tau } _ { j } ),$ ; confidence 0.119
34. ; $\operatorname { Hom}_{K_\infty}( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , \mathcal{A} ( \Gamma \backslash G ( \mathbf{R} ) ) \bigotimes \mathcal{M} _ { \text{C} } ) \overset{\sim}{\rightarrow}$ ; confidence 0.119
35. ; $\mathbf{Me} ^ { * \text{L} _{\mathfrak { N }}}_{\mathcal{S}_P }$ ; confidence 0.119
36. ; $\Psi ( x ^ { n } \bigotimes x ^ { m } ) = q ^ { n m } x ^ { m } \bigotimes x ^ { n }$ ; confidence 0.119
37. ; $\mathcal{H} = \mathcal{H} ^ { \text{im} } = \mathcal{H} ^ { \text{out} }$ ; confidence 0.119
38. ; $\hat { G }_{\text{inn}}$ ; confidence 0.119
39. ; $x ( t + ) = x ( t ) \text { for all } \ 0 \leq t < 1 , x ( t - ) = \operatorname { lim } _ { s \uparrow t } x ( s ) \text { exists for all } 0 < t \leq 1.$ ; confidence 0.118
40. ; $E ( x _ { 0 } , y _ { 0 } ) , \ldots , E ( x _ { n } - 1 , y _ { n } - 1 ) \vdash_ { D }$ ; confidence 0.118
41. ; $( \mathcal{A} ^ { * } f ) _ { n } ( X ) = \sum _ { i = 1 } ^ { n } f _ { n - 1 } ( x _ { 1 } , \dots , x _ { i - 1} , x _ { i + 1} , \dots , x _ { n } ).$ ; confidence 0.118
42. ; $P _ { R } ^ { \# } ( n ) = \frac { 1 } { n } q ^ { n } + O \left( \frac { 1 } { n } q ^ { n / 2 } \right) \text { as } n \rightarrow \infty,$ ; confidence 0.118
43. ; $F ( \mathcal{H} ) = \mathbf{C} \oplus \oplus _ { n = 1 } ^ { \infty } \mathcal{H} ^ { \otimes n }$ ; confidence 0.118
44. ; $L = L _ { \overline{0} } \oplus L _ { overline{1} }$ ; confidence 0.118
45. ; $\| h_n \|$ ; confidence 0.118
46. ; $q _ { \Lambda }$ ; confidence 0.118
47. ; $\sum _ { \mathbf{k} } c_{ \mathbf{k} } e ^ { \mathbf{kx} }$ ; confidence 0.118
48. ; $O ( e ^ { - \varepsilon | \operatorname { Re } z | - H _ { L } ( \operatorname { Re } z )} )$ ; confidence 0.118
49. ; $u_{ -} \sharp$ ; confidence 0.118
50. ; $\operatorname { St } _ { G } ( n ) = \cap _ { | u | = n } \operatorname { St } _ { G } ( u )$ ; confidence 0.118
51. ; $R _ { n } \in \mathcal{B} ( E _ { n } , E _ { n - 1 } )$ ; confidence 0.118
52. ; $\left\{ \begin{array}{l}{ ( T - z I ) x = K J \varphi _ { - }, }\\{ \varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x, }\end{array} \right.$ ; confidence 0.118
53. ; $H _ { 0 } ^ { ( m ) } = 1 , H _ { k } ^ { ( m ) } = \operatorname { det } ( c_{ m + i + j} ) _ { i , j = 0 } ^ { k - 1 }$ ; confidence 0.117
54. ; $\sigma _ { T } ( A , \mathcal{X} ) = \left\{ ( a _ {ii} ^ { ( 1 ) } , \ldots , a _ { ii } ^ { ( n ) } ) : 1 \leq i \leq \operatorname { dim } \mathcal{X} \right\}.$ ; confidence 0.117
55. ; $\int _ { 0 } ^ { \infty } \frac { f * u _ { t } * v _ { t } } { t } d t = c _ { u , v } f,$ ; confidence 0.117
56. ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ) ) = \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} L ^ { 2 } ( \mathbf{R} ) \hat { \bigotimes } ^ { n } \simeq \bigoplus _ { n = 0 } ^ { \infty } \sqrt { n !} \widehat{ L ^ { 2 } ( \mathbf{R} ^ { n } ) }.$ ; confidence 0.117
57. ; $\operatorname { Mod } ^ { * S} \mathcal{D}= \operatorname { Mod } ^ { * \text{L}} \mathcal{ D }$ ; confidence 0.117
58. ; $E \subseteq \operatorname { Epi } ( \mathfrak { A } )$ ; confidence 0.117
59. ; $\| x \circ y \| \leq \| x \| \| y \|$ ; confidence 0.117
60. ; $G _ { p q } ^ { mn }$ ; confidence 0.117
61. ; $k = q ^ { d - 1 }$ ; confidence 0.117
62. ; $I _ { q } \neq 0$ ; confidence 0.117
63. ; $f ( z ) = e ^ { - ( G ( z , a ) + i \tilde{G} ( z , a ) ) }$ ; confidence 0.117
64. ; $S _ { M } ( s ) = \sum _ { m \in M } a _ { m } e ^ { - \lambda_{m} s },$ ; confidence 0.116
65. ; $u _ { n } \in \mathfrak{F}$ ; confidence 0.116
66. ; $\langle \mathbf{A} / \tilde{\Omega}_{\mathcal{D}} F , F / \tilde{\Omega}_{\mathcal{D}} \rangle$ ; confidence 0.116
67. ; $N ^ { 1 / p }$ ; confidence 0.116
68. ; $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ ; confidence 0.116
69. ; $w ^ { q } = w _ { 1 } ^ { q _ { 1 } } \ldots w _ { n } ^ { q _ { n } }$ ; confidence 0.116
70. ; $p_{ m , 1}$ ; confidence 0.116
71. ; $\nabla ( a \Phi ) = d a \bigotimes \Phi + a \nabla \Phi \in \bigotimes \square ^ { q + 1 } \mathcal{E}$ ; confidence 0.116
72. ; $\left\{ \begin{array} { l } { \operatorname{max} \ \ \sum _ { j = i } ^ { N } \beta _ { j } v _ { j } } \\ { \text { subject to } \ \ \sum _ { j = 1 } ^ { n } a _ { i j } v _ { j } \leq \mu _ { i } } \\ { v _ { j } \geq 0. } \end{array} \right.$ ; confidence 0.116
73. ; $\xi _ { 1 } ^ { i } , \ldots , \xi _ { 2 ^ { i - 1 } ( n + 1 ) } ^ { i } $ ; confidence 0.116
74. ; $d_{s}$ ; confidence 0.116
75. ; $\lambda = \left. \begin{array} { l l l } { \bullet } & { \bullet } & { \bullet } & { \bullet } \\ { \square } & { \bullet } & { \bullet } & { \square } \\ { \square } & { \square } & { \bullet } & { \square } \end{array} \right.$ ; confidence 0.116
76. ; $Q _ { 2 n + 1 } ( z ) = \frac { - 1 } { H _ { 2 n + 1 } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c_{ - 2 n - 1} } & { \cdots } & { c_{ - 1} } & { z ^ { - n - 1 } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c_{ - 1} } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n } } & { z ^ { n } e n d } \end{array} \right|,$ ; confidence 0.116
77. ; $\forall x \forall v _ { 1 } \ldots \forall v _ { n } \exists y \forall v ( v \in y \leftrightarrow ( v \in x \wedge \varphi ) ).$ ; confidence 0.115
78. ; $a _ { n } = \sum _ { 0 } ^ { n } b _ { n - j} u _ { j } , n \geq 0,$ ; confidence 0.115
79. ; $\mathfrak { g } _ { \alpha }$ ; confidence 0.115
80. ; $=\frac { m } { 1 + a ^ { 2 } } \left\{ \int _ { 0 } ^ { z } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s ^ { 1 - \frac { m } { 1 + a i } } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { s } \frac { p _ { 0 } ( t ) - 1 } { t } d t } d s + + \frac { 1 + a ^ { 2 } } { m } z ^ { \frac { m } { 1 + a i } } e ^ { \frac { m } { 1 + a ^ { 2 } } \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t} \right\}$ ; confidence 0.115
81. ; $u = \left\{ \begin{array} { c c } { \overline { u } } & { \text { for } \frac { i T } { k } \leq t < ( i + a ) \frac { T } { k }; } \\ { } & { 0 \leq i \leq k - 1, } \\ { 0 } & { \text { for } ( i + a ) \frac { T } { k } \leq t \leq ( i + 1 ) \frac { T } { k }, } \\ { } & { \text { and for } \ t = T ; 0 \leq i \leq k - 1. } \end{array} \right.$ ; confidence 0.115
82. ; $\operatorname{p.dim} _ { \Lambda } T$ ; confidence 0.114
83. ; $u _ { t } + a ( t ) u _ { x } + b ( t ) u ^ { p } u _ { x } - u _ { xxt } = 0$ ; confidence 0.114
84. ; $\Sigma _ { n = 1 } ^ { \infty } \| T _ { x _ { n } } \| _ { X } ^ { r } < \infty$ ; confidence 0.114
85. ; $\overset{\rightharpoonup}{ P _ { i } P _ { \text{l}_1 } } , \overset{\rightharpoonup}{ P _ { \text{l}_1 } P _ { \text{l}_2 } } , \dots , \overset{\rightharpoonup}{ P _ { \text{l}_m } P _ { \text{l}_{m+1} } },$ ; confidence 0.114
86. ; $\| \Delta _ { h _ { i } } ^ { 2 } f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } \| _ { L _ { p } ( \Omega _ { 2 |h _ { i }| } | ) } \leq M _ { i } | h _ { i } |,$ ; confidence 0.114
87. ; $f \in \operatorname { Car } | _ { \text{loc} } ( I \times G )$ ; confidence 0.114
88. ; $= \{ \langle b _ { 0 } , \dots , b _ { i - 1} , a , b _ { i + 1} , \dots , b _ { n - 1 } \rangle : a \in U \ \text{and}$ ; confidence 0.114
89. ; $\overline { A } _ { 1 } , \dots , \overline { A } _ { n }$ ; confidence 0.114
90. ; $p_3$ ; confidence 0.114
91. ; $x _ { 11 } ( . ) , \ldots , x _ { p n } ( . )$ ; confidence 0.113
92. ; $= \sum _ { j _ { n } , m _ { n } } ^ { J _ { n } } K ( y _ { m _ { n } } , y _ { j _ { n } } ) c _ { j _ { n } } \overline { c_{m _ { n }}} =$ ; confidence 0.113
93. ; $x \rightarrow \underline { f } \square__{\alpha} ( x )$ ; confidence 0.113
94. ; $\operatorname { ch } V ( \lambda ) = \frac { \sum _ { w \in W } ( - 1 ) ^ { l ( w ) } e ^ { w ( \lambda + \rho ) - \rho } } { \prod _ { \alpha \in \Delta ^ { - } ( 1 - e ^ { \alpha } ) ^ { d i m g _ { \alpha } } } }.$ ; confidence 0.113
95. ; $B _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { s + 1 } } R _ { l + 1 } ^ { ( s + 1 ) } ( z ) \lambda _ { l j } ^ { ( s + 1 ) },$ ; confidence 0.113
96. ; $\operatorname { SL} _ { n } ( K )$ ; confidence 0.113
97. ; $\exists v _ { i } \varphi ( v _ { 0 } , \dots , v _ { n - 1} )$ ; confidence 0.113
98. ; $\h _ { z }$ ; confidence 0.113
99. ; $\{ M ( \alpha ) \text { pr } _ { \text { dom } \alpha } - \text { pr_{ codom } \alpha} \}_{ \alpha} \quad \text { for } n = 0,$ ; confidence 0.112
100. ; $q_{ R} ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } r _ { i , j } x _ { i } x _ { j },$ ; confidence 0.112
101. ; $\mathcal{X} / J$ ; confidence 0.112
102. ; $\operatorname { FMod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.112
103. ; $Y ( L ( - 1 ) v , x ) = ( d / d x ) Y ( v , x )$ ; confidence 0.112
104. ; $\sum _ { i , j = 1 } ^ { m } a _ { i , j } ( x ) \xi _ { i } \xi _ { j } \geq \delta | \xi | ^ { 2 }$ ; confidence 0.112
105. ; $e _ { n } ( H _ { d } ^ { k } ) \leq c _ { k , d , \delta} .n ^ { - k + \delta } , \forall n,$ ; confidence 0.112
106. ; $\psi ( y + 2 \pi p ) = e ^ { 2 \pi i \eta . p } \psi ( y ) \text { for a.e.y } \in \mathbf{R} ^ { N }$ ; confidence 0.112
107. ; $\alpha _ { 1 } , \dots , a _ { n } \in G$ ; confidence 0.112
108. ; $( \text{LD} ) v ^ { * } = \left\{ \begin{array} { c l } { \operatorname { max } } & { q } \\ { s.t. } & { q \leq c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ), } \\ { } & { \forall k \in P, } \\ { 0 \leq } & { c ^ { T } \tilde{x} ^ { ( k ) } + u _ { 1 } ^ { T } A _ { 1 } \tilde{x} ^ { ( k ) } , \forall k \in R, } \\ { u _ { 1 } \geq 0. } \end{array} \right.$ ; confidence 0.111
109. ; $x = \tilde { x }$ ; confidence 0.111
110. ; $F _ { m n } = \frac { \chi _ { m } ^ { 2 } / m } { \chi _ { n } ^ { 2 } / n },$ ; confidence 0.111
111. ; $q _ { m } ( x )$ ; confidence 0.111
112. ; $( \cap _ { n = 0 } ^ { \infty } W _ { n } ) \cap E \neq \emptyset$ ; confidence 0.111
113. ; $( d H ) ^ { c _ { n } d ^ { n^{2} } }$ ; confidence 0.111
114. ; $\operatorname { id} \bigotimes r _ { W } = \Phi _ { V , 1 , W } \circ ( l _ { V } \bigotimes \text { id } ).$ ; confidence 0.111
115. ; $\Lambda _ { n } - h ^ { \prime } T _ { n } \rightarrow - h ^ { \prime } \Gamma h / 2$ ; confidence 0.111
116. ; $\mathcal{H} ^ { n}$ ; confidence 0.111
117. ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { r _ { m } } ; \quad q _ { i } ( t ) = \left\{ \frac { ( t - t _ { i } ) ^ { r _ { i } } } { P ( t ) } \right\} _ { ( r _ { i } - 1 ; t _ { i } ) };$ ; confidence 0.111
118. ; $d \sigma _ { r }$ ; confidence 0.110
119. ; $C^{ 2 , \lambda }$ ; confidence 0.110
120. ; $\mathsf{E} | W ^ { a } ( t ) | \sim \left\{ \begin{array} { l l } { \sqrt { \frac { 8 t } { \pi } } , } & { d = 1, } \\ { \frac { 2 \pi t } { \operatorname { log } t } , } & { d = 2, } \\ { \kappa _ { a } t , } & { d \geq 3, } \end{array} \right.$ ; confidence 0.110
121. ; $\mathbf{P} ^ { n }$ ; confidence 0.110
122. ; $\mathbf{b}$ ; confidence 0.110
123. ; $\omega _ { WP } = \Sigma _ { j } d \text{l} _ { j } \bigwedge d \tau _ { j },$ ; confidence 0.110
124. ; $\langle . , . \rangle : A \otimes H \rightarrow k $ ; confidence 0.110
125. ; $g _ { k , 1} ( z ) = g _ { k } ( z );$ ; confidence 0.110
126. ; $T R F$ ; confidence 0.109
127. ; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) = H ^ { 0 } \oplus H ^ { 1 } \overset{\sim}{\rightarrow} \mathbf{Q} ^ { k } \oplus \mathbf{Q} ^ { h }.$ ; confidence 0.109
128. ; $J ( z ) = \sum _ { n } \operatorname { Tr } ( e | _{V _ { n }} ) q ^ { n }$ ; confidence 0.109
129. ; $u \in \mathfrak { F }$ ; confidence 0.109
130. ; $t ( M ; x , y ) = \sum _ { S \subseteq E } ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( S )}.$ ; confidence 0.109
131. ; $\operatorname { max} \Pi_ { \tilde{\mathbf{c}}^{ \text{T} \mathbf{x} } ( \tilde { G } )$ ; confidence 0.109
132. ; $Y ^ { e } = X ^ { d }$ ; confidence 0.109
133. ; $\mathfrak{b}$ ; confidence 0.109
134. ; $3 ^ { C _ { m} ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.109
135. ; $L_{ \gamma , 1}$ ; confidence 0.109
136. ; $\mathbf{Z} ^ { + } [ x _ { 1 } , \ldots , x _ { n } ] ^ { \mathcal{S} _ { n } }$ ; confidence 0.109
137. ; $F _ { L _ { D } } ( a , x ) = a ^ { - \text { Tait } ( L _ { D } ) } \Lambda _ { D } ( a , x )$ ; confidence 0.108
138. ; $ \Xi = ( \hat { x } , \hat { \xi } )$ ; confidence 0.108
139. ; $w _ { 2 ^ { n } - 2 ^ { i } } ( \rho ) = c _ { n , i }$ ; confidence 0.108
140. ; $y _ { i t } = \alpha y _ { i , t - 1 } + \sum _ { j = 1 } ^ { N } k _ { j t } e _ { i j } x _ { i t };$ ; confidence 0.108
141. ; $L _ { x ^ \alpha} ( x ; t ) = \partial _ { x ^ \alpha} ( g ( x ; t ) * f ( x ) ),$ ; confidence 0.108
142. ; $T _ { B \otimes A}$ ; confidence 0.107
143. ; $S ( \phi ) = \sum _ { | \alpha | = 0 } ^ { k - 1 } S _ { \alpha i } ^ { a } ( \phi ) \omega _ { \alpha } ^ { a } \bigwedge \left( \frac { \partial } { \partial x _ { i } } \lrcorner ( d x _ { 1 } \bigwedge \ldots \bigwedge d x _ { n } ) \right).$ ; confidence 0.107
144. ; $\mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 0,1\dots.$ ; confidence 0.107
145. ; $\| a \square b ^ { * } \| \leq \| a \| . \| b \|$ ; confidence 0.107
146. ; $+ \frac { ( - 1 ) ^ { k \text{l} } } { ( k - 1 ) ! \text{l}! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times K ( [ L ( X _ { \sigma 1 } , \ldots , X _ { \sigma \text{l} } ) , X _ { \sigma ( \text{l} + 1 ) } ] , X _ { \sigma ( \text{l} + 2 ) } , \ldots ) +$ ; confidence 0.107
147. ; $Q _ { D } ( v _ { 1 } v _ { 2 } , z ) = \sum _ { f \in \text{lbl} ( D ) }$ ; confidence 0.107
148. ; $a _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) ^ { 2 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } , \quad b _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 }$ ; confidence 0.107
149. ; $c _ { i k }$ ; confidence 0.107
150. ; $\tilde { \nabla } ^ { q } R ( \tilde { g } )$ ; confidence 0.107
151. ; $\Gamma \vdash_{\mathcal{D}} \varphi$ ; confidence 0.107
152. ; $w _ { 1 }$ ; confidence 0.107
153. ; $\mathfrak{H} \oplus \mathfrak{G}$ ; confidence 0.107
154. ; $ \Xi = \mathbf{R} ^ { N } \times [ 0 , \infty [$ ; confidence 0.106
155. ; $\mathsf{Q}$ ; confidence 0.106
156. ; $\mathfrak{F}$ ; confidence 0.106
157. ; $R _ { a b } \equiv R _ { a c b } ^ { c }$ ; confidence 0.106
158. ; $Q _ { s } ( R ) = \{ q \in Q_{\text{l} } ( R ) : q B \subseteq R \ \text { for some } \ 0 \neq B \lhd R \}$ ; confidence 0.106
159. ; $H ( q , d ) = \cup _ { q - d + 1 \leq | j | \leq q } ( X ^ { j _ { 1 } } \times \ldots \times X ^ { j _ { d } } ),$ ; confidence 0.106
160. ; $w _ { t }$ ; confidence 0.106
161. ; $p _ { i + 1 } = a _ { i - 1 } p _ { i } + p _ { i - 1 } , i = 1,2, \dots .$ ; confidence 0.106
162. ; $z ^ { n }$ ; confidence 0.106
163. ; $\mathbf{C} ^ { k }$ ; confidence 0.105
164. ; $c ^ { a } ( x )$ ; confidence 0.105
165. ; $P _ { 1 } , \ldots , P _ { m } \in \mathbf{Z} [ x _ { 1 } , \ldots , x _ { n } ]$ ; confidence 0.105
166. ; $\sigma ( \Omega ( A ) ) \subseteq \cup _ { i , j = 1 \atop j \neq j } ^ { n } K _ { i,j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A ).$ ; confidence 0.105
167. ; $\mathfrak{g} = \sum _ { \alpha \in \Phi ^ { - } } ^{ \bigoplus} \mathfrak{g} _ { \alpha } \mathfrak{h} \bigoplus \sum_ { \gamma \in \Phi ^ { + } } ^{\oplus} \mathfrak{g} _ { \gamma }$ ; confidence 0.105
168. ; $| f ( V ) | \leq c _ { 1 } | V | ^ { \gamma } \quad \text { and } \quad | \sum _ { j = 1 } ^ { n } \frac { \partial f } { \partial v _ { j } } \tilde { \phi }_{j} | > c _ { 2 } | V | ^ { \gamma + m },$ ; confidence 0.105
169. ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.105
170. ; $\mathcal{C} ^ { m }$ ; confidence 0.104
171. ; $G = \operatorname {SL} _ { n } ( K )$ ; confidence 0.104
172. ; $Z _ { G }$ ; confidence 0.104
173. ; $\mathbf{Z} _ { l } ( m ) _ { X } = ( \mu _ { l ^ { n } , X } ^ { \otimes^m } ) _ { n \in \mathbf{N} }$ ; confidence 0.104
174. ; $\| f \| = ( f , f ) ^ { 1 / 2 } _ { H }$ ; confidence 0.104
175. ; $T = \{ ( t _ { 1 } , \dots , t _ { m } ) : t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } } , t_{j} \text{non} \square \text{critical} \}$ ; confidence 0.104
176. ; $- \{ d y ^ { 1 } \bigotimes d y ^ { 1 } + \ldots + d y ^ { q } \bigotimes d y ^ { q } \}$ ; confidence 0.104
177. ; $( x _ { + } , u _ { - } \sharp w ) \equiv \tilde{x} _ { + }$ ; confidence 0.104
178. ; $r _ { \mathcal{D} } : H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) _ { \mathcal{Z} } \rightarrow H _ { \mathcal{D} } ^ { i } ( X _ { / \mathcal{R} } , \mathcal{R} ( j ) )$ ; confidence 0.103
179. ; $L _ { \gamma , n _ { 1 }}$ ; confidence 0.103
180. ; $\theta _ { \tau _ { n } } = \theta + h \tau _ { n } ^ { - 1 / 2 }$ ; confidence 0.103
181. ; $| \widehat { \varphi u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
182. ; $a \leftrightarrowa b ^ { \pm 1 }_ { n }$ ; confidence 0.103
183. ; $\hat{c}_{k} ^ { 2 } \geq 0$ ; confidence 0.103
184. ; $\operatorname { ind } _ { g } ( P ) = ( - 1 ) ^ { n } \operatorname { Ch } ( [ a | _ { T ^ { * } M ^ { g } } ] ) \mathcal{T} ( M ^ { g } ) L ( N , g ) [ T ^ { * } M ^ { g } ].$ ; confidence 0.103
185. ; $C _ { d } ^ { k }$ ; confidence 0.103
186. ; $\times G _ { p + 2 , q } ^ { q - m , p - n + 2 } \left( \left| \begin{array} { c } { \mu + i \tau , \mu - i \tau , - ( \alpha _ { p } ^ { n + 1 } ) , - ( \alpha _ { n } ) } \\ { - ( \beta _ { q } ^ { m + 1 } ) , - ( \beta _ { m } ) } \end{array} \right. \right);$ ; confidence 0.103
187. ; $\operatorname{HF} _ { * } ^ { \text { symp } } ( M , \text { id } ) \cong H ^ { * } ( M )$ ; confidence 0.103
188. ; $\varphi : X \rightarrow \Lambda ^ { r } \bigoplus\bigoplus _ { i = 1 } ^ { s } \Lambda / ( f _ { i } ( T ) ^ { l _i} ) \bigoplus \bigoplus _ { j = 1 } ^ { t } \Lambda / ( \pi ^ { m _ { j } } )$ ; confidence 0.103
189. ; $g _ { k , p } ( z )$ ; confidence 0.102
190. ; $\ldots - ( i _ { r - 1} - i _ { r } ) . \mu _ { i _ { r } },$ ; confidence 0.102
191. ; $\overline{x} \in \tilde { \mathbf{Q} } _ { p } ^ { n }$ ; confidence 0.102
192. ; $O ( | V | | E | )$ ; confidence 0.101
193. ; $( k _ { 1 } , \dots , k _ { m } ) \in ( \mathbf{N} \cup \{ 0 \} ) ^ { m }$ ; confidence 0.101
194. ; $\mathcal{E} ^ { a } ( L ) = \sum _ { | \alpha | = 0 } ^ { k } ( - 1 ) ^ { | \alpha | } \gamma ^ { - 1 } D ^ { \alpha } \left( \gamma \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \right).$ ; confidence 0.101
195. ; $ \operatorname { Bel } _ { X } = \operatorname { Bel } ^ { \downarrow X - R _ { T | X - T - R} } \bigoplus \operatorname { Bel } ^ { \downarrow X - T _ { R | X - T - R} } \bigoplus \operatorname { Bel } ^ { \downarrow X - T - R _ { X } }.$ ; confidence 0.101
196. ; $\mathcal{E} ( L ) = \mathcal{E} ^ { a } ( L ) \omega ^ { a } \bigotimes \Delta,$ ; confidence 0.101
197. ; $\operatorname { dim } \tilde { H } ^ { 1 } = \operatorname { dim } C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} ) + \operatorname { dim } C ^ { 0 } ( \Gamma , k + 2 , \overline{\mathbf{v}} )$ ; confidence 0.101
198. ; $v_0$ ; confidence 0.101
199. ; $d = \{ d_{ k } \} ^ { \infty } _ { k = - \infty}$ ; confidence 0.101
200. ; $T x _ { j } = t _ { j } x _ { j } \text { for } x _ { j } \in X _ { j } \quad ( j = 1 , \dots , n ).$ ; confidence 0.101
201. ; $r _ { \mathcal{D} } \bigoplus z _ { \mathcal{D} } : R \bigoplus ( N S ( X ) \bigotimes \mathbf{Q} ) \rightarrow H _ { \mathcal{D} } ^ { 3 } ( X , \mathbf{R} ( 2 ) )$ ; confidence 0.101
202. ; $L _ { a } ^ { 1 * } \cong B$ ; confidence 0.100
203. ; $ \mathbf{SP\mathsf{Alg}} _{\models}( \mathcal{L} ) = \mathbf{SP\mathsf{Alg}} _ { \vdash } ( \mathcal{L} )$ ; confidence 0.100
204. ; $\operatorname { cos } \alpha = \operatorname { sup } \left\{ \begin{array} { r l } {} &{ u \in U \bigcap V ^ { \perp }, } \\ { \langle u , v \rangle : } & { v \in V \cap U ^ { \perp }, } \\{} & { \| u \| , \| v \| \leq 1 } \end{array} \right\}.$ ; confidence 0.100
205. ; $\omega ^ { a } = d y ^ { s } - y _ { e _ { i } } ^ { s } d x _ { i }$ ; confidence 0.100
206. ; $\mathbf{\mathsf{RCA}}_{ \omega}$ ; confidence 0.099
207. ; $\left\{ \begin{array} { l } { p_{ t } ( a , t ) + p _ { a } ( a , t ) + \mu ( a ) p ( a , t ) = 0, } \\ { p ( 0 , t ) = \int _ { 0 } ^ { + \infty } \beta ( a ) p ( a , t ) d a, } \\ { p ( a , 0 ) = p _ { 0 } ( a ) \geq 0, } \end{array} \right.$ ; confidence 0.099
208. ; $= g ^ { - 1 } \{ 1,4 \} \nabla C ( g ) - g ^ { - 1 } \{ 1,3 ; 2,5 \} ( A ( g ) \bigotimes W ( g ) ) \subset \subset \bigotimes \square ^ { 2 } \mathcal{E},$ ; confidence 0.099
209. ; $d ^ { \prime }$ ; confidence 0.099
210. ; $\mathcal{A} _ { n } = \sigma ( X _ { 0 } , \dots , X _ { n } )$ ; confidence 0.099
211. ; $\hat { c } _ { l } ^ { 1 } = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q } < 0$ ; confidence 0.098
212. ; $d _ { 1 } ( e _ { 1 } ^ { i } ) = g _ { i } e _ { 0 } - e _ { 0 }$ ; confidence 0.098
213. ; $\tilde{v} ( \tilde { u } _ { 1 } )$ ; confidence 0.098
214. ; $\overline { u }_1$ ; confidence 0.098
215. ; $\Gamma \vdash_{\mathcal{ L}} \phi$ ; confidence 0.098
216. ; $H = \tilde{I} \tilde { H } \square ^{*}$ ; confidence 0.098
217. ; $\operatorname{varprojlim}_{k}( X _ { 1 } \vee \ldots \vee X _ { k } ) = \operatorname{Cl} _ { i = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } ).$ ; confidence 0.098
218. ; $( a \bigotimes c ) ( b \bigotimes d ) = a . \Psi _ { C , B } ( c \bigotimes b ) . d$ ; confidence 0.098
219. ; $c _ { n } = q ^ { - n - n ^ { 2 } / 2 } , n = 0 , \pm 1 , \pm 2 , \ldots ,$ ; confidence 0.098
220. ; $\partial _ { q , y } ( x ^ { n } y ^ { m } ) = q ^ { n } [ m ] _ { q ^ { 2 } } x ^ { n } y ^ { m - 1 }.$ ; confidence 0.097
221. ; $\frac { F _ { 1 } z } { 1 + G _ { 1 } z } \square _ { + } \frac { F _ { 2 } z } { 1 + G _ { 2 } z } \square _ { + } \frac { F _ { 3 } } { 1 + G _ { 3 } z } \square _ { + } \dots$ ; confidence 0.097
222. ; $\Psi ( E _ { i } \bigotimes E _ { j } ) = q ^ { a _ { i j} } E _ { j } \bigotimes E _ { i }$ ; confidence 0.097
223. ; $f ( x ) = \sum _ { n \in \mathbf{Z} } \sum _ { m \in \mathbf{Z} } c _ { n , m } ( f ) g _ { n , m } ( x ),$ ; confidence 0.097
224. ; $V = \bigoplus _ { \lambda \in \mathfrak { h } ^ { e * } } V ^ { \lambda },$ ; confidence 0.097
225. ; $\pi : \mathcal{FT} \text{op} \rightarrow \mathcal{C} \text{rs}$ ; confidence 0.097
226. ; $\tilde { \mathfrak{E} } ( \mu )$ ; confidence 0.096
227. ; $\hat { f } ( m ) = ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } f ( u ) e ^ { - i m u } d u$ ; confidence 0.096
228. ; $R _ { S } ^ { * } = \{ x \in \mathbf{Q} : | x | _ { v } = 1 , \forall | . | _ { v } \notin S \}$ ; confidence 0.096
229. ; $u_{xx}$ ; confidence 0.096
230. ; $\pi /n$ ; confidence 0.096
231. ; $T_{\text{min}} \times T_{\text{prod}}$ ; confidence 0.096
232. ; $d _ { 0 } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.096
233. ; $\hat { p }$ ; confidence 0.096
234. ; $a _ { m - 1 } = b _ { m - 1 } - \frac { 1 } { 2 \iota } \sum _ { 1 \leq j \leq n } \frac { \partial ^ { 2 } b _ { m } } { \partial x _ { j } \partial \xi _ { j } } = h _ { m - 1 } ^ { s }.$ ; confidence 0.096
235. ; $z _ { 1 } ^ { ( 1 ) } , \dots , z _ { 1 } ^ { ( M ) }$ ; confidence 0.096
236. ; $\langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.095
237. ; $\mu _ { n } ( x ) / \mu _ { n }$ ; confidence 0.095
238. ; $f _ { L } ^ {\rightarrow} \dashv f _ { L } ^ { \leftarrow }$ ; confidence 0.095
239. ; $[ H _ { \mathfrak{M} } ^ { i } ( R ) ] _ { n }$ ; confidence 0.095
240. ; $H ( a ) = ( a _ { 1 + j + k} )_{ j,k = 0}^{\infty}$ ; confidence 0.095
241. ; $\lambda \varphi_{0} , \ldots , \varphi _ { n - 1}$ ; confidence 0.095
242. ; $I_{0}$ ; confidence 0.095
243. ; $\mathcal{H} ^ { m } ( E ) = \operatorname { sup } _ { \delta > 0 } \operatorname { inf } \left\{ c _ { m } \sum _ { i } | E _ { i } | ^ { m } : \quad \begin{array} { c } { E \subset \cup _ { i } E _ { i } } \\ { | E _ { i } | < \delta \text { for all } } \ i \end{array} \right\},$ ; confidence 0.095
244. ; $g_{l}$ ; confidence 0.095
245. ; $L _ { t }$ ; confidence 0.095
246. ; $( A _ { i , r + j} , A _ { i + 1 , r + j} , \dots , A _ { r, r + j} ; \Delta \mathbf{e} _ { j } ) , j = 1 , \dots , l - r,$ ; confidence 0.095
247. ; $E / F$ ; confidence 0.095
248. ; $A _ { 2 } = \prod _ { rm ^ { 2 } \geq 2 } ^ { 2 } \zeta ( m ^ { 2 } ) = 2.49 \dots$ ; confidence 0.094
249. ; $h _ { 2 }$ ; confidence 0.094
250. ; $\mathcal{L} = \langle \operatorname{Fm} _ { \mathcal{L} } , \operatorname { Mod } _ { \mathcal{L} } , \vDash _ { \mathcal{L} } , \operatorname { mng } _ { \mathcal{L} } , \vdash _ { \mathcal{L} } \langle ,$ ; confidence 0.094
251. ; $\tilde { \mathbf{D} } _ { n }$ ; confidence 0.094
252. ; $\left\{ \begin{array} { l } { x _ { 1 } ^ { 3 } + \sum _ { i + j + k \leq 2 } a _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \\ { x _ { 2 } ^ { 3 } + \sum _ { i + j + k \leq 2 } b _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \\ { x _ { 3 } ^ { 3 } + \sum _ { i + j + k \leq 2 } c _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0, } \end{array} \right.$ ; confidence 0.094
253. ; $\epsilon _ { n }$ ; confidence 0.093
254. ; $\vdash_{\mathcal{D}} E ( x , x ) \text { and } x , E ( x , y )\vdash_{\mathcal{D}} y$ ; confidence 0.093
255. ; $L _ { \frac { 3 } { 2 } , n } = L _ { \frac { 3 } { 2 } , n } ^ { c }$ ; confidence 0.093
256. ; $a _ { n } = N \left( \frac { a _ { n - 1} ^ { 2 } } { a _ { n - 2} } \right)$ ; confidence 0.093
257. ; $a_{ ( n _ { + } - n _ { - } - s ( D _ { L } ) + 1 ) , ( n - s ( D _ { L } ) + 1 ) } \neq 0$ ; confidence 0.093
258. ; $g _ { u } \in A / B$ ; confidence 0.093
259. ; $K _ { x }$ ; confidence 0.093
260. ; $\Delta H \vdash_{\mathcal{L}} \phi $ ; confidence 0.093
261. ; $\mathbf{r} = ( r _ { 1 } , \dots , r _ { n } ) \in \mathbf{R} ^ { n }$ ; confidence 0.093
262. ; $L^{\infty}$ ; confidence 0.093
263. ; $\tilde { x } _ { + }$ ; confidence 0.093
264. ; $U = \left( \begin{array} { l l } { U _ { 11 } } & { U _ { 12 } } \\ { U _ { 21 } } & { U _ { 22 } } \end{array} \right) : \mathcal{K} \oplus \mathcal{K} _ { 1 } \rightarrow \mathcal{K} \oplus \mathcal{K} _ { 2 },$ ; confidence 0.092
265. ; $F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times$ ; confidence 0.092
266. ; $\operatorname { lim } _ { r \rightarrow 0 } \frac { \mathcal{H} ^ { m } \left( \left\{ y \in E \cap B ( x , r ) : \begin{array} { l } { \text { dist } ( y - x , V ) >}\\{> s | y - x |}\end{array} \right\} \left) } { r^m } ) = 0.$ ; confidence 0.092
267. ; $\left\| \theta _ { n } ( h _ { 1 } \bigotimes \ldots \bigotimes h _ { n } ) \right\| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } \left| h _ { 1 } \hat{\bigotimes} \ldots \hat{\bigotimes} h _ { n } \right| _ { H ^{ \obigtimes n }}.$ ; confidence 0.092
268. ; $\varphi _ { 0 } ^ { 0 } , \ldots , \varphi _ { n _ { 0 } - 1} ^ { 0 } \rhd \psi ^ { 0 } ; \ldots ; \varphi _ { 0 } ^ { m - 1 } , \ldots , \varphi _ { n _ { m - 1 } -1 } ^ { m - 1 } \rhd \psi ^ { m - 1 } \vdash _ { \mathcal{G} }$ ; confidence 0.092
269. ; $d _ { j } ^ { * } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.092
270. ; $[ - \nabla ^ { 2 } + q ( x ) - k ^ { 2 } ] u = 0 \operatorname { in } \mathbf{R} ^ { 3 } , k = \text{const} > 0,$ ; confidence 0.092
271. ; $W ( \tilde { g } ) = R ( \tilde { g } ) \in \mathsf{A} ^ { 2 } \tilde{\mathcal{E}} \otimes \mathsf{A} ^ { 2 } \tilde{\mathcal{E}}$ ; confidence 0.092
272. ; $c \mathsf{E} \left[ \left| U _ { \tau } ^ { * } \right| ^ { p } \right] \leq \operatorname { sup } _ { 0 < r < 1 } \int _ { \partial D } | f ( r e ^ { i \vartheta } ) | ^ { p } \frac { d \vartheta } { 2 \pi } \leq C \mathsf{E} \left[ \left| U _ { \tau } ^ { * } \right| ^ { p } \right],$ ; confidence 0.092
273. ; $a_1$ ; confidence 0.091
274. ; $F ( D _ { a } ) \subset D _ { a }$ ; confidence 0.091
275. ; $A = [ A_{l} , A _ { 2 } ] \in C ^ { mn \times ( m n + p )}$ ; confidence 0.091
276. ; $Z ^ { i } Z ^ { j }$ ; confidence 0.091
277. ; $\| T \| =\underset{ S \in Z }{ \operatorname { ess } \operatorname { sup }} \| T ( \zeta ) \| . $ ; confidence 0.091
278. ; $R _ { ab } = 0$ ; confidence 0.091
279. ; $\forall x _ { n + 1} \vee \{ \psi _ { \mathfrak { A } } ^ { l } \overline { a } a : a \in A \}.$ ; confidence 0.091
280. ; $\mathcal{E} ^ { a } ( L )$ ; confidence 0.091
281. ; $\widehat { CH \square } ^ { 1 } ( \operatorname { Spec } ( \mathbf{Z} ) ) = \mathbf{R}$ ; confidence 0.091
282. ; $\prod _ { j = 1 } ^ { \infty } \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad \sum ( 1 - | a _ { j } | ) < \infty .$ ; confidence 0.091
283. ; $\{ e _ { i_1 } , \ldots , e _ { i_k } , i , 1 \leq i _ { 1 } < \ldots < i _ { k } \leq n \}$ ; confidence 0.091
284. ; $P _ { \operatorname { min } } \leq \mathsf{P} ( A _ { 1 } \bigcup \dots \bigcup A _ { n } ) \leq P _ { \text{max} }$ ; confidence 0.090
285. ; $d ^ { * } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 1 } ( \Omega , \mathcal{A} , \mathsf{P} ) \cap L _ { 2 } ( \Omega ,\mathcal{A} , \mathsf{P}_ { 0 } )$ ; confidence 0.090
286. ; $ f _ { i + 1 / 2 } ^ { \text{waf} } = \frac { 1 } { \Delta x } \int _ { - \frac { 1 } { 2 } \Delta x } ^ { \frac { 1 } { 2 } \Delta x } f \left[ u _ { i + 1 / 2 } \left( x , \frac { 1 } { 2 } \Delta t \right) ] d x, $ ; confidence 0.090
287. ; $B _ { k }$ ; confidence 0.090
288. ; $\left\{ \begin{array} { c c c c }{ \hat{ \theta }_{N} =\hat{\theta } }\\{X_{N}= X _ { N - 1 } + \mu _ { N } Q _ { 2 } ( X _ { N-1} ,y(N), u(N)), }\end{array} \right. $ ; confidence 0.090
289. ; $\sum _ { k } \sum _ { l } \overline { c } _ { k } c_{ l} S ( \theta ( f _ { k } ) - f _ { l } ) \geq 0$ ; confidence 0.090
290. ; $\tau ^ { * }$ ; confidence 0.090
291. ; $a _ { r }$ ; confidence 0.090
292. ; $N _ { k , r }$ ; confidence 0.090
293. ; $( a ^ { w } ) ^ { * } = \operatorname { Op } ( J ( \overline { ( J ^ { 1 / 2 } a ) } ) = \operatorname { Op } ( J ^ { 1 / 2 } \overline { a } ) = ( \overline { a } ) ^ { w },$ ; confidence 0.090
294. ; $w C ^ { + }$ ; confidence 0.089
295. ; $\operatorname { map }_{ *}( X \bigwedge Z , Y ) \approx \operatorname { map }_{ *} ( X , \operatorname { map } _ { * } ( Z , Y ) ),$ ; confidence 0.089
296. ; $\mathfrak{U} ( \mathfrak{g} )$ ; confidence 0.089
297. ; $\alpha y = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { i } & { 0 } \\ { 0 } & { - i } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { \mathbf{0} } & { \sigma_ y } \\ { \sigma_ y } & { \mathbf{0} } \end{array} \right) , \alpha _ { z } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \\ { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { \mathbf{0} } & { \sigma _ { z } } \\ { \sigma _ { z } } & { \mathbf{0} } \end{array} \right),$ ; confidence 0.089
298. ; $\mathfrak { S } _ { u } = x _ {1 } ^ {m }$ ; confidence 0.089
299. ; $\left\{ \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } \left( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } \right), }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } \left( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } \right). }\end{array} \right.$ ; confidence 0.089
300. ; $\mathsf{E} [ W ] _ { \text{gated} } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) } { 2 ( 1 - \rho ) } , \mathsf{E} [ W ] _ { \text{lim} } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) + P \lambda \delta ^ { 2 } } { 2 ( 1 - \rho - P \lambda r ) },$ ; confidence 0.089
Maximilian Janisch/latexlist/latex/NoNroff/75. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/75&oldid=45542