Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/68"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 68 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022095.png ; $H _ { D } ^ { l } ( X , A ( j ) )$ ; confidence 0.312
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022095.png ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) )$ ; confidence 0.312
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b0170103.png ; $A _ { i k }$ ; confidence 0.312
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b0170103.png ; $A _ { k }$ ; confidence 0.312
  
3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021015.png ; $\alpha 3 = 4 , \alpha _ { i } + 3 = \alpha _ { i }$ ; confidence 0.312
+
3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021015.png ; $a_3 = 4 , a _ { i + 3} = \alpha _ { i }.$ ; confidence 0.312
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066064.png ; $L _ { 2 } ( R ^ { x } )$ ; confidence 0.312
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066064.png ; $L _ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.312
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180179.png ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { Y + 4 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.312
+
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180179.png ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { r + 4 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.312
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150134.png ; $E _ { P _ { R } ^ { m } } ( d ) = E _ { P _ { R } ^ { m } } ( d ^ { * } )$ ; confidence 0.312
+
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150134.png ; $\mathsf{E} _ { \text{P} _ { n } ^ { m } } ( d ) = \mathsf{E} _ { \text{P} _ { n } ^ { m } } ( d ^ { * } )$ ; confidence 0.312
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ; confidence 0.312
+
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times \dots$ ; confidence 0.312
  
 
8. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016053.png ; $p _ { k }$ ; confidence 0.312
 
8. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016053.png ; $p _ { k }$ ; confidence 0.312
Line 20: Line 20:
 
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012076.png ; $I q , q I \neq 0$ ; confidence 0.312
 
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012076.png ; $I q , q I \neq 0$ ; confidence 0.312
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023078.png ; $P$ ; confidence 0.312
+
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023078.png ; $\tilde{I}$ ; confidence 0.312
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620157.png ; $y \sim a \operatorname { cos } \int _ { c } ^ { x } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t + b \operatorname { sin } \int ^ { x _ { c } } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t$ ; confidence 0.312
+
12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620157.png ; $y \sim a \operatorname { cos } \int _ { c } ^ { x } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t + b \operatorname { sin } \int ^ { x _ { c } } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t.$ ; confidence 0.312
  
13. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520477.png ; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } )$ ; confidence 0.311
+
13. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520477.png ; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } ),$ ; confidence 0.311
  
14. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022072.png ; $P _ { K } = P _ { W - 1 }$ ; confidence 0.311
+
14. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022072.png ; $P _ { K } = P _ { m - 1 }$ ; confidence 0.311
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006077.png ; $R _ { j } \rightarrow IR _ { j }$ ; confidence 0.311
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006077.png ; $R _ { j } \rightarrow \text{l}R _ { j }$ ; confidence 0.311
  
16. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007012.png ; $m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d ^ { \prime } } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) )$ ; confidence 0.311
+
16. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007012.png ; $m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) ),$ ; confidence 0.311
  
17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $\mathcal{O}$ ; confidence 0.311
  
18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010050.png ; $| e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.311
+
18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010050.png ; $| e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x.$ ; confidence 0.311
  
19. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002074.png ; $1 , \dots , \alpha _ { q } \in F ( S ^ { d } )$ ; confidence 0.311
+
19. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002074.png ; $\alpha _ 1 , \dots , \alpha _ { q } \in \mathcal{F} ( S ^ { d } )$ ; confidence 0.311
  
20. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062028.png ; $f \equiv$ ; confidence 0.311
+
20. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062028.png ; $f \not\equiv \text{const}$ ; confidence 0.311
  
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011032.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i _ { i } } n _ { j } = 0 \text { for all } j \in N$ ; confidence 0.311
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011032.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { n _ { i } n _ { j }} = 0 \text { for all } j \in \mathbf{N},$ ; confidence 0.311
  
 
22. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003024.png ; $H _ { j }$ ; confidence 0.311
 
22. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003024.png ; $H _ { j }$ ; confidence 0.311
  
23. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010020.png ; $| w ^ { n } ( t ) |$ ; confidence 0.311
+
23. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010020.png ; $| W^ { a } ( t ) |$ ; confidence 0.311
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302103.png ; $\alpha \in R ^ { m }$ ; confidence 0.311
+
24. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302103.png ; $\alpha \in \mathbf{R} ^ { m }$ ; confidence 0.311
  
 
25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028060.png ; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310
 
25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028060.png ; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310
  
26. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100132.png ; $K ( \vec { G } )$ ; confidence 0.310
+
26. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100132.png ; $K ( \tilde{ G } )$ ; confidence 0.310
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027074.png ; $\rho _ { i j }$ ; confidence 0.310
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027074.png ; $\rho _ { a }$ ; confidence 0.310
  
28. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120140.png ; $\sum _ { N } \hat { T } _ { N }$ ; confidence 0.310
+
28. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120140.png ; $\sum _ { n } \hat { \tau } _ { n }$ ; confidence 0.310
  
29. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006028.png ; $Bel _ { E _ { 1 } , E _ { 2 } } = Bel _ { E _ { 1 } } \oplus Bel _ { E _ { 2 } }$ ; confidence 0.310
+
29. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006028.png ; $\operatorname{Bel} _ { E _ { 1 } , E _ { 2 } } = \operatorname{Bel} _ { E _ { 1 } } \oplus \operatorname{Bel} _ { E _ { 2 } }$ ; confidence 0.310
  
30. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080101.png ; $\partial d S / \partial T _ { N } = d \omega _ { N }$ ; confidence 0.310
+
30. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080101.png ; $\partial d S / \partial T _ { n } = d \omega _ { n }$ ; confidence 0.310
  
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200132.png ; $6 - i$ ; confidence 0.310
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200132.png ; $G_{ - i}$ ; confidence 0.310
  
32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025054.png ; $S$ ; confidence 0.310
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025054.png ; $s-$ ; confidence 0.310
  
33. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020159.png ; $\alpha ^ { n } < b$ ; confidence 0.310
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020159.png ; $a ^ { n } \leq b$ ; confidence 0.310
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001042.png ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V$ ; confidence 0.310
+
34. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001042.png ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V.$ ; confidence 0.310
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c1300608.png ; $J \in V$ ; confidence 0.310
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c1300608.png ; $J \in W$ ; confidence 0.310
  
 
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309
 
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309
Line 74: Line 74:
 
37. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920309.png ; $U _ { y } \not \ni x$ ; confidence 0.309
 
37. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920309.png ; $U _ { y } \not \ni x$ ; confidence 0.309
  
38. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004062.png ; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { N } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309
+
38. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004062.png ; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { n } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140140.png ; $A ^ { n }$ ; confidence 0.309
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140140.png ; $A ^ { m }$ ; confidence 0.309
  
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016093.png ; $CO C$ ; confidence 0.309
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016093.png ; $\text{co} \mathcal{C}$ ; confidence 0.309
  
41. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780047.png ; $H _ { \gamma }$ ; confidence 0.309
+
41. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780047.png ; $\mathcal{H} _ { n }$ ; confidence 0.309
  
42. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006042.png ; $k ^ { n } ( B _ { N } ( h / k ) - B _ { N } )$ ; confidence 0.309
+
42. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006042.png ; $k ^ { n } ( B _ { n } ( h / k ) - B _ { n } )$ ; confidence 0.309
  
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200147.png ; $j \neq r | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200147.png ; $\operatorname{min}_{j \neq r} | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309
  
44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8$ ; confidence 0.309
+
44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8, \dots ,$ ; confidence 0.309
  
45. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260127.png ; $F ( \mu _ { N } )$ ; confidence 0.309
+
45. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260127.png ; $F ( \mu _ { n } )$ ; confidence 0.309
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $A$ ; confidence 0.309
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $\hat{A}$ ; confidence 0.309
  
47. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005047.png ; $d ^ { d }$ ; confidence 0.308
+
47. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005047.png ; $d ^ { k }$ ; confidence 0.308
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b11004042.png ; $X$ ; confidence 0.308
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b11004042.png ; $\mathbf{x}$ ; confidence 0.308
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023027.png ; $\{ f _ { 1 } \} _ { 1 = 1 } ^ { \infty }$ ; confidence 0.308
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023027.png ; $\{ f _ { \text{l} } \} _ { \text{l} = 1 } ^ { \infty }$ ; confidence 0.308
  
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011021.png ; $\sigma _ { S _ { i } } w$ ; confidence 0.308
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011021.png ; $\sigma _ { s _ { i } w} $ ; confidence 0.308
  
 
51. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005013.png ; $2 ^ { m - 1 } - 2 ^ { m / 2 - 1 + r }$ ; confidence 0.308
 
51. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005013.png ; $2 ^ { m - 1 } - 2 ^ { m / 2 - 1 + r }$ ; confidence 0.308
  
52. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008077.png ; $E [ T ( x ) ] ps = \frac { x } { 1 - \rho }$ ; confidence 0.308
+
52. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008077.png ; $\mathsf{E} [ T ( x ) ] _{\text{PS}} = \frac { x } { 1 - \rho }.$ ; confidence 0.308
  
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059056.png ; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots$ ; confidence 0.308
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059056.png ; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots .$ ; confidence 0.308
  
 
54. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840183.png ; $d _ { 1 } , \dots , d _ { r }$ ; confidence 0.308
 
54. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840183.png ; $d _ { 1 } , \dots , d _ { r }$ ; confidence 0.308
  
55. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009047.png ; $H ^ { \otimes x }$ ; confidence 0.308
+
55. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009047.png ; $H ^ { \hat{\otimes} n }$ ; confidence 0.308
  
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002010.png ; $I _ { 1 } ( P , Q )$ ; confidence 0.308
+
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002010.png ; $\mathbf{I} _ { 1 } ( P , Q )$ ; confidence 0.308
  
57. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003091.png ; $q \in \varrho$ ; confidence 0.307
+
57. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003091.png ; $q \in Q$ ; confidence 0.307
  
58. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040047.png ; $C$ ; confidence 0.307
+
58. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040047.png ; $\varrho $ ; confidence 0.307
  
59. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006012.png ; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { k } - 1 } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { \alpha _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { 1 } } \\ { 1 } \end{array} \right)$ ; confidence 0.307
+
59. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006012.png ; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { a _ { k - 1} } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { a _ { 1 } } \\ { 1 } \end{array} \right),$ ; confidence 0.307
  
60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014015.png ; $Tr$ ; confidence 0.307
+
60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014015.png ; $\operatorname { Tr}$ ; confidence 0.307
  
 
61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110235.png ; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307
 
61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110235.png ; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307
  
62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220220.png ; $H _ { B } : \operatorname { Ext } _ { M M _ { O } } ^ { 1 } ( Q ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220220.png ; $H _ { \operatorname { B} } : \operatorname { Ext } _ { \mathcal{MM} _ { \mathbf{Q} } } ^ { 1 } ( \mathbf{Q} ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $q$ ; confidence 0.307
  
 
64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007067.png ; $e > d$ ; confidence 0.307
 
64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007067.png ; $e > d$ ; confidence 0.307
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180363.png ; $= g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \otimes \ldots \otimes W ( g ) ) \in \in C ^ { \infty } ( M )$ ; confidence 0.307
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180363.png ; $= g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) ) \in \in C ^ { \infty } ( M )$ ; confidence 0.307
  
66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004014.png ; $s _ { \lambda } = \frac { a _ { \lambda } + \delta } { a _ { \delta } }$ ; confidence 0.307
+
66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004014.png ; $s _ { \lambda } = \frac { a _ { \lambda + \delta} } { a _ { \delta } },$ ; confidence 0.307
  
67. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030104.png ; $r _ { i } = y _ { i } - \vec { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307
+
67. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030104.png ; $r _ { i } = y _ { i } - \overset{\rightharpoonup} { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307
  
68. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010045.png ; $\varphi ( x ) = \varphi ( a x )$ ; confidence 0.307
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010045.png ; $\square_{a} \varphi ( x ) = \varphi ( a x )$ ; confidence 0.307
  
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180119.png ; $E * x = \operatorname { Hom } _ { R } ( E * , R )$ ; confidence 0.307
+
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180119.png ; $\mathcal{E}_{ * *} = \operatorname { Hom } _ { \mathcal{R} } ( \mathcal{E}_ * , \mathcal{R} )$ ; confidence 0.307
  
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011087.png ; $U \# \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \}$ ; confidence 0.306
+
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011087.png ; $U \# \Omega = U \bigcap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \},$ ; confidence 0.306
  
71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017071.png ; $\delta _ { A } * _ { B } * ( X ) \in I$ ; confidence 0.306
+
71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017071.png ; $\delta _ { A ^ * , B^ *} ( X ) \in I$ ; confidence 0.306
  
72. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030103.png ; $s ( r _ { 1 } , \dots , r _ { r } )$ ; confidence 0.306
+
72. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030103.png ; $s ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.306
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501018.png ; $g _ { r } : B _ { r } \rightarrow B _ { r } + 1$ ; confidence 0.306
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501018.png ; $g _ { r } : B _ { r } \rightarrow B _ { r + 1}$ ; confidence 0.306
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150137.png ; $\pi _ { G \times G _ { X } } S$ ; confidence 0.306
+
74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150137.png ; $\pi _ { G \times_{ G _ { X }} } S$ ; confidence 0.306
  
 
75. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008099.png ; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306
 
75. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008099.png ; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306
Line 152: Line 152:
 
76. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063016.png ; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306
 
76. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063016.png ; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306
  
77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024042.png ; $9 + 5$ ; confidence 0.305
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024042.png ; $\mathfrak{g}/\mathfrak{h}$ ; confidence 0.305
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017021.png ; $c 0 \geq 0$ ; confidence 0.305
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017021.png ; $c_0 \geq 0$ ; confidence 0.305
  
79. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011042.png ; $\forall x _ { 1 } , \ldots , x _ { y }$ ; confidence 0.305
+
79. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011042.png ; $\forall x _ { 1 } , \ldots , x _ { n }$ ; confidence 0.305
  
 
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png ; $L _ { 3 } ^ { \prime }$ ; confidence 0.305
 
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png ; $L _ { 3 } ^ { \prime }$ ; confidence 0.305
Line 162: Line 162:
 
81. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001061.png ; $a ^ { n }$ ; confidence 0.305
 
81. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001061.png ; $a ^ { n }$ ; confidence 0.305
  
82. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049014.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } } { \nu _ { 1 } } \frac { X _ { 1 } } { X _ { 2 } }$ ; confidence 0.305
+
82. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049014.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } X _ { 1 }} { \nu _ { 1 } X _ { 2 } } ,$ ; confidence 0.305
  
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110146.png ; $( a \circ b ) ( x , \xi ) = \sum _ { | \alpha | < N } \frac { 1 } { \alpha ! } D _ { \xi } ^ { \alpha } a \partial _ { x } ^ { \alpha } b + t _ { N } ( a , b )$ ; confidence 0.305
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110146.png ; $( a \circ b ) ( x , \xi ) = \sum _ { | \alpha | < N } \frac { 1 } { \alpha ! } D _ { \xi } ^ { \alpha } a \partial _ { x } ^ { \alpha } b + t _ { N } ( a , b ),$ ; confidence 0.305
  
 
84. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004047.png ; $e _ { \lambda _ { i } }$ ; confidence 0.305
 
84. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004047.png ; $e _ { \lambda _ { i } }$ ; confidence 0.305
Line 170: Line 170:
 
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018033.png ; $\langle a , x \rangle = 0$ ; confidence 0.305
 
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018033.png ; $\langle a , x \rangle = 0$ ; confidence 0.305
  
86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007039.png ; $4 , j \in k , i = 1 , \dots , r$ ; confidence 0.305
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007039.png ; $A _{i, j} \in k , i = 1 , \dots , r.$ ; confidence 0.305
  
87. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013053.png ; $A ^ { + }$ ; confidence 0.305
+
87. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013053.png ; $\mathbf{A} ^ { + }$ ; confidence 0.305
  
88. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004094.png ; $r _ { i } > 0$ ; confidence 0.304
+
88. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004094.png ; $r _ { i } \searrow 0$ ; confidence 0.304
  
89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007040.png ; $\Delta g = g \otimes g _ { s } \epsilon g = 1 , S _ { g } = g ^ { - 1 }$ ; confidence 0.304
+
89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007040.png ; $\Delta g = g \bigotimes g\epsilon g = 1, S _ { g } = g ^ { - 1 },$ ; confidence 0.304
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a0132905.png ; $8$ ; confidence 0.304
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a0132905.png ; $\&$ ; confidence 0.304
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027059.png ; $a _ { x } = b _ { x } + \sum _ { 0 } ^ { x } a _ { x } - j p _ { j } , n = 0,1$ ; confidence 0.304
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027059.png ; $a _ { n } = b _ { n } + \sum _ { 0 } ^ { n } a _ { - j} p _ { j } , n = 0,1, \dots ,$ ; confidence 0.304
  
 
92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
 
92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202408.png ; $H _ { x } ^ { S } ( ; G )$ ; confidence 0.304
+
93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202408.png ; $H _ { * } ^ { S } (\ . \ ; G )$ ; confidence 0.304
  
 
94. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490101.png ; $a _ { 1 } , \dots , a _ { s }$ ; confidence 0.304
 
94. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490101.png ; $a _ { 1 } , \dots , a _ { s }$ ; confidence 0.304
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005039.png ; $S _ { \theta _ { 0 } } = \{ z \in C : \operatorname { larg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005039.png ; $S _ { \theta _ { 0 } } = \{ z \in \mathbf{C} : |\operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304
  
 
96. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042230/f0422309.png ; $M ( t )$ ; confidence 0.304
 
96. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042230/f0422309.png ; $M ( t )$ ; confidence 0.304
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305904.png ; $c _ { N } = \int _ { 0 } ^ { \infty } t ^ { x } d \psi ( t ) , n = 0 , \pm 1 , \pm 2$ ; confidence 0.304
+
97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305904.png ; $c _ { n } = \int _ { 0 } ^ { \infty } t ^ { n } d \psi ( t ) , n = 0 , \pm 1 , \pm 2, \dots .$ ; confidence 0.304
  
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035022.png ; $\hat { \theta } _ { N } = \operatorname { arg } \operatorname { min } _ { \theta \in D _ { M } } \sum _ { M } ^ { N _ { t } = 1 } 1 ( y ( t ) - f ( Z ^ { t - 1 } , t , \theta ) )$ ; confidence 0.304
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035022.png ; $\hat { \theta } _ { N } = \operatorname { arg } \operatorname { min } _ { \theta \in D _ { \mathcal{M} } } \sum _ { \mathcal{M} } ^ { N _ { t } = 1 } \text{l} \left( y ( t ) - f ( Z ^ { t - 1 } , t , \theta ) \right),$ ; confidence 0.304
  
 
99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024080.png ; $t _ { 0 } \in J _ { x }$ ; confidence 0.304
 
99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024080.png ; $t _ { 0 } \in J _ { x }$ ; confidence 0.304
  
100. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004025.png ; $K _ { 9 } , 9$ ; confidence 0.304
+
100. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004025.png ; $K _ { 9 , 9}$ ; confidence 0.304
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006081.png ; $U _ { d }$ ; confidence 0.304
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006081.png ; $\cup _ { d }$ ; confidence 0.304
  
102. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006013.png ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c ( \frac { m n } { d ^ { 2 } } )$ ; confidence 0.304
+
102. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006013.png ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c \left( \frac { m n } { d ^ { 2 } } )\right$ ; confidence 0.304
  
103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011061.png ; $\Delta _ { \sigma } = \{ x \in R ^ { n } : \sigma _ { j } x _ { j } > 0 \}$ ; confidence 0.304
+
103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011061.png ; $\Delta _ { \sigma } = \{ x \in \mathbf{R} ^ { n } : \sigma _ { j } x _ { j } > 0 \}$ ; confidence 0.304
  
104. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017077.png ; $C _ { p }$ ; confidence 0.304
+
104. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017077.png ; $\mathcal{C} _ { p }$ ; confidence 0.304
  
 
105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010026.png ; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303
 
105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010026.png ; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303
  
106. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022029.png ; $L y = ( \frac { d } { d x } + r _ { x } ) \dots ( \frac { d } { d x } + r _ { 1 } ) y$ ; confidence 0.303
+
106. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022029.png ; $L y = \left( \frac { d } { d x } + r _ { x } \right) \dots \left( \frac { d } { d x } + r _ { 1 } \right) y.$ ; confidence 0.303
  
107. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011025.png ; $( Op ( a ) ) ^ { * } = Op ( J \overline { a } )$ ; confidence 0.303
+
107. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011025.png ; $( \operatorname{Op} ( a ) ) ^ { * } = \operatorname{Op} ( J \overline { a } )$ ; confidence 0.303
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014012.png ; $l _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014012.png ; $d _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303
  
109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090242.png ; $s [ x ( C )$ ; confidence 0.303
+
109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090242.png ; $\mathfrak{sl}_n ( \mathbf{C} )$ ; confidence 0.303
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013018.png ; $\chi ( z ) = ( z ^ { x } ) _ { x \in Z }$ ; confidence 0.303
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013018.png ; $\chi ( z ) = ( z ^ { x } ) _ { x \in \mathbf{Z} }$ ; confidence 0.303
  
111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090180.png ; $s \in Z _ { p }$ ; confidence 0.303
+
111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090180.png ; $s \in \mathbf{Z} _ { p }$ ; confidence 0.303
  
112. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702040.png ; $X = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303
+
112. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702040.png ; $\overline{X} = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303
  
113. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023049.png ; $( ( K _ { X } + B ) , w ^ { \prime } ) \geq 0$ ; confidence 0.303
+
113. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023049.png ; $( ( K _ { X } + B ) . v ^ { \prime } ) \geq 0$ ; confidence 0.303
  
114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034040.png ; $\hat { R K }$ ; confidence 0.303
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034040.png ; $\widehat { R \mathcal{K} }$ ; confidence 0.303
  
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015015.png ; $\{ s \in S : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \}$ ; confidence 0.303
+
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015015.png ; $\left\{ s \in \mathcal{S} : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \right\}$ ; confidence 0.303
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220079.png ; $D _ { i j }$ ; confidence 0.302
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220079.png ; $D _ { a }$ ; confidence 0.302
  
117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014017.png ; $f = P + \phi f$ ; confidence 0.302
+
117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014017.png ; $T_{\phi}f = \mathcal{P}_{ +} \phi f$ ; confidence 0.302
  
118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023034.png ; $( ( K x + B ) \cdot v ) < 0$ ; confidence 0.302
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023034.png ; $( ( K_{X} + B ) . v ) < 0$ ; confidence 0.302
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023049.png ; $\operatorname { grad } \psi = ( \partial \psi / \partial \zeta _ { 1 } , \dots , \partial \psi / \partial \zeta _ { N } )$ ; confidence 0.302
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023049.png ; $\operatorname { grad } \psi = ( \partial \psi / \partial \zeta _ { 1 } , \dots , \partial \psi / \partial \zeta _ { n } )$ ; confidence 0.302
  
120. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008013.png ; $V _ { Y }$ ; confidence 0.302
+
120. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008013.png ; $\mathcal{V} _ { n }$ ; confidence 0.302
  
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110174.png ; $a _ { n } = b _ { n }$ ; confidence 0.302
+
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110174.png ; $a _ { m } = b _ { m }$ ; confidence 0.302
  
122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200505.png ; $D = R 1 \oplus e R$ ; confidence 0.302
+
122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200505.png ; $\mathcal{D} = \mathbf{R}. 1 \oplus e . \mathbf{R}$ ; confidence 0.302
  
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002037.png ; $l _ { p } ( P , Q )$ ; confidence 0.302
+
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002037.png ; $\mathbf{l} _ { p } ( P , Q )$ ; confidence 0.302
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040296.png ; $A / \Theta \in Q$ ; confidence 0.302
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040296.png ; $\mathbf{A} / \Theta \in \mathsf{Q}$ ; confidence 0.302
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035014.png ; $\phi _ { y } ( x )$ ; confidence 0.302
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035014.png ; $\phi _ { n } ( x )$ ; confidence 0.302
  
126. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001087.png ; $R ^ { * } G _ { \text { in } }$ ; confidence 0.301
+
126. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001087.png ; $R ^ { * } G _ { \text { inn } }$ ; confidence 0.301
  
127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024047.png ; $[ \left( \begin{array} { c c } { Id } & { 0 } \\ { 0 } & { - Id } \end{array} \right) , L _ { \ell } ] = i L _ { i } ( - 2 \leq i \leq 2 )$ ; confidence 0.301
+
127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024047.png ; $\left[ \left( \begin{array} { c c } { \text{Id} } & { 0 } \\ { 0 } & { - \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ).$ ; confidence 0.301
  
128. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007096.png ; $Q _ { N }$ ; confidence 0.301
+
128. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007096.png ; $Q _ { h }$ ; confidence 0.301
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200235.png ; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } ( \frac { n + k } { 4 e ( m + n + k ) } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho } \\ { \rho ^ { m } 2 ^ { 1 - n } ( \frac { 1 - \rho } { 4 } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho } \end{array} \right.$ ; confidence 0.301
+
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200235.png ; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } \left( \frac { n + k } { 4 e ( m + n + k ) } \right) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho, } \\ { \rho ^ { m } 2 ^ { 1 - n } \left( \frac { 1 - \rho } { 4 } \right) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho. } \end{array} \right.$ ; confidence 0.301
  
130. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301309.png ; $M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { Z _ { 2 } } & { \text { if } n \geq 4 } \\ { \{ e \} } & { \text { if } n < 4 } \end{array} \right.$ ; confidence 0.301
+
130. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301309.png ; $M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf{Z} _ { 2 } } & { \text { if } n \geq 4, } \\ { \{ e \} } & { \text { if } n < 4, } \end{array} \right.$ ; confidence 0.301
  
131. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280103.png ; $C ^ { n } \backslash \overline { D }$ ; confidence 0.301
+
131. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280103.png ; $\mathbf{C} ^ { n } \backslash \overline { D }$ ; confidence 0.301
  
132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011073.png ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E } ^ { * } , _ { E } - \langle \eta , x \rangle _ { E } ^ { * } , E ^ { \prime }$ ; confidence 0.301
+
132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011073.png ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E ^{ * } , E } - \langle \eta , x \rangle _ { E ^{ * } , E },$ ; confidence 0.301
  
133. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001025.png ; $\mathfrak { e } ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301
+
133. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001025.png ; $ e _{0} ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301
  
134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014072.png ; $x \in D \subset R ^ { x }$ ; confidence 0.301
+
134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014072.png ; $x \in \mathcal{D} \subset \mathbf{R} ^ { x }$ ; confidence 0.301
  
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027010.png ; $P _ { m } ( \alpha , \beta )$ ; confidence 0.301
+
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027010.png ; $P _ { m } ^{( \alpha , \beta )}$ ; confidence 0.301
  
136. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026018.png ; $\vec { A } = A \oplus C$ ; confidence 0.301
+
136. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026018.png ; $tilde { A } = A \oplus \mathbf{C}$ ; confidence 0.301
  
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036020.png ; $\int _ { 0 } ^ { t } l _ { ( 0 ) } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.301
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036020.png ; $\int _ { 0 } ^ { t } I _ { ( 0 ) } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$ ; confidence 0.301
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205106.png ; $x _ { i }$ ; confidence 0.301
+
138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205106.png ; $x _ { c }$ ; confidence 0.301
  
139. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010017.png ; $B _ { d } ( 0 )$ ; confidence 0.300
+
139. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010017.png ; $B _ { a } ( 0 )$ ; confidence 0.300
  
140. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377017.png ; $p ( z ) = z ^ { n } + a _ { n } - 1 z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300
+
140. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377017.png ; $p ( z ) = z ^ { n } + a _ { n - 1} z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300
  
141. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200117.png ; $\geq \frac { n } { 4 N ^ { 2 } / 2 } \operatorname { exp } ( - 30 n ( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } ) ) \times \times \times \operatorname { min } _ { l \leq n } | \sum _ { j = 1 } ^ { l } b _ { j }$ ; confidence 0.300
+
141. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200117.png ; $\geq \frac { n } { 4 N ^ { 3  / 2} } \operatorname { exp } \left( - 30 n \right( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } )\right \right) \times \times \operatorname { min } _ { l \leq n } \left| \sum _ { j = 1 } ^ { l } b _ { j }\right|.$ ; confidence 0.300
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020015.png ; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0$ ; confidence 0.300
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020015.png ; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.300
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150057.png ; $b _ { i }$ ; confidence 0.300
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150057.png ; $b _ { k }$ ; confidence 0.300
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010040.png ; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { N } )$ ; confidence 0.300
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010040.png ; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.300
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290155.png ; $p \in \operatorname { Spec } A \backslash \{ m \}$ ; confidence 0.300
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290155.png ; $\mathfrak{p} \in \operatorname { Spec } A \backslash \{ \mathfrak{m} \}$ ; confidence 0.300
  
146. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
146. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\mathbf{III} _ { \lambda }$ ; confidence 0.300
  
147. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} _ { q u } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300
+
147. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} _ { \text{qu} . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300
  
148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.300
+
148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n,$ ; confidence 0.300
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022098.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times R ^ { N } \times \Xi$ ; confidence 0.300
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022098.png ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times \mathbf{R} ^ { N } \times \Xi,$ ; confidence 0.300
  
 
150. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300908.png ; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300
 
150. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300908.png ; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300
  
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026021.png ; $D _ { t } f = ( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) ) _ { n \in N _ { 0 } }$ ; confidence 0.300
+
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026021.png ; $D _ { t } f = \left( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) \right) _ { n \in \mathbf{N} _ { 0 } }$ ; confidence 0.300
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004027.png ; $\int _ { 0 } ^ { 1 } \frac { \operatorname { tag } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299
+
152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004027.png ; $\int _ { 0 } ^ { 1 } \frac { t\operatorname { log } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299
  
153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003076.png ; $\pi * : H _ { c } ^ { * } ( T _ { \text { yert } } ^ { * } Y ) \rightarrow H ^ { * } - 2 n ( B )$ ; confidence 0.299
+
153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003076.png ; $\pi_{ *} : H _ { c } ^ { * } ( T _ { \text { vert } } ^ { * } Y ) \rightarrow H ^ { * - 2 n} ( B )$ ; confidence 0.299
  
154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i1300204.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }$ ; confidence 0.299
+
154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i1300204.png ; $\mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }.$ ; confidence 0.299
  
 
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029018.png ; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299
 
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029018.png ; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299
  
156. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { u }$ ; confidence 0.299
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013062.png ; $V ( \hat { Q } _ { p } )$ ; confidence 0.299
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013062.png ; $V ( \tilde { \mathbf{Q} } _ { p } )$ ; confidence 0.299
  
158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300702.png ; $F ( 2 , m ) = \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x _ { i } + 1 = x _ { i } + 2 \}$ ; confidence 0.299
+
158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300702.png ; $F ( 2 , m ) = \rangle x _ { 1 } , \dots , x _ { m } | x _ { i } x _ { i + 1} = x _ { i + 2} \rangle,$ ; confidence 0.299
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290162.png ; $M \cong \oplus _ { l = 0 } ^ { d } E _ { l } ^ { h _ { i } }$ ; confidence 0.299
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290162.png ; $M \cong \bigoplus _ { i = 0 } ^ { d } E _ { i } ^ { h _ { i } },$ ; confidence 0.299
  
160. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040109.png ; $h \in N$ ; confidence 0.299
+
160. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040109.png ; $h \in \mathbf{N$ ; confidence 0.299
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071044.png ; $t$ ; confidence 0.299
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071044.png ; $\mathfrak{p}$ ; confidence 0.299
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302803.png ; $a _ { n } + 1 = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n } + 1 = \sqrt { a _ { n } b _ { n } }$ ; confidence 0.299
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302803.png ; $a _ { n + 1} = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n + 1} = \sqrt { a _ { n } b _ { n } }.$ ; confidence 0.299
  
163. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011095.png ; $= \frac { ( 1 - \alpha ) } { \dot { k } + c m _ { k } } . [ ( i - 1 + c ) \mu ( i - 1 , m ) - ( i + c ) \mu ( i , m ) ] +$ ; confidence 0.299
+
163. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011095.png ; $= \frac { ( 1 - \alpha ) } { k + c m _ { k } } .. [ ( i - 1 + c ) \mu ( i - 1 , m ) - ( i + c ) \mu ( i , m ) ] +$ ; confidence 0.299
  
164. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008065.png ; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ]$ ; confidence 0.298
+
164. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008065.png ; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ].$ ; confidence 0.298
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040056.png ; $S = S ^ { + } \cup S ^ { - } \subset h ^ { * }$ ; confidence 0.298
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040056.png ; $S = S ^ { + } \cup S ^ { - } \subset \mathcal{h} ^ { * }$ ; confidence 0.298
  
 
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050107.png ; $\Delta$ ; confidence 0.298
 
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050107.png ; $\Delta$ ; confidence 0.298
  
167. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005022.png ; $\cup _ { k = 1 } ^ { S } D _ { k }$ ; confidence 0.298
+
167. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005022.png ; $\cup _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.298
  
 
168. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010013.png ; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298
 
168. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010013.png ; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004029.png ; $\sigma ( \Gamma ) \operatorname { tg } \sigma ( \varphi )$ ; confidence 0.298
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004029.png ; $\sigma ( \Gamma ) \vdash_{\mathcal{D}} \sigma ( \varphi )$ ; confidence 0.298
  
 
170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028020.png ; $x _ { n } \theta$ ; confidence 0.298
 
170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028020.png ; $x _ { n } \theta$ ; confidence 0.298
  
171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001032.png ; $\{ A _ { X } = z ^ { N } : n \in Z \}$ ; confidence 0.298
+
171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001032.png ; $\{ A _ { n } = z ^ { n } : n \in \mathbf{Z} \}$ ; confidence 0.298
  
 
172. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002036.png ; $U ^ { + } \partial M = \{ v \in S N : \langle v , N _ { x } \rangle > 0 \}$ ; confidence 0.298
 
172. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002036.png ; $U ^ { + } \partial M = \{ v \in S N : \langle v , N _ { x } \rangle > 0 \}$ ; confidence 0.298
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002017.png ; $\alpha _ { y }$ ; confidence 0.298
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002017.png ; $\alpha _ { n }$ ; confidence 0.298
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { \mathcal{D} }\mathbf{B}$ ; confidence 0.298
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008099.png ; $y = \left\{ \begin{array} { l l } { ( \frac { c } { \alpha - x } ) ^ { k + 1 } } & { \text { for } x \in ( - \infty , \alpha - c ] } \\ { 1 } & { \text { for } x \in [ \alpha - c , \alpha - c + b ] } \\ { ( \frac { b - c } { x - \alpha } ) ^ { k + 1 } } & { \text { for } x \in [ \alpha - c + b , \infty ] } \end{array} \right.$ ; confidence 0.297
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008099.png ; $y = \left\{ \begin{array} { l l } { \left( \frac { c } { \alpha - x } \right) ^ { k + 1 } } & { \text { for } x \in ( - \infty , a - c ], } \\ { 1 } & { \text { for } x \in [ a - c , a - c + b ], } \\ { \left( \frac { b - c } { x - \alpha } \right) ^ { k + 1 } } & { \text { for } x \in [ a - c + b , \infty ]. } \end{array} \right.$ ; confidence 0.297
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015031.png ; $[ . . ]$ ; confidence 0.297
+
176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015031.png ; $[ . , . ]_{d}$ ; confidence 0.297
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060133.png ; $F ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.297
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060133.png ; $\mathcal{F} ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { as } \ n \rightarrow \infty,$ ; confidence 0.297
  
178. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028046.png ; $r g ]$ ; confidence 0.297
+
178. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028046.png ; $rg_1$ ; confidence 0.297
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004011.png ; $\downarrow x \in X \text { and } \| x \| \leq \| y \|$ ; confidence 0.297
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004011.png ; $\Downarrow x \in X \text { and } \| x \| \leq \| y \|.$ ; confidence 0.297
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014021.png ; $X = Y = R ^ { n }$ ; confidence 0.297
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014021.png ; $X = Y = \mathbf{R} ^ { n }$ ; confidence 0.297
  
181. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005030.png ; $\| \sum _ { j = 1 } ^ { m } w _ { j } \cdot \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \| \leq w _ { i } , i \neq j$ ; confidence 0.297
+
181. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005030.png ; $\left\| \sum _ { j = 1 } ^ { m } w _ { j } . \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \right\| \leq w _ { i } , i \neq j,$ ; confidence 0.297
  
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006070.png ; $T _ { S } : T M \rightarrow T Y$ ; confidence 0.297
+
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006070.png ; $Ts : T M \rightarrow T Y$ ; confidence 0.297
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041057.png ; $( p _ { x } ^ { \langle \alpha , \beta \rangle } )$ ; confidence 0.296
+
183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041057.png ; $( p _ { n } ^ { ( \alpha , \beta ) } )$ ; confidence 0.296
  
184. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005031.png ; $\beta _ { 0 } ( \phi , \rho ) = \int _ { N } \phi \rho$ ; confidence 0.296
+
184. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005031.png ; $\beta _ { 0 } ( \phi , \rho ) = \int _ { M } \phi \rho$ ; confidence 0.296
  
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015046.png ; $I _ { k + 1 } / I _ { k }$ ; confidence 0.296
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015046.png ; $\mathcal{ I}_ { k + 1 } / \mathcal{I} _ { k }$ ; confidence 0.296
  
186. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001037.png ; $R _ { V } ( u \otimes v ) = R ( u \otimes v )$ ; confidence 0.296
+
186. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001037.png ; $R _ { V } ( u \otimes v ) = R . ( u \otimes v )$ ; confidence 0.296
  
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702049.png ; $( H ^ { i } ( X , F _ { n } ) ) _ { n \in N }$ ; confidence 0.296
+
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702049.png ; $( H ^ { i } ( \overline{X} , \overline{F} _ { n } ) ) _ { n \in \mathbf{N} }$ ; confidence 0.296
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010013.png ; $( A F ) _ { n } ( X ) = \int d x _ { n } + 1 F _ { n } + 1 ( X , x _ { n } + 1 )$ ; confidence 0.296
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010013.png ; $( \mathcal{A} F ) _ { n } ( X ) = \int d x _ { n + 1} F _ { n + 1} ( X , x _ { n + 1} ).$ ; confidence 0.296
  
189. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005084.png ; $\left\{ \begin{array} { l } { x _ { n } + 1 = T x _ { n } + F u _ { n } } \\ { v _ { n } = G x _ { n } + H u _ { n } } \end{array} \right.$ ; confidence 0.296
+
189. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005084.png ; $\left\{ \begin{array} { l } { x _ { n + 1} = T x _ { n } + F u _ { n }, } \\ { v _ { n } = G x _ { n } + H u _ { n }, } \end{array} \right.$ ; confidence 0.296
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026079.png ; $t _ { x } = n \dot { k }$ ; confidence 0.296
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026079.png ; $t _ { n } = n k $ ; confidence 0.296
  
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021079.png ; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | } - r ( s )$ ; confidence 0.296
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021079.png ; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( s )}$ ; confidence 0.296
  
192. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080126.png ; $s _ { x } = - i T _ { x }$ ; confidence 0.296
+
192. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080126.png ; $s _ { n } = - i \hat{T} _ { n }$ ; confidence 0.296
  
193. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \circlearrowleft } ( f ) , K _ { l } ( f ) \}$ ; confidence 0.296
+
193. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \text{O} } ( f ) , K _ { \text{I} } ( f ) \}$ ; confidence 0.296
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300103.png ; $A _ { 1 } ^ { n } , \dots , A _ { 2 } ^ { n }$ ; confidence 0.296
+
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300103.png ; $A _ { 1 } ^ { n } , \dots , A _ { i } ^ { n }$ ; confidence 0.296
  
195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014040.png ; $Q \lambda Q _ { \mu }$ ; confidence 0.295
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014040.png ; $Q _ {\lambda} Q _ { \mu }$ ; confidence 0.295
  
196. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007035.png ; $G = \langle \alpha \rangle \times \langle \dot { b } \rangle$ ; confidence 0.295
+
196. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007035.png ; $G = \langle a \rangle \rtimes \langle b \rangle$ ; confidence 0.295
  
197. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002027.png ; $\underline { f } + \mathfrak { a } \mathfrak { p }$ ; confidence 0.295
+
197. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002027.png ; $\underline { f } _{+ \text{ap} }$ ; confidence 0.295
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008071.png ; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) \cdot e ( w _ { i } | v ) \cdot f ( w _ { i } | w )$ ; confidence 0.295
+
198. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008071.png ; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) . e ( w _ { i } | v ) . f ( w _ { i } | w ).$ ; confidence 0.295
  
 
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017070.png ; $z ^ { k } Z ^ { l }$ ; confidence 0.295
 
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017070.png ; $z ^ { k } Z ^ { l }$ ; confidence 0.295
Line 400: Line 400:
 
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030120.png ; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295
 
200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030120.png ; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295
  
201. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057480/l05748013.png ; $u _ { 1 } N$ ; confidence 0.295
+
201. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057480/l05748013.png ; $u _ { N}$ ; confidence 0.295
  
202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602032.png ; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right]$ ; confidence 0.295
+
202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602032.png ; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right].$ ; confidence 0.295
  
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011012.png ; $P \times$ ; confidence 0.295
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011012.png ; $\mathcal{P}_{*}$ ; confidence 0.295
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011054.png ; $HS = \| \alpha \| _ { L } 2 _ { \langle R ^ { 2 n } } \rangle$ ; confidence 0.295
+
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011054.png ; $\| a\| _{HS} = \| \alpha \| _ { L } 2 _ { ( \mathbf{R} ^ { 2 n }) } $ ; confidence 0.295
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080162.png ; $( z 0 , z 0 ) \in \gamma$ ; confidence 0.295
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080162.png ; $( z_0 , \overline{z}_0 ) \in \gamma$ ; confidence 0.295
  
206. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024015.png ; $K ( a , b ) = \{ a , b \} I d$ ; confidence 0.295
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024015.png ; $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$ ; confidence 0.295
  
 
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010016.png ; $x \in I$ ; confidence 0.295
 
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010016.png ; $x \in I$ ; confidence 0.295
  
208. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060106.png ; $\lambda \in K _ { , j } ( A )$ ; confidence 0.295
+
208. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060106.png ; $\lambda \in K _ { i , j } ( A )$ ; confidence 0.295
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003034.png ; $\cup _ { N = 1 } ^ { \infty } V ^ { n } = \cup _ { N = 1 } ^ { \infty } U ^ { n }$ ; confidence 0.294
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003034.png ; $\cup _ { n = 1 } ^ { \infty } V ^ { n } = \cup _ { N = 1 } ^ { \infty } U ^ { n }$ ; confidence 0.294
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026023.png ; $\alpha _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026023.png ; $a _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294
  
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015014.png ; $\left\{ \begin{array} { l } { x \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } , t ) , \quad i = 1 , \ldots , n } \\ { \overline { t } = t } \end{array} \right.$ ; confidence 0.294
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015014.png ; $(\text{B}) \left\{ \begin{array} { l } { \overline{x} \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } , t ) , \quad i = 1 , \ldots , n, } \\ { \overline { t } = t. } \end{array} \right.$ ; confidence 0.294
  
212. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002081.png ; $\operatorname { rd } \gamma ( M _ { k } ( f ) ) \leq n - 2 - \dot { k }$ ; confidence 0.294
+
212. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002081.png ; $\operatorname { rd } _{Y} ( M _ { k } ( f ) ) \leq n - 2 - k $ ; confidence 0.294
  
213. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006044.png ; $B _ { y } \nmid n$ ; confidence 0.294
+
213. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006044.png ; $B _ { n } / n$ ; confidence 0.294
  
214. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006032.png ; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1,2 ,$ ; confidence 0.294
+
214. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006032.png ; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1, 2,\dots .$ ; confidence 0.294
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040513.png ; $A \nmid \Omega C$ ; confidence 0.294
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040513.png ; $\mathbf{A} / \Omega \mathcal{C}$ ; confidence 0.294
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021013.png ; $( \alpha ^ { * } b ) | \dot { b } = a$ ; confidence 0.294
+
216. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021013.png ; $( * b ) | b = a$ ; confidence 0.294
  
217. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011084.png ; $\frac { n } { \mu _ { n } } = \frac { \sum _ { x = 1 } ^ { n } x \mu _ { n } ( x ) } { \mu _ { n } } \sim \sum _ { x = 1 } ^ { n } \frac { 1 } { x + 1 } \rightarrow \infty$ ; confidence 0.294
+
217. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011084.png ; $\frac { n } { \mu _ { n } } = \frac { \sum _ { x = 1 } ^ { n } x \mu _ { n } ( x ) } { \mu _ { n } } \sim \sum _ { x = 1 } ^ { n } \frac { 1 } { x + 1 } \rightarrow \infty .$ ; confidence 0.294
  
 
218. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501035.png ; $B G _ { N }$ ; confidence 0.294
 
218. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501035.png ; $B G _ { N }$ ; confidence 0.294
  
219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018086.png ; $( g _ { n } ) _ { n } \geq 1$ ; confidence 0.294
+
219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018086.png ; $( g _ { n } ) _ { n \geq 1}$ ; confidence 0.294
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021072.png ; $P _ { N } ^ { \prime }$ ; confidence 0.294
+
220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021072.png ; $P _ { n } ^ { \prime }$ ; confidence 0.294
  
221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180381.png ; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294
+
221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180381.png ; $\tilde { M } \subset \mathbf{R} ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots,$ ; confidence 0.294
  
223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024046.png ; $L ( \varepsilon ) = L _ { - 2 } \oplus L _ { - 1 } \oplus L _ { 0 } \oplus L _ { 1 } \oplus L _ { 2 }$ ; confidence 0.293
+
223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024046.png ; $L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 },$ ; confidence 0.293
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150124.png ; $P = \{ P _ { N } ^ { m } : n \in N \}$ ; confidence 0.293
+
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150124.png ; $\mathcal{P} = \{ \mathsf{P} _ { n } ^ { m } : n \in \mathbf{N} \}$ ; confidence 0.293
  
 
225. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a0109505.png ; $n = \operatorname { dim } M$ ; confidence 0.293
 
225. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a0109505.png ; $n = \operatorname { dim } M$ ; confidence 0.293
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089084.png ; $b \in R ^ { x }$ ; confidence 0.293
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089084.png ; $b \in \mathbf{R} ^ { n }$ ; confidence 0.293
  
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006092.png ; $( l + H _ { x } ) \Gamma _ { x } : = \Gamma _ { x } ( t , s ) + \int _ { 0 } ^ { x } H ( t - u ) \Gamma _ { x } ( u , s ) d u = H ( t - s ) , 0 \leq t , s \leq x$ ; confidence 0.293
+
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006092.png ; $( I + H _ { x } ) \Gamma _ { x } : = \Gamma _ { x } ( t , s ) + \int _ { 0 } ^ { x } H ( t - u ) \Gamma _ { x } ( u , s ) d u = H ( t - s ) , 0 \leq t , s \leq x,$ ; confidence 0.293
  
 
228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008024.png ; $c _ { 3 } = 1$ ; confidence 0.292
 
228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008024.png ; $c _ { 3 } = 1$ ; confidence 0.292
  
229. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840273.png ; $\sigma ( A | _ { E \langle \Delta \rangle K } ) \subset \overline { \Delta }$ ; confidence 0.292
+
229. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840273.png ; $\sigma ( A | _ { E \langle \Delta \rangle \mathcal{K} } ) \subset \overline { \Delta }$ ; confidence 0.292
  
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011078.png ; $E [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292
+
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011078.png ; $\mathsf{E} [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292
  
231. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222089.png ; $C$ ; confidence 0.292
+
231. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222089.png ; $C_{t}$ ; confidence 0.292
  
232. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100104.png ; $R \backslash K$ ; confidence 0.292
+
232. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100104.png ; $\hat{K} \backslash K$ ; confidence 0.292
  
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010018.png ; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \tau _ { n } ( x )$ ; confidence 0.292
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010018.png ; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \check{l} _ { n } ( x )$ ; confidence 0.292
  
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = - \frac { 1 } { 4 \pi } \int _ { R ^ { 3 } } e ^ { i k \langle \alpha - \alpha ^ { \prime } \rangle x } q ( x ) d x + O ( \frac { 1 } { k } )$ ; confidence 0.292
+
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = - \frac { 1 } { 4 \pi } \int _ { \mathbf{R} ^ { 3 } } e ^ { i k \langle \alpha - \alpha ^ { \prime } \rangle x } q ( x ) d x + O \left( \frac { 1 } { k } \right),$ ; confidence 0.292
  
235. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160155.png ; $\psi _ { \mathfrak { A } } ^ { l - \mathfrak { M } } \overline { \mathfrak { a } }$ ; confidence 0.292
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160155.png ; $\psi _ { \mathfrak { A } } ^ { l - m } \overline { a }$ ; confidence 0.292
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302509.png ; $Vp \frac { 1 } { X }$ ; confidence 0.292
+
236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302509.png ; $\operatorname{vp} \frac { 1 } { x }$ ; confidence 0.292
  
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017026.png ; $P = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017026.png ; $\mathcal{P} = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292
  
238. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024030.png ; $= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right)$ ; confidence 0.292
+
238. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024030.png ; $:= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right).$ ; confidence 0.292
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180405.png ; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.292
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180405.png ; $R ( \tilde{ g } ) = W ( \tilde { g } ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.292
  
240. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w1301009.png ; $W ^ { a } ( t ) = \cup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0$ ; confidence 0.291
+
240. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w1301009.png ; $W ^ { a } ( t ) = \bigcup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0,$ ; confidence 0.291
  
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200705.png ; $m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t } 1 , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }$ ; confidence 0.291
+
241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200705.png ; $m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t } 1 , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }.$ ; confidence 0.291
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010077.png ; $T \in T$ ; confidence 0.291
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010077.png ; $T \in \mathcal{T}$ ; confidence 0.291
  
 
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004016.png ; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291
 
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004016.png ; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291
  
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013039.png ; $W _ { N } \supset W _ { N } + 1$ ; confidence 0.291
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013039.png ; $W _ { n } \supset W _ { + 1}$ ; confidence 0.291
  
245. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050118.png ; $u _ { \gamma } ( 1 ) = D ^ { ( - x - 1 ) } ( u )$ ; confidence 0.291
+
245. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050118.png ; $u _ { n } ( \mathbf{1} ) = D ^ { ( - n - 1 ) } ( u )$ ; confidence 0.291
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230132.png ; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.291
+
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230132.png ; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )+$ ; confidence 0.291
  
247. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005068.png ; $v = \sqrt { y ^ { T } H y } ( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } )$ ; confidence 0.291
+
247. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005068.png ; $v = \sqrt { y ^ { T } H y } \left( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } \right)$ ; confidence 0.291
  
248. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008097.png ; $( \varphi ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290
+
248. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008097.png ; $( \varphi_j ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004014.png ; $\{ L ( x , y ) \} _ { span }$ ; confidence 0.290
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004014.png ; $\{ L ( x , y ) \} _ { \text{span} }$ ; confidence 0.290
  
 
250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302909.png ; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290
 
250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302909.png ; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290
Line 502: Line 502:
 
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290
 
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290
  
252. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006047.png ; $\mu ( u , v , w ) = \# \{ ( \alpha ^ { \prime } , \beta ^ { \prime } ) \in A \times B : D \alpha ^ { \prime } \beta ^ { \prime } = D \xi \text { withw } = D \xi D \}$ ; confidence 0.290
+
252. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006047.png ; $\mu ( u , v , w ) = \# \{ ( \alpha ^ { \prime } , \beta ^ { \prime } ) \in A \times B : D \alpha ^ { \prime } \beta ^ { \prime } = D \xi \text { with } \ w = D \xi D \}$ ; confidence 0.290
  
 
253. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472108.png ; $T _ { \delta }$ ; confidence 0.290
 
253. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472108.png ; $T _ { \delta }$ ; confidence 0.290
  
254. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007024.png ; $a \in R [ t ] ^ { j }$ ; confidence 0.290
+
254. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007024.png ; $\mathbf{a} \in R [ t ] ^ { j }$ ; confidence 0.290
  
255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010119.png ; $\Gamma _ { u } = 0$ ; confidence 0.290
+
255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010119.png ; $\Gamma u = 0$ ; confidence 0.290
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003071.png ; $T _ { E } ( M \otimes _ { F } p ) = T _ { E } M \otimes _ { F } p ^ { T } _ { E } N$ ; confidence 0.290
+
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003071.png ; $T _ { E } ( M \otimes _ { \mathbf{F}_ p} N) = T _ { E } M \otimes _ { \mathbf{F}_ pT _ { E } N$ ; confidence 0.290
  
257. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010105.png ; $\sigma [ J , V ^ { j }$ ; confidence 0.290
+
257. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010105.png ; $\sigma_{ [ U, V]}$ ; confidence 0.290
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021025.png ; $r , s \in R _ { W }$ ; confidence 0.290
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021025.png ; $r , s \in R _ { w }$ ; confidence 0.290
  
259. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011074.png ; $\langle . . \rangle _ { E } ^ { * } , E$ ; confidence 0.290
+
259. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011074.png ; $\langle . , . \rangle _ { E ^ { * } , E}$ ; confidence 0.290
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007064.png ; $<$ ; confidence 0.290
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007064.png ; $\Leftarrow $ ; confidence 0.290
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029038.png ; $P Y$ ; confidence 0.290
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029038.png ; $P_{ Y}$ ; confidence 0.290
  
262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004063.png ; $f _ { l } ^ { n } = \alpha u _ { l } ^ { n }$ ; confidence 0.290
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004063.png ; $f _ { i } ^ { n } = a u _ { i } ^ { n }$ ; confidence 0.290
  
263. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004054.png ; $( \Omega _ { + } - 1 ) g _ { D } P _ { + } \psi ( t )$ ; confidence 0.290
+
263. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004054.png ; $( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t )$ ; confidence 0.290
  
264. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302108.png ; $u ( a ) = u _ { \alpha }$ ; confidence 0.290
+
264. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302108.png ; $u ( a ) = u _ { a }$ ; confidence 0.290
  
 
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024033.png ; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290
 
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024033.png ; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290
Line 532: Line 532:
 
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027061.png ; $x , y \in X _ { n }$ ; confidence 0.290
 
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027061.png ; $x , y \in X _ { n }$ ; confidence 0.290
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202906.png ; $\{ x _ { n } , j \}$ ; confidence 0.290
+
267. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202906.png ; $\{ x _ { n_k } \}$ ; confidence 0.290
  
268. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015062.png ; $\tau : G \rightarrow G \nmid H$ ; confidence 0.290
+
268. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015062.png ; $\tau : G \rightarrow G / H$ ; confidence 0.290
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070102.png ; $d _ { 1 } , \ldots , d _ { k }$ ; confidence 0.289
+
269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070102.png ; $d _ { 1 } , \ldots , d _ { h }$ ; confidence 0.289
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020233.png ; $g ( \overline { u } _ { 1 } ) = v _ { N }$ ; confidence 0.289
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020233.png ; $g ( \overline { u } _ { 1 } ) = v _ { M }$ ; confidence 0.289
  
271. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004019.png ; $K _ { BM } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z )$ ; confidence 0.289
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004019.png ; $K _ { \text{BM} } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - \overline {z} ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - \overline {z} )$ ; confidence 0.289
  
272. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062820/m06282022.png ; $x ^ { x }$ ; confidence 0.289
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062820/m06282022.png ; $x ^ { * }$ ; confidence 0.289
  
273. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010095.png ; $E _ { \theta }$ ; confidence 0.289
+
273. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010095.png ; $\mathbf{E} _ { 8 }$ ; confidence 0.289
  
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021049.png ; $\delta _ { n }$ ; confidence 0.289
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021049.png ; $\delta _ { k }$ ; confidence 0.289
  
275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png ; $\dot { k } = 1 , \ldots , r ( P )$ ; confidence 0.289
+
275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png ; $ k = 1 , \ldots , r ( P )$ ; confidence 0.289
  
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020084.png ; $M _ { 2 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 2 , \ldots , n + 1 } | s _ { k } | \leq 2 ( n + 1 ) ^ { 2 } e ^ { - \theta n }$ ; confidence 0.289
+
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020084.png ; $M _ { 2 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 2 , \ldots , n + 1 } | s _ { k } | \leq 2 ( n + 1 ) ^ { 2 } e ^ { - \theta n },$ ; confidence 0.289
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010061.png ; $\mu \in M _ { C } ^ { \dagger } ( G )$ ; confidence 0.289
+
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010061.png ; $\mu \in M _ { \text{C} } ^ {1} ( G )$ ; confidence 0.289
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014019.png ; $F _ { A } = d A + A / / A$ ; confidence 0.289
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014019.png ; $F _ { A } = d A + A \bigwedge A$ ; confidence 0.289
  
279. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011020.png ; $\sigma _ { Y }$ ; confidence 0.289
+
279. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011020.png ; $\sigma _ { x }$ ; confidence 0.289
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029080.png ; $\hat { f } = id$ ; confidence 0.289
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029080.png ; $\tilde { f } = \operatorname { id}$ ; confidence 0.289
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300109.png ; $p = \operatorname { char } F _ { q }$ ; confidence 0.289
+
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300109.png ; $p = \operatorname { char } \mathbf{F} _ { q }$ ; confidence 0.289
  
282. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060119.png ; $Bel _ { Z } | Y$ ; confidence 0.289
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060119.png ; $\operatorname {Bel} _ { Z | Y}$ ; confidence 0.289
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180489.png ; $\lambda _ { \mathscr { B } } \in C ^ { \infty } ( N )$ ; confidence 0.289
+
283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180489.png ; $\lambda _ { g_{ij}} \in C ^ { \infty } ( N )$ ; confidence 0.289
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021013.png ; $n$ ; confidence 0.289
+
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021013.png ; $\mathfrak{n}^{-}$ ; confidence 0.289
  
285. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200503.png ; $L _ { F }$ ; confidence 0.288
+
285. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200503.png ; $\mathcal{L} _ { R }$ ; confidence 0.288
  
 
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027057.png ; $K _ { I } ^ { S } ( X )$ ; confidence 0.288
 
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027057.png ; $K _ { I } ^ { S } ( X )$ ; confidence 0.288
  
287. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001039.png ; $\hat { U } - 1$ ; confidence 0.288
+
287. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001039.png ; $ U _{ - 1}$ ; confidence 0.288
  
288. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021019.png ; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m l _ { M }$ ; confidence 0.288
+
288. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021019.png ; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m I _ { m }$ ; confidence 0.288
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012045.png ; $R _ { \pm } ^ { 2 m }$ ; confidence 0.288
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012045.png ; $\mathbf{R} _ { + } ^ { 2 m }$ ; confidence 0.288
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030055.png ; $A ( \eta ) \phi = \lambda \phi \operatorname { in } R ^ { N }$ ; confidence 0.288
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030055.png ; $\mathcal{A} ( \eta ) \phi = \lambda \phi \operatorname { in } \mathbf{R} ^ { N },$ ; confidence 0.288
  
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059046.png ; $F _ { n } = \frac { 1 } { e _ { x } e _ { x } - 1 } , G _ { x } = \frac { d _ { x } } { e _ { x } } ( e 0 = 1 )$ ; confidence 0.288
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059046.png ; $F _ { n } = \frac { 1 } { e _ { n } e _ { - 1} } , G _ { n } = \frac { d _ { n } } { e _ { n } } ( e_{ 0} = 1 ),$ ; confidence 0.288
  
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140113.png ; $\| d _ { m } ^ { p } \|$ ; confidence 0.288
+
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140113.png ; $\| d _ { lm } ^ { p } \|$ ; confidence 0.288
  
 
293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012080.png ; $( a f ) b = \alpha ( g b )$ ; confidence 0.288
 
293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012080.png ; $( a f ) b = \alpha ( g b )$ ; confidence 0.288
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068075.png ; $a + b$ ; confidence 0.288
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068075.png ; $a / b$ ; confidence 0.288
  
295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002040.png ; $- P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288
+
295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002040.png ; $- \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288
  
296. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021020.png ; $M \in K ^ { \gamma }$ ; confidence 0.288
+
296. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021020.png ; $M \in \mathcal{K} ^ { n }$ ; confidence 0.288
  
297. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300104.png ; $( - 1 , \lambda )$ ; confidence 0.288
+
297. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300104.png ; $C^{  1 , \lambda }$ ; confidence 0.288
  
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200239.png ; $\dot { k } \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287
+
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200239.png ; $ k \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290167.png ; $h _ { i } = \operatorname { l } _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.287
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290167.png ; $h _ { i } = \operatorname { l } _ { A } ( H _ { \mathfrak{m} } ^ { i } ( M ) )$ ; confidence 0.287
  
300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png ; $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.287
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png ; $\underline{\operatorname { dim }} : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.287

Revision as of 05:37, 24 April 2020

List

1. b11022095.png ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) )$ ; confidence 0.312

2. b0170103.png ; $A _ { k }$ ; confidence 0.312

3. c13021015.png ; $a_3 = 4 , a _ { i + 3} = \alpha _ { i }.$ ; confidence 0.312

4. b11066064.png ; $L _ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.312

5. c120180179.png ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { r + 4 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.312

6. b120150134.png ; $\mathsf{E} _ { \text{P} _ { n } ^ { m } } ( d ) = \mathsf{E} _ { \text{P} _ { n } ^ { m } } ( d ^ { * } )$ ; confidence 0.312

7. w12009095.png ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times \dots$ ; confidence 0.312

8. a11016053.png ; $p _ { k }$ ; confidence 0.312

9. t13005084.png ; $a \equiv ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.312

10. m12012076.png ; $I q , q I \neq 0$ ; confidence 0.312

11. d12023078.png ; $\tilde{I}$ ; confidence 0.312

12. s130620157.png ; $y \sim a \operatorname { cos } \int _ { c } ^ { x } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t + b \operatorname { sin } \int ^ { x _ { c } } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t.$ ; confidence 0.312

13. n067520477.png ; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } ),$ ; confidence 0.311

14. b13022072.png ; $P _ { K } = P _ { m - 1 }$ ; confidence 0.311

15. t12006077.png ; $R _ { j } \rightarrow \text{l}R _ { j }$ ; confidence 0.311

16. m12007012.png ; $m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) ),$ ; confidence 0.311

17. t12001057.png ; $\mathcal{O}$ ; confidence 0.311

18. l12010050.png ; $| e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x.$ ; confidence 0.311

19. h13002074.png ; $\alpha _ 1 , \dots , \alpha _ { q } \in \mathcal{F} ( S ^ { d } )$ ; confidence 0.311

20. d03062028.png ; $f \not\equiv \text{const}$ ; confidence 0.311

21. d12011032.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { n _ { i } n _ { j }} = 0 \text { for all } j \in \mathbf{N},$ ; confidence 0.311

22. h13003024.png ; $H _ { j }$ ; confidence 0.311

23. w13010020.png ; $| W^ { a } ( t ) |$ ; confidence 0.311

24. d1302103.png ; $\alpha \in \mathbf{R} ^ { m }$ ; confidence 0.311

25. b13028060.png ; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310

26. m120100132.png ; $K ( \tilde{ G } )$ ; confidence 0.310

27. a12027074.png ; $\rho _ { a }$ ; confidence 0.310

28. h120120140.png ; $\sum _ { n } \hat { \tau } _ { n }$ ; confidence 0.310

29. d13006028.png ; $\operatorname{Bel} _ { E _ { 1 } , E _ { 2 } } = \operatorname{Bel} _ { E _ { 1 } } \oplus \operatorname{Bel} _ { E _ { 2 } }$ ; confidence 0.310

30. w130080101.png ; $\partial d S / \partial T _ { n } = d \omega _ { n }$ ; confidence 0.310

31. b130200132.png ; $G_{ - i}$ ; confidence 0.310

32. c13025054.png ; $s-$ ; confidence 0.310

33. l110020159.png ; $a ^ { n } \leq b$ ; confidence 0.310

34. c13001042.png ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V.$ ; confidence 0.310

35. c1300608.png ; $J \in W$ ; confidence 0.310

36. t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309

37. t0920309.png ; $U _ { y } \not \ni x$ ; confidence 0.309

38. l12004062.png ; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { n } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309

39. a014140140.png ; $A ^ { m }$ ; confidence 0.309

40. c13016093.png ; $\text{co} \mathcal{C}$ ; confidence 0.309

41. h04780047.png ; $\mathcal{H} _ { n }$ ; confidence 0.309

42. v12006042.png ; $k ^ { n } ( B _ { n } ( h / k ) - B _ { n } )$ ; confidence 0.309

43. t120200147.png ; $\operatorname{min}_{j \neq r} | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309

44. f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8, \dots ,$ ; confidence 0.309

45. e120260127.png ; $F ( \mu _ { n } )$ ; confidence 0.309

46. a120310136.png ; $\hat{A}$ ; confidence 0.309

47. q12005047.png ; $d ^ { k }$ ; confidence 0.308

48. b11004042.png ; $\mathbf{x}$ ; confidence 0.308

49. a13023027.png ; $\{ f _ { \text{l} } \} _ { \text{l} = 1 } ^ { \infty }$ ; confidence 0.308

50. s13011021.png ; $\sigma _ { s _ { i } w} $ ; confidence 0.308

51. d13005013.png ; $2 ^ { m - 1 } - 2 ^ { m / 2 - 1 + r }$ ; confidence 0.308

52. q12008077.png ; $\mathsf{E} [ T ( x ) ] _{\text{PS}} = \frac { x } { 1 - \rho }.$ ; confidence 0.308

53. s13059056.png ; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots .$ ; confidence 0.308

54. k055840183.png ; $d _ { 1 } , \dots , d _ { r }$ ; confidence 0.308

55. w13009047.png ; $H ^ { \hat{\otimes} n }$ ; confidence 0.308

56. w12002010.png ; $\mathbf{I} _ { 1 } ( P , Q )$ ; confidence 0.308

57. i05003091.png ; $q \in Q$ ; confidence 0.307

58. b12040047.png ; $\varrho $ ; confidence 0.307

59. k13006012.png ; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { a _ { k - 1} } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { a _ { 1 } } \\ { 1 } \end{array} \right),$ ; confidence 0.307

60. c12014015.png ; $\operatorname { Tr}$ ; confidence 0.307

61. w120110235.png ; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307

62. b110220220.png ; $H _ { \operatorname { B} } : \operatorname { Ext } _ { \mathcal{MM} _ { \mathbf{Q} } } ^ { 1 } ( \mathbf{Q} ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307

63. a110420128.png ; $q$ ; confidence 0.307

64. c13007067.png ; $e > d$ ; confidence 0.307

65. c120180363.png ; $= g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) ) \in \in C ^ { \infty } ( M )$ ; confidence 0.307

66. s12004014.png ; $s _ { \lambda } = \frac { a _ { \lambda + \delta} } { a _ { \delta } },$ ; confidence 0.307

67. m120030104.png ; $r _ { i } = y _ { i } - \overset{\rightharpoonup} { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307

68. f13010045.png ; $\square_{a} \varphi ( x ) = \varphi ( a x )$ ; confidence 0.307

69. c120180119.png ; $\mathcal{E}_{ * *} = \operatorname { Hom } _ { \mathcal{R} } ( \mathcal{E}_ * , \mathcal{R} )$ ; confidence 0.307

70. f12011087.png ; $U \# \Omega = U \bigcap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \},$ ; confidence 0.306

71. p12017071.png ; $\delta _ { A ^ * , B^ *} ( X ) \in I$ ; confidence 0.306

72. m120030103.png ; $s ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.306

73. b01501018.png ; $g _ { r } : B _ { r } \rightarrow B _ { r + 1}$ ; confidence 0.306

74. s120150137.png ; $\pi _ { G \times_{ G _ { X }} } S$ ; confidence 0.306

75. i12008099.png ; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306

76. s13063016.png ; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306

77. d12024042.png ; $\mathfrak{g}/\mathfrak{h}$ ; confidence 0.305

78. a12017021.png ; $c_0 \geq 0$ ; confidence 0.305

79. r11011042.png ; $\forall x _ { 1 } , \ldots , x _ { n }$ ; confidence 0.305

80. i13008013.png ; $L _ { 3 } ^ { \prime }$ ; confidence 0.305

81. z13001061.png ; $a ^ { n }$ ; confidence 0.305

82. f04049014.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } X _ { 1 }} { \nu _ { 1 } X _ { 2 } } ,$ ; confidence 0.305

83. w120110146.png ; $( a \circ b ) ( x , \xi ) = \sum _ { | \alpha | < N } \frac { 1 } { \alpha ! } D _ { \xi } ^ { \alpha } a \partial _ { x } ^ { \alpha } b + t _ { N } ( a , b ),$ ; confidence 0.305

84. s12004047.png ; $e _ { \lambda _ { i } }$ ; confidence 0.305

85. s12018033.png ; $\langle a , x \rangle = 0$ ; confidence 0.305

86. h13007039.png ; $A _{i, j} \in k , i = 1 , \dots , r.$ ; confidence 0.305

87. d13013053.png ; $\mathbf{A} ^ { + }$ ; confidence 0.305

88. g13004094.png ; $r _ { i } \searrow 0$ ; confidence 0.304

89. q12007040.png ; $\Delta g = g \bigotimes g, \epsilon g = 1, \ S _ { g } = g ^ { - 1 },$ ; confidence 0.304

90. a0132905.png ; $\&$ ; confidence 0.304

91. b12027059.png ; $a _ { n } = b _ { n } + \sum _ { 0 } ^ { n } a _ { n - j} p _ { j } , n = 0,1, \dots ,$ ; confidence 0.304

92. a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304

93. s1202408.png ; $H _ { * } ^ { S } (\ . \ ; G )$ ; confidence 0.304

94. a011490101.png ; $a _ { 1 } , \dots , a _ { s }$ ; confidence 0.304

95. a12005039.png ; $S _ { \theta _ { 0 } } = \{ z \in \mathbf{C} : |\operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304

96. f0422309.png ; $M ( t )$ ; confidence 0.304

97. s1305904.png ; $c _ { n } = \int _ { 0 } ^ { \infty } t ^ { n } d \psi ( t ) , n = 0 , \pm 1 , \pm 2, \dots .$ ; confidence 0.304

98. s12035022.png ; $\hat { \theta } _ { N } = \operatorname { arg } \operatorname { min } _ { \theta \in D _ { \mathcal{M} } } \sum _ { \mathcal{M} } ^ { N _ { t } = 1 } \text{l} \left( y ( t ) - f ( Z ^ { t - 1 } , t , \theta ) \right),$ ; confidence 0.304

99. f12024080.png ; $t _ { 0 } \in J _ { x }$ ; confidence 0.304

100. z13004025.png ; $K _ { 9 , 9}$ ; confidence 0.304

101. a13006081.png ; $\cup _ { d }$ ; confidence 0.304

102. h13006013.png ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c \left( \frac { m n } { d ^ { 2 } } )\right$ ; confidence 0.304

103. f12011061.png ; $\Delta _ { \sigma } = \{ x \in \mathbf{R} ^ { n } : \sigma _ { j } x _ { j } > 0 \}$ ; confidence 0.304

104. p12017077.png ; $\mathcal{C} _ { p }$ ; confidence 0.304

105. l12010026.png ; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303

106. d11022029.png ; $L y = \left( \frac { d } { d x } + r _ { x } \right) \dots \left( \frac { d } { d x } + r _ { 1 } \right) y.$ ; confidence 0.303

107. w12011025.png ; $( \operatorname{Op} ( a ) ) ^ { * } = \operatorname{Op} ( J \overline { a } )$ ; confidence 0.303

108. a13014012.png ; $d _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303

109. w120090242.png ; $\mathfrak{sl}_n ( \mathbf{C} )$ ; confidence 0.303

110. t12013018.png ; $\chi ( z ) = ( z ^ { x } ) _ { x \in \mathbf{Z} }$ ; confidence 0.303

111. i130090180.png ; $s \in \mathbf{Z} _ { p }$ ; confidence 0.303

112. l05702040.png ; $\overline{X} = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303

113. m13023049.png ; $( ( K _ { X } + B ) . v ^ { \prime } ) \geq 0$ ; confidence 0.303

114. s13034040.png ; $\widehat { R \mathcal{K} }$ ; confidence 0.303

115. m12015015.png ; $\left\{ s \in \mathcal{S} : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \right\}$ ; confidence 0.303

116. a01220079.png ; $D _ { a }$ ; confidence 0.302

117. t12014017.png ; $T_{\phi}f = \mathcal{P}_{ +} \phi f$ ; confidence 0.302

118. m13023034.png ; $( ( K_{X} + B ) . v ) < 0$ ; confidence 0.302

119. a12023049.png ; $\operatorname { grad } \psi = ( \partial \psi / \partial \zeta _ { 1 } , \dots , \partial \psi / \partial \zeta _ { n } )$ ; confidence 0.302

120. z13008013.png ; $\mathcal{V} _ { n }$ ; confidence 0.302

121. w120110174.png ; $a _ { m } = b _ { m }$ ; confidence 0.302

122. w1200505.png ; $\mathcal{D} = \mathbf{R}. 1 \oplus e . \mathbf{R}$ ; confidence 0.302

123. w12002037.png ; $\mathbf{l} _ { p } ( P , Q )$ ; confidence 0.302

124. a130040296.png ; $\mathbf{A} / \Theta \in \mathsf{Q}$ ; confidence 0.302

125. b11035014.png ; $\phi _ { n } ( x )$ ; confidence 0.302

126. x12001087.png ; $R ^ { * } G _ { \text { inn } }$ ; confidence 0.301

127. f13024047.png ; $\left[ \left( \begin{array} { c c } { \text{Id} } & { 0 } \\ { 0 } & { - \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ).$ ; confidence 0.301

128. e12007096.png ; $Q _ { h }$ ; confidence 0.301

129. t120200235.png ; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } \left( \frac { n + k } { 4 e ( m + n + k ) } \right) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho, } \\ { \rho ^ { m } 2 ^ { 1 - n } \left( \frac { 1 - \rho } { 4 } \right) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho. } \end{array} \right.$ ; confidence 0.301

130. p1301309.png ; $M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf{Z} _ { 2 } } & { \text { if } n \geq 4, } \\ { \{ e \} } & { \text { if } n < 4, } \end{array} \right.$ ; confidence 0.301

131. d120280103.png ; $\mathbf{C} ^ { n } \backslash \overline { D }$ ; confidence 0.301

132. w12011073.png ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E ^{ * } , E } - \langle \eta , x \rangle _ { E ^{ * } , E },$ ; confidence 0.301

133. z12001025.png ; $ e _{0} ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301

134. m13014072.png ; $x \in \mathcal{D} \subset \mathbf{R} ^ { x }$ ; confidence 0.301

135. e12027010.png ; $P _ { m } ^{( \alpha , \beta )}$ ; confidence 0.301

136. m13026018.png ; $tilde { A } = A \oplus \mathbf{C}$ ; confidence 0.301

137. s13036020.png ; $\int _ { 0 } ^ { t } I _ { ( 0 ) } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$ ; confidence 0.301

138. b1205106.png ; $x _ { c }$ ; confidence 0.301

139. w13010017.png ; $B _ { a } ( 0 )$ ; confidence 0.300

140. m06377017.png ; $p ( z ) = z ^ { n } + a _ { n - 1} z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300

141. t120200117.png ; $\geq \frac { n } { 4 N ^ { 3 / 2} } \operatorname { exp } \left( - 30 n \right( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } )\right \right) \times \times \operatorname { min } _ { l \leq n } \left| \sum _ { j = 1 } ^ { l } b _ { j }\right|.$ ; confidence 0.300

142. a13020015.png ; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.300

143. a01150057.png ; $b _ { k }$ ; confidence 0.300

144. b12010040.png ; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.300

145. b130290155.png ; $\mathfrak{p} \in \operatorname { Spec } A \backslash \{ \mathfrak{m} \}$ ; confidence 0.300

146. v096900234.png ; $\mathbf{III} _ { \lambda }$ ; confidence 0.300

147. l05961015.png ; $\{ H , \rho \} _ { \text{qu} . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300

148. n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n,$ ; confidence 0.300

149. b12022098.png ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times \mathbf{R} ^ { N } \times \Xi,$ ; confidence 0.300

150. t1300908.png ; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300

151. s12026021.png ; $D _ { t } f = \left( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) \right) _ { n \in \mathbf{N} _ { 0 } }$ ; confidence 0.300

152. c13004027.png ; $\int _ { 0 } ^ { 1 } \frac { t\operatorname { log } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299

153. i13003076.png ; $\pi_{ *} : H _ { c } ^ { * } ( T _ { \text { vert } } ^ { * } Y ) \rightarrow H ^ { * - 2 n} ( B )$ ; confidence 0.299

154. i1300204.png ; $\mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }.$ ; confidence 0.299

155. c12029018.png ; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299

156. d120280147.png ; $\overline { u }$ ; confidence 0.299

157. l12013062.png ; $V ( \tilde { \mathbf{Q} } _ { p } )$ ; confidence 0.299

158. f1300702.png ; $F ( 2 , m ) = \rangle x _ { 1 } , \dots , x _ { m } | x _ { i } x _ { i + 1} = x _ { i + 2} \rangle,$ ; confidence 0.299

159. b130290162.png ; $M \cong \bigoplus _ { i = 0 } ^ { d } E _ { i } ^ { h _ { i } },$ ; confidence 0.299

160. g120040109.png ; $h \in \mathbf{N$ ; confidence 0.299

161. a01071044.png ; $\mathfrak{p}$ ; confidence 0.299

162. a1302803.png ; $a _ { n + 1} = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n + 1} = \sqrt { a _ { n } b _ { n } }.$ ; confidence 0.299

163. z13011095.png ; $= \frac { ( 1 - \alpha ) } { k + c m _ { k } } .. [ ( i - 1 + c ) \mu ( i - 1 , m ) - ( i + c ) \mu ( i , m ) ] +$ ; confidence 0.299

164. d11008065.png ; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ].$ ; confidence 0.298

165. b12040056.png ; $S = S ^ { + } \cup S ^ { - } \subset \mathcal{h} ^ { * }$ ; confidence 0.298

166. a120050107.png ; $\Delta$ ; confidence 0.298

167. k12005022.png ; $\cup _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.298

168. w12010013.png ; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298

169. a13004029.png ; $\sigma ( \Gamma ) \vdash_{\mathcal{D}} \sigma ( \varphi )$ ; confidence 0.298

170. b13028020.png ; $x _ { n } \theta$ ; confidence 0.298

171. w12001032.png ; $\{ A _ { n } = z ^ { n } : n \in \mathbf{Z} \}$ ; confidence 0.298

172. s13002036.png ; $U ^ { + } \partial M = \{ v \in S N : \langle v , N _ { x } \rangle > 0 \}$ ; confidence 0.298

173. b12002017.png ; $\alpha _ { n }$ ; confidence 0.298

174. a130040382.png ; $F \in Fi _ { \mathcal{D} }\mathbf{B}$ ; confidence 0.298

175. a13008099.png ; $y = \left\{ \begin{array} { l l } { \left( \frac { c } { \alpha - x } \right) ^ { k + 1 } } & { \text { for } x \in ( - \infty , a - c ], } \\ { 1 } & { \text { for } x \in [ a - c , a - c + b ], } \\ { \left( \frac { b - c } { x - \alpha } \right) ^ { k + 1 } } & { \text { for } x \in [ a - c + b , \infty ]. } \end{array} \right.$ ; confidence 0.297

176. l12015031.png ; $[ . , . ]_{d}$ ; confidence 0.297

177. a130060133.png ; $\mathcal{F} ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { as } \ n \rightarrow \infty,$ ; confidence 0.297

178. s12028046.png ; $rg_1$ ; confidence 0.297

179. b12004011.png ; $\Downarrow x \in X \text { and } \| x \| \leq \| y \|.$ ; confidence 0.297

180. a13014021.png ; $X = Y = \mathbf{R} ^ { n }$ ; confidence 0.297

181. f13005030.png ; $\left\| \sum _ { j = 1 } ^ { m } w _ { j } . \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \right\| \leq w _ { i } , i \neq j,$ ; confidence 0.297

182. e12006070.png ; $Ts : T M \rightarrow T Y$ ; confidence 0.297

183. s13041057.png ; $( p _ { n } ^ { ( \alpha , \beta ) } )$ ; confidence 0.296

184. h12005031.png ; $\beta _ { 0 } ( \phi , \rho ) = \int _ { M } \phi \rho$ ; confidence 0.296

185. t13015046.png ; $\mathcal{ I}_ { k + 1 } / \mathcal{I} _ { k }$ ; confidence 0.296

186. y12001037.png ; $R _ { V } ( u \otimes v ) = R . ( u \otimes v )$ ; confidence 0.296

187. l05702049.png ; $( H ^ { i } ( \overline{X} , \overline{F} _ { n } ) ) _ { n \in \mathbf{N} }$ ; confidence 0.296

188. b12010013.png ; $( \mathcal{A} F ) _ { n } ( X ) = \int d x _ { n + 1} F _ { n + 1} ( X , x _ { n + 1} ).$ ; confidence 0.296

189. o13005084.png ; $\left\{ \begin{array} { l } { x _ { n + 1} = T x _ { n } + F u _ { n }, } \\ { v _ { n } = G x _ { n } + H u _ { n }, } \end{array} \right.$ ; confidence 0.296

190. c12026079.png ; $t _ { n } = n k $ ; confidence 0.296

191. t12021079.png ; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( s )}$ ; confidence 0.296

192. w130080126.png ; $s _ { n } = - i \hat{T} _ { n }$ ; confidence 0.296

193. q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \text{O} } ( f ) , K _ { \text{I} } ( f ) \}$ ; confidence 0.296

194. b130300103.png ; $A _ { 1 } ^ { n } , \dots , A _ { i } ^ { n }$ ; confidence 0.296

195. s13014040.png ; $Q _ {\lambda} Q _ { \mu }$ ; confidence 0.295

196. z13007035.png ; $G = \langle a \rangle \rtimes \langle b \rangle$ ; confidence 0.295

197. z13002027.png ; $\underline { f } _{+ \text{ap} }$ ; confidence 0.295

198. d11008071.png ; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) . e ( w _ { i } | v ) . f ( w _ { i } | w ).$ ; confidence 0.295

199. c12017070.png ; $z ^ { k } Z ^ { l }$ ; confidence 0.295

200. w120030120.png ; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295

201. l05748013.png ; $u _ { N}$ ; confidence 0.295

202. h04602032.png ; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right].$ ; confidence 0.295

203. f12011012.png ; $\mathcal{P}_{*}$ ; confidence 0.295

204. w12011054.png ; $\| a\| _{HS} = \| \alpha \| _ { L } 2 _ { ( \mathbf{R} ^ { 2 n }) } $ ; confidence 0.295

205. w130080162.png ; $( z_0 , \overline{z}_0 ) \in \gamma$ ; confidence 0.295

206. f13024015.png ; $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$ ; confidence 0.295

207. a11010016.png ; $x \in I$ ; confidence 0.295

208. g130060106.png ; $\lambda \in K _ { i , j } ( A )$ ; confidence 0.295

209. c02003034.png ; $\cup _ { n = 1 } ^ { \infty } V ^ { n } = \cup _ { N = 1 } ^ { \infty } U ^ { n }$ ; confidence 0.294

210. a13026023.png ; $a _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294

211. e12015014.png ; $(\text{B}) \left\{ \begin{array} { l } { \overline{x} \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } , t ) , \quad i = 1 , \ldots , n, } \\ { \overline { t } = t. } \end{array} \right.$ ; confidence 0.294

212. v12002081.png ; $\operatorname { rd } _{Y} ( M _ { k } ( f ) ) \leq n - 2 - k $ ; confidence 0.294

213. v12006044.png ; $B _ { n } / n$ ; confidence 0.294

214. n13006032.png ; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1, 2,\dots .$ ; confidence 0.294

215. a130040513.png ; $\mathbf{A} / \Omega \mathcal{C}$ ; confidence 0.294

216. c13021013.png ; $( a * b ) | b = a$ ; confidence 0.294

217. z13011084.png ; $\frac { n } { \mu _ { n } } = \frac { \sum _ { x = 1 } ^ { n } x \mu _ { n } ( x ) } { \mu _ { n } } \sim \sum _ { x = 1 } ^ { n } \frac { 1 } { x + 1 } \rightarrow \infty .$ ; confidence 0.294

218. b01501035.png ; $B G _ { N }$ ; confidence 0.294

219. d13018086.png ; $( g _ { n } ) _ { n \geq 1}$ ; confidence 0.294

220. c12021072.png ; $P _ { n } ^ { \prime }$ ; confidence 0.294

221. c120180381.png ; $\tilde { M } \subset \mathbf{R} ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294

222. a01012040.png ; $n = 0,1 , \ldots,$ ; confidence 0.294

223. f13024046.png ; $L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 },$ ; confidence 0.293

224. b120150124.png ; $\mathcal{P} = \{ \mathsf{P} _ { n } ^ { m } : n \in \mathbf{N} \}$ ; confidence 0.293

225. a0109505.png ; $n = \operatorname { dim } M$ ; confidence 0.293

226. b11089084.png ; $b \in \mathbf{R} ^ { n }$ ; confidence 0.293

227. i13006092.png ; $( I + H _ { x } ) \Gamma _ { x } : = \Gamma _ { x } ( t , s ) + \int _ { 0 } ^ { x } H ( t - u ) \Gamma _ { x } ( u , s ) d u = H ( t - s ) , 0 \leq t , s \leq x,$ ; confidence 0.293

228. l13008024.png ; $c _ { 3 } = 1$ ; confidence 0.292

229. k055840273.png ; $\sigma ( A | _ { E \langle \Delta \rangle \mathcal{K} } ) \subset \overline { \Delta }$ ; confidence 0.292

230. z13011078.png ; $\mathsf{E} [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292

231. m06222089.png ; $C_{t}$ ; confidence 0.292

232. p130100104.png ; $\hat{K} \backslash K$ ; confidence 0.292

233. f13010018.png ; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \check{l} _ { n } ( x )$ ; confidence 0.292

234. i13007025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = - \frac { 1 } { 4 \pi } \int _ { \mathbf{R} ^ { 3 } } e ^ { i k \langle \alpha - \alpha ^ { \prime } \rangle x } q ( x ) d x + O \left( \frac { 1 } { k } \right),$ ; confidence 0.292

235. f110160155.png ; $\psi _ { \mathfrak { A } } ^ { l - m } \overline { a }$ ; confidence 0.292

236. m1302509.png ; $\operatorname{vp} \frac { 1 } { x }$ ; confidence 0.292

237. l12017026.png ; $\mathcal{P} = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292

238. f13024030.png ; $:= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right).$ ; confidence 0.292

239. c120180405.png ; $R ( \tilde{ g } ) = W ( \tilde { g } ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.292

240. w1301009.png ; $W ^ { a } ( t ) = \bigcup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0,$ ; confidence 0.291

241. m1200705.png ; $m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t } 1 , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }.$ ; confidence 0.291

242. b13010077.png ; $T \in \mathcal{T}$ ; confidence 0.291

243. l12004016.png ; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291

244. t12013039.png ; $W _ { n } \supset W _ { n + 1}$ ; confidence 0.291

245. v130050118.png ; $u _ { n } ( \mathbf{1} ) = D ^ { ( - n - 1 ) } ( u )$ ; confidence 0.291

246. f120230132.png ; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )+$ ; confidence 0.291

247. q12005068.png ; $v = \sqrt { y ^ { T } H y } \left( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } \right)$ ; confidence 0.291

248. r13008097.png ; $( \varphi_j ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290

249. l13004014.png ; $\{ L ( x , y ) \} _ { \text{span} }$ ; confidence 0.290

250. b1302909.png ; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290

251. a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290

252. h13006047.png ; $\mu ( u , v , w ) = \# \{ ( \alpha ^ { \prime } , \beta ^ { \prime } ) \in A \times B : D \alpha ^ { \prime } \beta ^ { \prime } = D \xi \text { with } \ w = D \xi D \}$ ; confidence 0.290

253. h0472108.png ; $T _ { \delta }$ ; confidence 0.290

254. h13007024.png ; $\mathbf{a} \in R [ t ] ^ { j }$ ; confidence 0.290

255. o130010119.png ; $\Gamma u = 0$ ; confidence 0.290

256. l12003071.png ; $T _ { E } ( M \otimes _ { \mathbf{F}_ p} N) = T _ { E } M \otimes _ { \mathbf{F}_ p} T _ { E } N$ ; confidence 0.290

257. y120010105.png ; $\sigma_{ [ U, V]}$ ; confidence 0.290

258. b13021025.png ; $r , s \in R _ { w }$ ; confidence 0.290

259. w12011074.png ; $\langle . , . \rangle _ { E ^ { * } , E}$ ; confidence 0.290

260. c13007064.png ; $\Leftarrow $ ; confidence 0.290

261. a13029038.png ; $P_{ Y}$ ; confidence 0.290

262. l12004063.png ; $f _ { i } ^ { n } = a u _ { i } ^ { n }$ ; confidence 0.290

263. e13004054.png ; $( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t )$ ; confidence 0.290

264. t1302108.png ; $u ( a ) = u _ { a }$ ; confidence 0.290

265. b12024033.png ; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290

266. a13027061.png ; $x , y \in X _ { n }$ ; confidence 0.290

267. s1202906.png ; $\{ x _ { n_k } \}$ ; confidence 0.290

268. p11015062.png ; $\tau : G \rightarrow G / H$ ; confidence 0.290

269. c130070102.png ; $d _ { 1 } , \ldots , d _ { h }$ ; confidence 0.289

270. d120020233.png ; $g ( \overline { u } _ { 1 } ) = v _ { M }$ ; confidence 0.289

271. i12004019.png ; $K _ { \text{BM} } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - \overline {z} ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - \overline {z} )$ ; confidence 0.289

272. m06282022.png ; $x ^ { * }$ ; confidence 0.289

273. r13010095.png ; $\mathbf{E} _ { 8 }$ ; confidence 0.289

274. b12021049.png ; $\delta _ { k }$ ; confidence 0.289

275. s13049026.png ; $ k = 1 , \ldots , r ( P )$ ; confidence 0.289

276. t12020084.png ; $M _ { 2 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 2 , \ldots , n + 1 } | s _ { k } | \leq 2 ( n + 1 ) ^ { 2 } e ^ { - \theta n },$ ; confidence 0.289

277. f13010061.png ; $\mu \in M _ { \text{C} } ^ {1} ( G )$ ; confidence 0.289

278. c12014019.png ; $F _ { A } = d A + A \bigwedge A$ ; confidence 0.289

279. d13011020.png ; $\sigma _ { x }$ ; confidence 0.289

280. a13029080.png ; $\tilde { f } = \operatorname { id}$ ; confidence 0.289

281. f1300109.png ; $p = \operatorname { char } \mathbf{F} _ { q }$ ; confidence 0.289

282. d130060119.png ; $\operatorname {Bel} _ { Z | Y}$ ; confidence 0.289

283. c120180489.png ; $\lambda _ { g_{ij}} \in C ^ { \infty } ( N )$ ; confidence 0.289

284. b12021013.png ; $\mathfrak{n}^{-}$ ; confidence 0.289

285. g1200503.png ; $\mathcal{L} _ { R }$ ; confidence 0.288

286. b13027057.png ; $K _ { I } ^ { S } ( X )$ ; confidence 0.288

287. z12001039.png ; $ U _{ - 1}$ ; confidence 0.288

288. w12021019.png ; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m I _ { m }$ ; confidence 0.288

289. a12012045.png ; $\mathbf{R} _ { + } ^ { 2 m }$ ; confidence 0.288

290. b12030055.png ; $\mathcal{A} ( \eta ) \phi = \lambda \phi \operatorname { in } \mathbf{R} ^ { N },$ ; confidence 0.288

291. s13059046.png ; $F _ { n } = \frac { 1 } { e _ { n } e _ { n - 1} } , G _ { n } = \frac { d _ { n } } { e _ { n } } ( e_{ 0} = 1 ),$ ; confidence 0.288

292. m130140113.png ; $\| d _ { lm } ^ { p } \|$ ; confidence 0.288

293. m12012080.png ; $( a f ) b = \alpha ( g b )$ ; confidence 0.288

294. a11068075.png ; $a / b$ ; confidence 0.288

295. k13002040.png ; $- \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288

296. m12021020.png ; $M \in \mathcal{K} ^ { n }$ ; confidence 0.288

297. o1300104.png ; $C^{ 1 , \lambda }$ ; confidence 0.288

298. t120200239.png ; $ k \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287

299. b130290167.png ; $h _ { i } = \operatorname { l } _ { A } ( H _ { \mathfrak{m} } ^ { i } ( M ) )$ ; confidence 0.287

300. t130140119.png ; $\underline{\operatorname { dim }} : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.287

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/68. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/68&oldid=45493