Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/54"
(AUTOMATIC EDIT of page 54 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160135.png ; $r _ { | + | 1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160135.png ; $r _ { 12 } ( X _ { 12 } )$ ; confidence 0.576 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840397.png ; $S _ { f } ( z , \overline { \rho } ) = \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }$ ; confidence 0.576 | + | 2. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840397.png ; $S _ { f } ( z , \overline { \rho } ) =\left. \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }\right)$ ; confidence 0.576 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002089.png ; $\| Y \| *$ ; confidence 0.576 | + | 3. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002089.png ; $\| Y \| _{*}$ ; confidence 0.576 |
4. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003039.png ; $f _ { j k l }$ ; confidence 0.576 | 4. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003039.png ; $f _ { j k l }$ ; confidence 0.576 | ||
Line 10: | Line 10: | ||
5. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576 | 5. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576 | ||
− | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002048.png ; $\beta _ { | + | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002048.png ; $\beta _ { n }$ ; confidence 0.575 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103203.png ; $ | + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103203.png ; $u_{m}$ ; confidence 0.575 |
8. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022013.png ; $\eta ( a )$ ; confidence 0.575 | 8. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022013.png ; $\eta ( a )$ ; confidence 0.575 | ||
− | 9. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201603.png ; $l _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x \text { or } l _ { d } ( f ) = f$ ; confidence 0.575 | + | 9. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201603.png ; $l _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x \text { or } l _ { d } ( f ) = f,$ ; confidence 0.575 |
10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006016.png ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575 | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006016.png ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070132.png ; $k \ | + | 11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070132.png ; $k \langle t ^ { i } \square_j \rangle$ ; confidence 0.575 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001079.png ; $C \subset q$ ; confidence 0.575 | + | 12. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001079.png ; $C \subset \text{q}$ ; confidence 0.575 |
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575 | 13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002018.png ; $H : A \times I \rightarrow Z$ ; confidence 0.575 | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002018.png ; $H : A \times mathbf{I} \rightarrow Z$ ; confidence 0.575 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002028.png ; $T$ ; confidence 0.575 | + | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002028.png ; $\mathcal{T}$ ; confidence 0.575 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024033.png ; $\operatorname { | + | 16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024033.png ; $\operatorname { dim } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200902.png ; $\nabla \times H = \frac { 1 } { c } ( \frac { \partial E } { \partial t } + J )$ ; confidence 0.575 | + | 17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200902.png ; $\nabla \times H = \frac { 1 } { c } \left( \frac { \partial E } { \partial t } + J \right)$ ; confidence 0.575 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200104.png ; $\operatorname { div } v = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } ( \frac { \partial \theta } { \partial t } + \nabla \theta | + | 18. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200104.png ; $\operatorname { div } \mathbf{v} = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } \left( \frac { \partial \theta } { \partial t } + \nabla \theta . \mathbf{v} \right) = \alpha ( \theta ) \left( \frac { \partial \theta } { \partial t } + \nabla \theta . \mathbf{v} \right),$ ; confidence 0.575 |
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575 | 19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681024.png ; $ | + | 20. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681024.png ; $\epsilon_{i}$ ; confidence 0.575 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212032.png ; $\ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212032.png ; $\tilde { C }$ ; confidence 0.574 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E )$ ; confidence 0.574 | + | 22. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ).$ ; confidence 0.574 |
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574 | 23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574 | ||
Line 50: | Line 50: | ||
25. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574 | 25. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010543.png ; $F _ { t }$ ; confidence 0.574 | + | 26. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010543.png ; $\mathcal{F} _ { t }$ ; confidence 0.574 |
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303707.png ; $\| x \| = \operatorname { sup } _ { 0 } \leq t \leq 1 \quad | x ( t ) |$ ; confidence 0.574 | 27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303707.png ; $\| x \| = \operatorname { sup } _ { 0 } \leq t \leq 1 \quad | x ( t ) |$ ; confidence 0.574 | ||
− | 28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310107.png ; $\delta > | 1 | + | 28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310107.png ; $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$ ; confidence 0.574 |
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574 | 29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574 | ||
Line 60: | Line 60: | ||
30. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574 | 30. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574 | ||
− | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $ | + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $\xi $ ; confidence 0.574 |
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574 | 32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013056.png ; $V ( Z ) \neq \emptyset$ ; confidence 0.574 | + | 33. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013056.png ; $V ( \tilde{\mathbf{Z}} ) \neq \emptyset$ ; confidence 0.574 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 }$ ; confidence 0.574 | + | 34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 },$ ; confidence 0.574 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125056.png ; $ | + | 35. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f04125056.png ; $\xi_2$ ; confidence 0.574 |
36. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900169.png ; $g \in H$ ; confidence 0.574 | 36. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900169.png ; $g \in H$ ; confidence 0.574 | ||
Line 74: | Line 74: | ||
37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574 | 37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574 | ||
− | 38. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002014.png ; $L _ { 2 } ( R _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 | + | 38. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002014.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ ; confidence 0.574 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d x )$ ; confidence 0.574 |
40. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020107.png ; $Y \neq Z$ ; confidence 0.574 | 40. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020107.png ; $Y \neq Z$ ; confidence 0.574 | ||
− | 41. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007058.png ; $ | + | 41. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007058.png ; $k = O ( 1 )$ ; confidence 0.573 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022035.png ; $M ^ { | + | 42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022035.png ; $M ^ { \wedge }$ ; confidence 0.573 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051022.png ; $b _ { i } \in Z ^ { 0 }$ ; confidence 0.573 | + | 43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051022.png ; $b _ { i } \in \mathbf{Z} ^ { 0 }$ ; confidence 0.573 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018094.png ; $W ( g ) \in \otimes ^ { 4 } E$ ; confidence 0.573 | + | 44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018094.png ; $W ( g ) \in \otimes ^ { 4 } \wedge{E}$ ; confidence 0.573 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050107.png ; $h \in QS ( T , C )$ ; confidence 0.573 | + | 45. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050107.png ; $h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.573 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015066.png ; $G = GL ( n , C )$ ; confidence 0.573 | + | 46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015066.png ; $G = \operatorname{GL} ( n , \mathbf{C} )$ ; confidence 0.573 |
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050017.png ; $M _ { t }$ ; confidence 0.573 | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050017.png ; $M _ { t }$ ; confidence 0.573 | ||
Line 98: | Line 98: | ||
49. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573 | 49. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573 | ||
− | 50. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300206.png ; $ | + | 50. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300206.png ; $2r_2$ ; confidence 0.573 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198074.png ; $G = R ^ { | + | 51. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198074.png ; $G = \mathbf{R} ^ { n }$ ; confidence 0.573 |
52. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007011.png ; $a _ { i j } \in R$ ; confidence 0.573 | 52. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007011.png ; $a _ { i j } \in R$ ; confidence 0.573 | ||
− | 53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014047.png ; $T _ { \phi } = \{ 0 \}$ ; confidence 0.573 | + | 53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014047.png ; $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ ; confidence 0.573 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006057.png ; $E ^ { TF } ( N ) = E ^ { TF } ( Z )$ ; confidence 0.573 | + | 54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006057.png ; $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ ; confidence 0.573 |
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027060.png ; $E / K$ ; confidence 0.573 | 55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027060.png ; $E / K$ ; confidence 0.573 | ||
Line 114: | Line 114: | ||
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009083.png ; $r \rightarrow 1$ ; confidence 0.573 | 57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009083.png ; $r \rightarrow 1$ ; confidence 0.573 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110260.png ; $H ( 1 , G ) = L ^ { 2 } ( R ^ { n } )$ ; confidence 0.572 | + | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110260.png ; $H ( 1 , G ) = L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.572 |
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572 | 59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572 | ||
− | 60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012074.png ; $L ( \mu , \Sigma | Y _ { aug } )$ ; confidence 0.572 | + | 60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012074.png ; $L ( \mu , \Sigma | Y _ { \text{aug} } )$ ; confidence 0.572 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001061.png ; $e _ { | + | 61. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001061.png ; $e _ { p - 2}$ ; confidence 0.572 |
62. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572 | 62. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572 | ||
Line 128: | Line 128: | ||
64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572 | 64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n$ ; confidence 0.572 | + | 65. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n,$ ; confidence 0.572 |
66. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) . d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572 | 66. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) . d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572 | ||
− | 67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T$ ; confidence 0.572 | + | 67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T;$ ; confidence 0.572 |
68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572 | 68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572 | ||
− | 69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034063.png ; $\sum _ { k = 0 } ^ { \infty } | | + | 69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034063.png ; $\sum _ { k = 0 } ^ { \infty } | c _ { k } z ^ { k } | < 2 f ( 0 )$ ; confidence 0.572 |
70. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201509.png ; $g ^ { i }$ ; confidence 0.572 | 70. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201509.png ; $g ^ { i }$ ; confidence 0.572 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { | + | 71. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$ ; confidence 0.572 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840159.png ; $z _ { 0 } \neq z _ { 0 }$ ; confidence 0.572 | + | 72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840159.png ; $z _ { 0 } \neq \overline{z} _ { 0 }$ ; confidence 0.572 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005035.png ; $\ | + | 73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005035.png ; $\langle x , y \rangle _ { R } = x ^ { T } R y$ ; confidence 0.572 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001017.png ; $S _ { f } ( | + | 74. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001017.png ; $S _ { f } ( a ) = \sum _ { p } 1 / p . ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i a } ) )$ ; confidence 0.571 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009092.png ; $ | + | 75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009092.png ; $\operatorname {Coker} \varphi$ ; confidence 0.571 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007035.png ; $F ^ { k / | + | 76. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007035.png ; $F ^ { k / l } ( 2 , m ) =$ ; confidence 0.571 |
77. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200306.png ; $v _ { g }$ ; confidence 0.571 | 77. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200306.png ; $v _ { g }$ ; confidence 0.571 | ||
− | 78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I$ ; confidence 0.571 | + | 78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I.$ ; confidence 0.571 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004053.png ; $CF$ ; confidence 0.571 | + | 79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004053.png ; $\operatorname {CF}$ ; confidence 0.571 |
80. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170111.png ; $V$ ; confidence 0.571 | 80. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170111.png ; $V$ ; confidence 0.571 | ||
Line 162: | Line 162: | ||
81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571 | 81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571 | ||
− | 82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018056.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda$ ; confidence 0.571 | + | 82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018056.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda,$ ; confidence 0.571 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019019.png ; $( D ) \in K _ { 0 } ^ { alg } ( C _ { 1 } \ | + | 83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019019.png ; $\operatorname {ind}( D ) \in K _ { 0 } ^ { alg } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ),$ ; confidence 0.571 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007044.png ; $| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } | ^ { 2 } \ll$ ; confidence 0.571 | + | 84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007044.png ; $\left| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \right| ^ { 2 } \ll$ ; confidence 0.571 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040071.png ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { R } ( \mathfrak { h } _ { R } , R )$ ; confidence 0.571 | + | 85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040071.png ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ ; confidence 0.571 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $ | + | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $s$ ; confidence 0.571 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \ | + | 87. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }$ ; confidence 0.571 |
88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571 | 88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571 | ||
− | 89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008040.png ; $E [ W _ { p } ] = \infty$ ; confidence 0.571 | + | 89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008040.png ; $\mathsf{E} [ W _ { p } ] = \infty$ ; confidence 0.571 |
90. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571 | 90. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021017.png ; $sup$ ; confidence 0.571 | + | 91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021017.png ; $\operatorname {sup}$ ; confidence 0.571 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } n ( Y _ { s } ) d l _ { s } , t \geq 0$ ; confidence 0.571 | + | 92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } , t \geq 0,$ ; confidence 0.571 |
93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110171.png ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571 | 93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110171.png ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571 | ||
Line 188: | Line 188: | ||
94. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571 | 94. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571 | ||
− | 95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005039.png ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0 } \\ { a , } & { x = 0 } \end{array} \right.$ ; confidence 0.571 | + | 95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005039.png ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0, } \\ { a , } & { x = 0, } \end{array} \right.$ ; confidence 0.571 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$ ; confidence 0.570 |
97. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570 | 97. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022015.png ; $G _ { g } \leq SL _ { 2 } ( R )$ ; confidence 0.570 | + | 98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022015.png ; $G _ { g } \leq \operatorname {SL} _ { 2 } ( \mathbf{R} )$ ; confidence 0.570 |
99. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570 | 99. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $c$ ; confidence 0.570 |
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032033.png ; $H _ { 1 }$ ; confidence 0.570 | 101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032033.png ; $H _ { 1 }$ ; confidence 0.570 | ||
− | 102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005011.png ; $ | + | 102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005011.png ; $k_ j > 0$ ; confidence 0.570 |
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012037.png ; $A v$ ; confidence 0.570 | 103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012037.png ; $A v$ ; confidence 0.570 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008014.png ; $N ( p )$ ; confidence 0.570 | + | 104. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008014.png ; $N ( \mathfrak{p} )$ ; confidence 0.570 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011015.png ; $B _ { \alpha } = \{ x \in R : \xi ( x ) \geq \alpha \}$ ; confidence 0.570 | + | 105. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011015.png ; $B _ { \alpha } = \{ x \in \mathbf{R} : \xi ( x ) \geq \alpha \}$ ; confidence 0.570 |
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021073.png ; $l = 0$ ; confidence 0.569 | 106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021073.png ; $l = 0$ ; confidence 0.569 | ||
Line 214: | Line 214: | ||
107. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D$ ; confidence 0.569 | 107. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D$ ; confidence 0.569 | ||
− | 108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306409.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a )$ ; confidence 0.569 | + | 108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306409.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a ),$ ; confidence 0.569 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012025.png ; $\lambda ( x ) = \int _ { R } e ^ { - i x t } d \mu ( t )$ ; confidence 0.569 | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012025.png ; $\lambda ( x ) = \int _ { \mathbf{R} } e ^ { - i x t } d \mu ( t ),$ ; confidence 0.569 |
110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569 | 110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569 | ||
− | 111. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002061.png ; $\ | + | 111. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002061.png ; $\mu_{ \gamma , t}$ ; confidence 0.569 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { | + | 112. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { n } ^ { l } )$ ; confidence 0.569 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015029.png ; $ | + | 113. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015029.png ; $r_{1} / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100121.png ; $SL _ { | + | 114. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100121.png ; $\operatorname {SL} _ { n }$ ; confidence 0.569 |
115. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569 | 115. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569 | ||
Line 232: | Line 232: | ||
116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007029.png ; $\lambda j > 0$ ; confidence 0.569 | 116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007029.png ; $\lambda j > 0$ ; confidence 0.569 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002023.png ; $P ( A _ { 1 } \ | + | 117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002023.png ; $\mathsf{P} ( A _ { 1 } \bigcap \ldots \bigcap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }.$ ; confidence 0.569 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } }$ ; confidence 0.569 | + | 118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } },$ ; confidence 0.569 |
119. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090109.png ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569 | 119. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090109.png ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569 | ||
Line 240: | Line 240: | ||
120. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569 | 120. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014022.png ; $\operatorname { lim } _ { | + | 121. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014022.png ; $\operatorname { lim } _ { n \rightarrow \infty } \| T ^ { n } \| ^ { 1 / n } = 0$ ; confidence 0.569 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001070.png ; $R ^ { 2 | + | 122. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001070.png ; $\mathbf{R} ^ { 2 n + 2 }$ ; confidence 0.569 |
123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569 | 123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569 | ||
− | 124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049020.png ; $B _ { | + | 124. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049020.png ; $B _ { l_{1} , l _ { 2 } } ( x )$ ; confidence 0.569 |
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002011.png ; $J ^ { \prime }$ ; confidence 0.569 | 125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002011.png ; $J ^ { \prime }$ ; confidence 0.569 | ||
− | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050013.png ; $W ^ { | + | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050013.png ; $W ^ { o } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569 |
127. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065360/m06536024.png ; $j = 1 , \dots , k$ ; confidence 0.568 | 127. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065360/m06536024.png ; $j = 1 , \dots , k$ ; confidence 0.568 | ||
− | 128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066072.png ; $ | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066072.png ; $\text{l} ^ { \infty }$ ; confidence 0.568 |
129. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029012.png ; $i = 0 , \dots , n + 1$ ; confidence 0.568 | 129. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029012.png ; $i = 0 , \dots , n + 1$ ; confidence 0.568 | ||
− | 130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007025.png ; $Z _ { | + | 130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007025.png ; $\mathbf{Z} _ { q , n }$ ; confidence 0.568 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400120.png ; $p \in h _ { R } ^ { * } \subset h ^ { * }$ ; confidence 0.568 | + | 131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400120.png ; $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$ ; confidence 0.568 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070158.png ; $ | + | 132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070158.png ; $a _ { 1 } ( g )$ ; confidence 0.568 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015036.png ; $( g ) = \{ 0 \}$ ; confidence 0.568 | + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015036.png ; $\operatorname {ad} ( \mathfrak{g} ) = \{ 0 \}$ ; confidence 0.568 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023028.png ; $f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { | + | 134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023028.png ; $f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { \text{l} } f$ ; confidence 0.568 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840298.png ; $\ | + | 135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840298.png ; $\mathcal{K} _ { 1 }$ ; confidence 0.568 |
136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568 | 136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568 | ||
− | 137. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012023.png ; $F : C \rightarrow C ^ { \prime }$ ; confidence 0.568 | + | 137. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012023.png ; $F : \mathcal{C} \rightarrow \mathcal{C} ^ { \prime }$ ; confidence 0.568 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013029.png ; $r < | + | 138. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013029.png ; $r < r_{0}$ ; confidence 0.568 |
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197057.png ; $k = 1,2 , \dots$ ; confidence 0.568 | 139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197057.png ; $k = 1,2 , \dots$ ; confidence 0.568 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012022.png ; $ | + | 140. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012022.png ; $a ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x ).$ ; confidence 0.568 |
141. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007057.png ; $v \in H _ { 0 }$ ; confidence 0.568 | 141. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007057.png ; $v \in H _ { 0 }$ ; confidence 0.568 | ||
− | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.567 | + | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|,$ ; confidence 0.567 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300301.png ; $H = ( h _ { i | + | 143. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h1300301.png ; $H = ( h _ { i , j} )$ ; confidence 0.567 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001033.png ; $\left. \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + b ) = 0 } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) ( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } v _ { 0 } ) = \Delta \theta _ { 0 } } \\ { \operatorname { div } v _ { 0 } = 0 } \end{array} \right.$ ; confidence 0.567 | + | 144. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001033.png ; $\left. \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + \mathbf{b} ) = 0, } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) \left( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } . \mathbf{v} _ { 0 } \right) = \Delta \theta _ { 0 }, } \\ { \operatorname { div } \mathbf{v} _ { 0 } = 0. } \end{array} \right.$ ; confidence 0.567 |
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200141.png ; $0 \neq a \in G _ { l }$ ; confidence 0.567 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200141.png ; $0 \neq a \in G _ { l }$ ; confidence 0.567 | ||
− | 146. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021044.png ; $2 ^ { | + | 146. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021044.png ; $2 ^ { \alpha }$ ; confidence 0.567 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020095.png ; $\operatorname { dim } \mathfrak { g } ^ { \pm | + | 147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020095.png ; $\operatorname { dim } \mathfrak { g } ^ { \pm \alpha _ { i }} = 1$ ; confidence 0.567 |
148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567 | 148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011031.png ; $k f ( k , n ) \approx \mu _ { n } , k = 1,2 , \ldots$ ; confidence 0.567 | + | 149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011031.png ; $k f _{( k , n )} \approx \mu _ { n } , k = 1,2 , \ldots,$ ; confidence 0.567 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A } \text { for } k = 1,2 , \ldots$ ; confidence 0.567 | + | 150. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A } \text { for } k = 1,2 , \ldots,$ ; confidence 0.567 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110174.png ; $SS f$ ; confidence 0.567 | + | 151. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110174.png ; $\text{SS} \ f$ ; confidence 0.567 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110132.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { P } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x )$ ; confidence 0.567 | + | 152. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110132.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { \mathsf{P} } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x ).$ ; confidence 0.567 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200203.png ; $\Gamma _ { | + | 153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200203.png ; $\Gamma _ { n } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567 |
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055049.png ; $\iota ( M )$ ; confidence 0.567 | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055049.png ; $\iota ( M )$ ; confidence 0.567 | ||
− | 155. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080107.png ; $\infty | + | 155. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080107.png ; $\infty \pm$ ; confidence 0.567 |
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567 | 156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567 | ||
Line 314: | Line 314: | ||
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567 | 157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567 | ||
− | 158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008021.png ; $\sigma _ { | + | 158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008021.png ; $\sigma _ { \mathfrak{B} }$ ; confidence 0.567 |
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280148.png ; $E \subseteq \hat { G }$ ; confidence 0.567 | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280148.png ; $E \subseteq \hat { G }$ ; confidence 0.567 | ||
− | 160. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232074.png ; $ | + | 160. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232074.png ; $a = d + e$ ; confidence 0.567 |
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567 | 161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567 | ||
Line 324: | Line 324: | ||
162. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566 | 162. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566 | ||
− | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017040.png ; $K = R ^ { | + | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017040.png ; $K = \mathbf{R} ^ { m }$ ; confidence 0.566 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406027.png ; $ | + | 164. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406027.png ; $\phi_{0}$ ; confidence 0.566 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020015.png ; $[ h _ { i } e _ { j } ] = | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020015.png ; $[ h _ { i } e _ { j } ] = a _ { ij } e _ { j }$ ; confidence 0.566 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } P.V. \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s ( a.e. )$ ; confidence 0.566 | + | 166. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P.V.} \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) .$ ; confidence 0.566 |
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280142.png ; $S _ { E }$ ; confidence 0.566 | 167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280142.png ; $S _ { E }$ ; confidence 0.566 | ||
− | 168. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020167.png ; $ | + | 168. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020167.png ; $\tilde{u} _ { 1 } \geq 0$ ; confidence 0.566 |
169. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039025.png ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566 | 169. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039025.png ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566 | ||
Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566 | 170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { | + | 171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N } \langle S _ { i } | \mathcal{P} | S _ { i+ 1 } \rangle$ ; confidence 0.566 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030025.png ; $\square ^ { 0 } O _ { H } ^ { ( k ) }$ ; confidence 0.566 | + | 172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030025.png ; $\square ^ { 0 } \mathcal{O} _ { \mathcal{H} } ^ { ( k ) }$ ; confidence 0.566 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003027.png ; $\{ g _ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003027.png ; $\{ g _ { n , m} : n , m \in \mathbf{Z} \}$ ; confidence 0.566 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052021.png ; $\| x _ { n | + | 174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052021.png ; $\| x _ { n + 1} - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } )$ ; confidence 0.566 |
175. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012210/a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566 | 175. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012210/a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566 | ||
− | 176. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010128.png ; $\ | + | 176. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010128.png ; $\overtilde { A } ( R )$ ; confidence 0.566 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007057.png ; $k = \frac { \gamma | + | 177. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007057.png ; $k = \frac { \gamma b ^ { 2 } \pi ^ { 2 } } { 12 \mu U a ^ { 2 } ( 1 - \lambda ) ^ { 2 } }.$ ; confidence 0.566 |
178. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070100/o07010011.png ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565 | 178. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070100/o07010011.png ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040567.png ; $\Lambda _ { D } \operatorname { | + | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040567.png ; $\Lambda _ { \mathcal{D} \operatorname { Thm } \mathcal{D}$ ; confidence 0.565 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006049.png ; $C ( Y , \ | + | 180. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006049.png ; $\mathcal{C} ( Y , \hat{X} )$ ; confidence 0.565 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006010.png ; $ | + | 181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006010.png ; $u_m ( x , t )$ ; confidence 0.565 |
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565 | 182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080146.png ; $\{ F ^ { | + | 183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080146.png ; $\{ F ^ { n } \}$ ; confidence 0.565 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201408.png ; $N ( x ) = \lfloor x + 1 / 2$ ; confidence 0.565 | + | 184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201408.png ; $N ( x ) = \lfloor x + 1 / 2 \rfloor$ ; confidence 0.565 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009036.png ; $2 | + | 185. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009036.png ; $2 r_ 2 ( k )$ ; confidence 0.565 |
186. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011024.png ; $S ^ { - 1 }$ ; confidence 0.565 | 186. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011024.png ; $S ^ { - 1 }$ ; confidence 0.565 | ||
Line 374: | Line 374: | ||
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565 | 187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565 | ||
− | 188. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } +$ ; confidence 0.565 | + | 188. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } + \text{const}$ ; confidence 0.565 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004022.png ; $ | + | 189. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004022.png ; $K_{\text{O}} ( f )$ ; confidence 0.565 |
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565 | 190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565 | ||
− | 191. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 }$ ; confidence 0.565 | + | 191. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 },$ ; confidence 0.565 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201107.png ; $ | + | 192. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201107.png ; $I_{ \{ x \} } ( . )$ ; confidence 0.565 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027030.png ; $R _ { | + | 193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027030.png ; $R _ { l } ^ { B }$ ; confidence 0.564 |
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564 | 194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049052.png ; $E \in A$ ; confidence 0.564 | + | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049052.png ; $E \in \mathcal{A}$ ; confidence 0.564 |
196. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018054.png ; $s = 1$ ; confidence 0.564 | 196. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018054.png ; $s = 1$ ; confidence 0.564 | ||
Line 394: | Line 394: | ||
197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564 | 197. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564 | ||
− | 198. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160143.png ; $\{ t ( n ) , a ( n )$ ; confidence 0.564 | + | 198. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160143.png ; $\text{ATIMEALT} [ t ( n ) , a ( n )]$ ; confidence 0.564 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010122.png ; $\ | + | 199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010122.png ; $\overline { H } ^ { 1 } ( D )$ ; confidence 0.564 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070103.png ; $ | + | 200. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070103.png ; $\leq d$ ; confidence 0.564 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020082.png ; $- \ | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020082.png ; $\text{degree}- \alpha_{i}$ ; confidence 0.564 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080100.png ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] , T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right]$ ; confidence 0.564 | + | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080100.png ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] , T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right].$ ; confidence 0.564 |
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005048.png ; $q \geq 4$ ; confidence 0.564 | 203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005048.png ; $q \geq 4$ ; confidence 0.564 | ||
Line 410: | Line 410: | ||
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564 | 205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564 | ||
− | 206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110221.png ; $\operatorname { sup } _ { X \in \Phi } \| | + | 206. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110221.png ; $\operatorname { sup } _ { X \in \Phi } \| a ^ { ( k ) } ( X ) \| _ { G _ { X } } m ( X ) ^ { - 1 } < \infty.$ ; confidence 0.564 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110126.png ; $Op ( a ) Op ( b ) = Op ( a \circ b )$ ; confidence 0.564 | + | 207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110126.png ; $\operatorname {Op} ( a ) \operatorname {Op} ( b ) = \operatorname {Op} ( a \circ b )$ ; confidence 0.564 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290189.png ; $R = \oplus _ { | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290189.png ; $R = \oplus _ { n \geq 0} R _ { n }$ ; confidence 0.563 |
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563 | 209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240280.png ; $\hat { \sigma } \hat { \psi } = \| d \| ( MS _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563 | + | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240280.png ; $\hat { \sigma }_{ \hat { \psi }} = \| \mathbf{d} \| ( text{MS} _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 }$ ; confidence 0.563 | + | 211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 },$ ; confidence 0.563 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040188.png ; $ | + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040188.png ; $D_i$ ; confidence 0.563 |
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010277.png ; $C$ ; confidence 0.563 | 213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010277.png ; $C$ ; confidence 0.563 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040606.png ; $\mathfrak { M } \ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040606.png ; $\mathfrak { M } \models _ { \mathcal{S} } _ { P }} \varphi$ ; confidence 0.563 |
215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563 | 215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563 | ||
Line 432: | Line 432: | ||
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040711.png ; $X ^ { \omega }$ ; confidence 0.563 | 216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040711.png ; $X ^ { \omega }$ ; confidence 0.563 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201702.png ; $\ | + | 217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201702.png ; $\tilde { K } ^ { 2 }$ ; confidence 0.563 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1$ ; confidence 0.563 | + | 218. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1,$ ; confidence 0.563 |
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007048.png ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563 | 219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007048.png ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563 | ||
Line 444: | Line 444: | ||
222. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007064.png ; $U ^ { 6 } = I$ ; confidence 0.563 | 222. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007064.png ; $U ^ { 6 } = I$ ; confidence 0.563 | ||
− | 223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013037.png ; $Q ( \chi )$ ; confidence 0.563 | + | 223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013037.png ; $\mathbf{Q} ( \chi )$ ; confidence 0.563 |
224. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563 | 224. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010040.png ; $\hat { K } = C \backslash \Omega _ { \infty }$ ; confidence 0.562 | + | 225. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010040.png ; $\hat { K } = \mathbf{C} \backslash \Omega _ { \infty }$ ; confidence 0.562 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300108.png ; $\{ a ^ { | + | 226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300108.png ; $\{ a ^ { n } \}$ ; confidence 0.562 |
227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130115.png ; $[ . ]$ ; confidence 0.562 | 227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130115.png ; $[ . ]$ ; confidence 0.562 | ||
Line 458: | Line 458: | ||
229. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003051.png ; $a \| b$ ; confidence 0.562 | 229. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003051.png ; $a \| b$ ; confidence 0.562 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006016.png ; $\{ | x - | + | 230. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006016.png ; $\{ | x - x_{ 0} | < a T \}$ ; confidence 0.562 |
231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562 | 231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n }$ ; confidence 0.562 | + | 232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n },$ ; confidence 0.562 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240393.png ; $\operatorname { tr } ( M _ { H } ( M _ { H } + M _ { E } ) ^ { - 1 } ) > | + | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240393.png ; $\operatorname { tr } ( \mathbf{M} _ { \mathcal{H} } ( \mathbf{M} _ { H } + \mathbf{M} _ { \mathsf{E} } ) ^ { - 1 } ) > \text{const}$ ; confidence 0.562 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002061.png ; $X _ { n } \in M _ { F }$ ; confidence 0.562 | + | 234. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002061.png ; $\overline{X} _ { n } \in M _ { F }$ ; confidence 0.562 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419073.png ; $v _ { | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419073.png ; $v _ { t }$ ; confidence 0.562 |
236. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562 | 236. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562 | ||
Line 474: | Line 474: | ||
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562 | 237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562 | ||
− | 238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012061.png ; $R = F | + | 238. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012061.png ; $R = F \langle x , y \rangle$ ; confidence 0.562 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028057.png ; $( Z / 2 ) ^ { k }$ ; confidence 0.562 | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028057.png ; $( \mathbf{Z} / 2 ) ^ { k }$ ; confidence 0.562 |
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562 | 240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562 | ||
Line 482: | Line 482: | ||
241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562 | 241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562 | ||
− | 242. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004026.png ; $r | + | 242. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004026.png ; $r \geq n$ ; confidence 0.561 |
243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002019.png ; $H _ { 0 }$ ; confidence 0.561 | 243. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002019.png ; $H _ { 0 }$ ; confidence 0.561 | ||
Line 488: | Line 488: | ||
244. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561 | 244. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561 | ||
− | 245. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005025.png ; $\frac { Ma } { Re } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda }$ ; confidence 0.561 | + | 245. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005025.png ; $\frac { \text{Ma} } { \text{Re} } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda },$ ; confidence 0.561 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110179.png ; $b ^ { s } - 1$ ; confidence 0.561 | + | 246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110179.png ; $b ^ { s } _{m - 1}$ ; confidence 0.561 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140164.png ; $q _ { \Lambda } : Z ^ { n } \rightarrow Z$ ; confidence 0.561 | + | 247. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140164.png ; $q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z}$ ; confidence 0.561 |
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024056.png ; $w ^ { 2 }$ ; confidence 0.561 | 248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024056.png ; $w ^ { 2 }$ ; confidence 0.561 | ||
− | 249. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000186.png ; $\lambda x | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000186.png ; $\lambda x . f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290112.png ; $ | + | 250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290112.png ; $L ^ { X }$ ; confidence 0.561 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017024.png ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda | + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017024.png ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda a } \beta ( a ) \Pi ( a ) d a = 1,$ ; confidence 0.561 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020135.png ; $\ | + | 252. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020135.png ; $\lambda_{l}$ ; confidence 0.561 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050200.png ; $p ( n )$ ; confidence 0.561 | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050200.png ; $\mathbf{p} ( n )$ ; confidence 0.561 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043071.png ; $GL _ { q } ( 2 )$ ; confidence 0.561 | + | 254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043071.png ; $\operatorname {GL} _ { q } ( 2 )$ ; confidence 0.561 |
255. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560 | 255. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560 | ||
− | 256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014035.png ; $a ( z ) , b ( z ) \in F _ { q } [ z ]$ ; confidence 0.560 | + | 256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014035.png ; $a ( z ) , b ( z ) \in \mathbf{F} _ { q } [ z ]$ ; confidence 0.560 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017075.png ; $p , q \in P _ { | + | 257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017075.png ; $p , q \in P _ { n }$ ; confidence 0.560 |
258. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560 | 258. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560 | ||
Line 518: | Line 518: | ||
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043015.png ; $c , d \in C$ ; confidence 0.560 | 259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043015.png ; $c , d \in C$ ; confidence 0.560 | ||
− | 260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.560 | + | 260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }.$ ; confidence 0.560 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002024.png ; $\Delta = | + | 261. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002024.png ; $\Delta = o ( \lambda )$ ; confidence 0.560 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013032.png ; $P _ { \sigma } + P _ { \tau } =$ ; confidence 0.560 | + | 262. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013032.png ; $P _ { \sigma } + P _ { \tau } =\operatorname {id}$ ; confidence 0.560 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022029.png ; $\operatorname { | + | 263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022029.png ; $\operatorname { spec } ( M , \Delta )$ ; confidence 0.560 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520249.png ; $\overline { b }$ ; confidence 0.560 | + | 264. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520249.png ; $\overline { b }_j$ ; confidence 0.560 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002024.png ; $\overline { f } - ap = - \infty$ ; confidence 0.560 | + | 265. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002024.png ; $\overline { f } _{-\text{ap}} = - \infty$ ; confidence 0.560 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009051.png ; $f \in H ^ { \otimes N }$ ; confidence 0.560 | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009051.png ; $f \in H ^ { \hat{\otimes} N }$ ; confidence 0.560 |
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009051.png ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560 | 267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009051.png ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560 | ||
Line 536: | Line 536: | ||
268. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600190.png ; $H _ { f }$ ; confidence 0.560 | 268. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600190.png ; $H _ { f }$ ; confidence 0.560 | ||
− | 269. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011014.png ; $, | + | 269. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011014.png ; $260,430$ ; confidence 0.560 |
270. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560 | 270. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k12002010.png ; $c _ { 1 } ( M ) _ { R } < 0$ ; confidence 0.560 | + | 271. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k12002010.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } < 0$ ; confidence 0.560 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120107.png ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O ( \operatorname { ln } \frac { 1 } { t } ) ^ { - 1 / 2 } )$ ; confidence 0.560 | + | 272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120107.png ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O \left{ \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / 2 } \right).$ ; confidence 0.560 |
273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560 | 273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752033.png ; $N \in M _ { \ | + | 274. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752033.png ; $N \in M _ { m \times n } ( K )$ ; confidence 0.560 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900232.png ; $III _ { 0 }$ ; confidence 0.560 | + | 275. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900232.png ; $\mathbf{III} _ { 0 }$ ; confidence 0.560 |
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560 | 276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560 | ||
− | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240337.png ; $ | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240337.png ; $\mathbf{F}$ ; confidence 0.560 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201103.png ; $f : S \rightarrow [ 0 , + \infty )$ ; confidence 0.560 | + | 278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201103.png ; $f : \mathcal{S} \rightarrow [ 0 , + \infty )$ ; confidence 0.560 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008069.png ; $ | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008069.png ; $\pm$ ; confidence 0.560 |
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100202.png ; $v$ ; confidence 0.560 | 280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100202.png ; $v$ ; confidence 0.560 | ||
− | 281. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014040.png ; $E _ { 7 }$ ; confidence 0.560 | + | 281. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014040.png ; $\tilde{\mathbf{E}} _ { 7 }$ ; confidence 0.560 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \text { as } n \rightarrow \infty$ ; confidence 0.559 | + | 282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \text { as } n \rightarrow \infty.$ ; confidence 0.559 |
283. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452012.png ; $P \subset R$ ; confidence 0.559 | 283. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452012.png ; $P \subset R$ ; confidence 0.559 | ||
Line 568: | Line 568: | ||
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559 | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png ; $A = H _ { | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png ; $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$ ; confidence 0.559 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016017.png ; $ | + | 286. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016017.png ; $R_{h}$ ; confidence 0.559 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040509.png ; $\ | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040509.png ; $\text{A}$ ; confidence 0.559 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301701.png ; $\{ x _ { t } : t \in Z \}$ ; confidence 0.559 | + | 288. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301701.png ; $\{ x _ { t } : t \in \mathbf{Z} \}$ ; confidence 0.559 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031081.png ; $\{ z \in A : z | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031081.png ; $\{ z \in A : z a = a z \text { for each } a \in A \}$ ; confidence 0.559 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040093.png ; $R : G \rightarrow V ^ { * }$ ; confidence 0.559 | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040093.png ; $\check{R} : G \rightarrow V ^ { * }$ ; confidence 0.559 |
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070137.png ; $S _ { n }$ ; confidence 0.559 | 291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070137.png ; $S _ { n }$ ; confidence 0.559 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003042.png ; $\psi = \Psi ^ { \prime }$ ; confidence 0.559 | + | 292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003042.png ; $\psi = \Psi ^ { \prime } ^{2}$ ; confidence 0.559 |
293. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022062.png ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559 | 293. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022062.png ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202902.png ; $\sum x _ { | + | 294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202902.png ; $\sum x _ { k }$ ; confidence 0.559 |
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559 | 295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559 | ||
− | 296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011022.png ; $P = M = | + | 296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011022.png ; $\mathbf{P} = \mathbf{M} = \mathbf{J} = 0$ ; confidence 0.559 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016047.png ; $ | + | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016047.png ; $\operatorname {rank} ( A ) = r$ ; confidence 0.559 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026056.png ; $( L _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1$ ; confidence 0.559 | + | 298. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026056.png ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1,$ ; confidence 0.559 |
299. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005010.png ; $1 \leq j \leq J$ ; confidence 0.559 | 299. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005010.png ; $1 \leq j \leq J$ ; confidence 0.559 | ||
− | 300. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007059.png ; $R _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559 | + | 300. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007059.png ; $\mathbf{R} _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559 |
Revision as of 23:35, 23 April 2020
List
1. ; $r _ { 12 } ( X _ { 12 } )$ ; confidence 0.576
2. ; $S _ { f } ( z , \overline { \rho } ) =\left. \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }\right)$ ; confidence 0.576
3. ; $\| Y \| _{*}$ ; confidence 0.576
4. ; $f _ { j k l }$ ; confidence 0.576
5. ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576
6. ; $\beta _ { n }$ ; confidence 0.575
7. ; $u_{m}$ ; confidence 0.575
8. ; $\eta ( a )$ ; confidence 0.575
9. ; $l _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x \text { or } l _ { d } ( f ) = f,$ ; confidence 0.575
10. ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575
11. ; $k \langle t ^ { i } \square_j \rangle$ ; confidence 0.575
12. ; $C \subset \text{q}$ ; confidence 0.575
13. ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575
14. ; $H : A \times mathbf{I} \rightarrow Z$ ; confidence 0.575
15. ; $\mathcal{T}$ ; confidence 0.575
16. ; $\operatorname { dim } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575
17. ; $\nabla \times H = \frac { 1 } { c } \left( \frac { \partial E } { \partial t } + J \right)$ ; confidence 0.575
18. ; $\operatorname { div } \mathbf{v} = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } \left( \frac { \partial \theta } { \partial t } + \nabla \theta . \mathbf{v} \right) = \alpha ( \theta ) \left( \frac { \partial \theta } { \partial t } + \nabla \theta . \mathbf{v} \right),$ ; confidence 0.575
19. ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575
20. ; $\epsilon_{i}$ ; confidence 0.575
21. ; $\tilde { C }$ ; confidence 0.574
22. ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ).$ ; confidence 0.574
23. ; $i = 1 , \dots , n$ ; confidence 0.574
24. ; $C$ ; confidence 0.574
25. ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574
26. ; $\mathcal{F} _ { t }$ ; confidence 0.574
27. ; $\| x \| = \operatorname { sup } _ { 0 } \leq t \leq 1 \quad | x ( t ) |$ ; confidence 0.574
28. ; $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$ ; confidence 0.574
29. ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574
30. ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574
31. ; $\xi $ ; confidence 0.574
32. ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574
33. ; $V ( \tilde{\mathbf{Z}} ) \neq \emptyset$ ; confidence 0.574
34. ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 },$ ; confidence 0.574
35. ; $\xi_2$ ; confidence 0.574
36. ; $g \in H$ ; confidence 0.574
37. ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574
38. ; $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ ; confidence 0.574
39. ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d x )$ ; confidence 0.574
40. ; $Y \neq Z$ ; confidence 0.574
41. ; $k = O ( 1 )$ ; confidence 0.573
42. ; $M ^ { \wedge }$ ; confidence 0.573
43. ; $b _ { i } \in \mathbf{Z} ^ { 0 }$ ; confidence 0.573
44. ; $W ( g ) \in \otimes ^ { 4 } \wedge{E}$ ; confidence 0.573
45. ; $h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.573
46. ; $G = \operatorname{GL} ( n , \mathbf{C} )$ ; confidence 0.573
47. ; $M _ { t }$ ; confidence 0.573
48. ; $x _ { 1 } ^ { * } , \ldots , x _ { n } ^ { * }$ ; confidence 0.573
49. ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573
50. ; $2r_2$ ; confidence 0.573
51. ; $G = \mathbf{R} ^ { n }$ ; confidence 0.573
52. ; $a _ { i j } \in R$ ; confidence 0.573
53. ; $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ ; confidence 0.573
54. ; $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ ; confidence 0.573
55. ; $E / K$ ; confidence 0.573
56. ; $\overline { t _ { 0 } } = t _ { 0 }$ ; confidence 0.573
57. ; $r \rightarrow 1$ ; confidence 0.573
58. ; $H ( 1 , G ) = L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.572
59. ; $\chi \in R ^ { x }$ ; confidence 0.572
60. ; $L ( \mu , \Sigma | Y _ { \text{aug} } )$ ; confidence 0.572
61. ; $e _ { p - 2}$ ; confidence 0.572
62. ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572
63. ; $u = u ( t )$ ; confidence 0.572
64. ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572
65. ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n,$ ; confidence 0.572
66. ; $D ^ { 2 } f ( x ^ { k } ) . d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572
67. ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T;$ ; confidence 0.572
68. ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572
69. ; $\sum _ { k = 0 } ^ { \infty } | c _ { k } z ^ { k } | < 2 f ( 0 )$ ; confidence 0.572
70. ; $g ^ { i }$ ; confidence 0.572
71. ; $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$ ; confidence 0.572
72. ; $z _ { 0 } \neq \overline{z} _ { 0 }$ ; confidence 0.572
73. ; $\langle x , y \rangle _ { R } = x ^ { T } R y$ ; confidence 0.572
74. ; $S _ { f } ( a ) = \sum _ { p } 1 / p . ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i a } ) )$ ; confidence 0.571
75. ; $\operatorname {Coker} \varphi$ ; confidence 0.571
76. ; $F ^ { k / l } ( 2 , m ) =$ ; confidence 0.571
77. ; $v _ { g }$ ; confidence 0.571
78. ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I.$ ; confidence 0.571
79. ; $\operatorname {CF}$ ; confidence 0.571
80. ; $V$ ; confidence 0.571
81. ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571
82. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda,$ ; confidence 0.571
83. ; $\operatorname {ind}( D ) \in K _ { 0 } ^ { alg } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ),$ ; confidence 0.571
84. ; $\left| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \right| ^ { 2 } \ll$ ; confidence 0.571
85. ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ ; confidence 0.571
86. ; $s$ ; confidence 0.571
87. ; $K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }$ ; confidence 0.571
88. ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571
89. ; $\mathsf{E} [ W _ { p } ] = \infty$ ; confidence 0.571
90. ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571
91. ; $\operatorname {sup}$ ; confidence 0.571
92. ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } , t \geq 0,$ ; confidence 0.571
93. ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571
94. ; $( k _ { c } , R _ { c } )$ ; confidence 0.571
95. ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0, } \\ { a , } & { x = 0, } \end{array} \right.$ ; confidence 0.571
96. ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$ ; confidence 0.570
97. ; $j = 1 , \dots , 8$ ; confidence 0.570
98. ; $G _ { g } \leq \operatorname {SL} _ { 2 } ( \mathbf{R} )$ ; confidence 0.570
99. ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570
100. ; $c$ ; confidence 0.570
101. ; $H _ { 1 }$ ; confidence 0.570
102. ; $k_ j > 0$ ; confidence 0.570
103. ; $A v$ ; confidence 0.570
104. ; $N ( \mathfrak{p} )$ ; confidence 0.570
105. ; $B _ { \alpha } = \{ x \in \mathbf{R} : \xi ( x ) \geq \alpha \}$ ; confidence 0.570
106. ; $l = 0$ ; confidence 0.569
107. ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D$ ; confidence 0.569
108. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a ),$ ; confidence 0.569
109. ; $\lambda ( x ) = \int _ { \mathbf{R} } e ^ { - i x t } d \mu ( t ),$ ; confidence 0.569
110. ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569
111. ; $\mu_{ \gamma , t}$ ; confidence 0.569
112. ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { n } ^ { l } )$ ; confidence 0.569
113. ; $r_{1} / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569
114. ; $\operatorname {SL} _ { n }$ ; confidence 0.569
115. ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569
116. ; $\lambda j > 0$ ; confidence 0.569
117. ; $\mathsf{P} ( A _ { 1 } \bigcap \ldots \bigcap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }.$ ; confidence 0.569
118. ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } },$ ; confidence 0.569
119. ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569
120. ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569
121. ; $\operatorname { lim } _ { n \rightarrow \infty } \| T ^ { n } \| ^ { 1 / n } = 0$ ; confidence 0.569
122. ; $\mathbf{R} ^ { 2 n + 2 }$ ; confidence 0.569
123. ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
124. ; $B _ { l_{1} , l _ { 2 } } ( x )$ ; confidence 0.569
125. ; $J ^ { \prime }$ ; confidence 0.569
126. ; $W ^ { o } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569
127. ; $j = 1 , \dots , k$ ; confidence 0.568
128. ; $\text{l} ^ { \infty }$ ; confidence 0.568
129. ; $i = 0 , \dots , n + 1$ ; confidence 0.568
130. ; $\mathbf{Z} _ { q , n }$ ; confidence 0.568
131. ; $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$ ; confidence 0.568
132. ; $a _ { 1 } ( g )$ ; confidence 0.568
133. ; $\operatorname {ad} ( \mathfrak{g} ) = \{ 0 \}$ ; confidence 0.568
134. ; $f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { \text{l} } f$ ; confidence 0.568
135. ; $\mathcal{K} _ { 1 }$ ; confidence 0.568
136. ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568
137. ; $F : \mathcal{C} \rightarrow \mathcal{C} ^ { \prime }$ ; confidence 0.568
138. ; $r < r_{0}$ ; confidence 0.568
139. ; $k = 1,2 , \dots$ ; confidence 0.568
140. ; $a ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x ).$ ; confidence 0.568
141. ; $v \in H _ { 0 }$ ; confidence 0.568
142. ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|,$ ; confidence 0.567
143. ; $H = ( h _ { i , j} )$ ; confidence 0.567
144. ; $\left. \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + \mathbf{b} ) = 0, } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) \left( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } . \mathbf{v} _ { 0 } \right) = \Delta \theta _ { 0 }, } \\ { \operatorname { div } \mathbf{v} _ { 0 } = 0. } \end{array} \right.$ ; confidence 0.567
145. ; $0 \neq a \in G _ { l }$ ; confidence 0.567
146. ; $2 ^ { \alpha }$ ; confidence 0.567
147. ; $\operatorname { dim } \mathfrak { g } ^ { \pm \alpha _ { i }} = 1$ ; confidence 0.567
148. ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567
149. ; $k f _{( k , n )} \approx \mu _ { n } , k = 1,2 , \ldots,$ ; confidence 0.567
150. ; $\lambda _ { k } \geq \frac { 4 \pi k } { A } \text { for } k = 1,2 , \ldots,$ ; confidence 0.567
151. ; $\text{SS} \ f$ ; confidence 0.567
152. ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { \mathsf{P} } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x ).$ ; confidence 0.567
153. ; $\Gamma _ { n } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567
154. ; $\iota ( M )$ ; confidence 0.567
155. ; $\infty \pm$ ; confidence 0.567
156. ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567
157. ; $i = 1 , \dots , 8$ ; confidence 0.567
158. ; $\sigma _ { \mathfrak{B} }$ ; confidence 0.567
159. ; $E \subseteq \hat { G }$ ; confidence 0.567
160. ; $a = d + e$ ; confidence 0.567
161. ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567
162. ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566
163. ; $K = \mathbf{R} ^ { m }$ ; confidence 0.566
164. ; $\phi_{0}$ ; confidence 0.566
165. ; $[ h _ { i } e _ { j } ] = a _ { ij } e _ { j }$ ; confidence 0.566
166. ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P.V.} \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) .$ ; confidence 0.566
167. ; $S _ { E }$ ; confidence 0.566
168. ; $\tilde{u} _ { 1 } \geq 0$ ; confidence 0.566
169. ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566
170. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566
171. ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N } \langle S _ { i } | \mathcal{P} | S _ { i+ 1 } \rangle$ ; confidence 0.566
172. ; $\square ^ { 0 } \mathcal{O} _ { \mathcal{H} } ^ { ( k ) }$ ; confidence 0.566
173. ; $\{ g _ { n , m} : n , m \in \mathbf{Z} \}$ ; confidence 0.566
174. ; $\| x _ { n + 1} - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } )$ ; confidence 0.566
175. ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566
176. ; $\overtilde { A } ( R )$ ; confidence 0.566
177. ; $k = \frac { \gamma b ^ { 2 } \pi ^ { 2 } } { 12 \mu U a ^ { 2 } ( 1 - \lambda ) ^ { 2 } }.$ ; confidence 0.566
178. ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565
179. ; $\Lambda _ { \mathcal{D} \operatorname { Thm } \mathcal{D}$ ; confidence 0.565
180. ; $\mathcal{C} ( Y , \hat{X} )$ ; confidence 0.565
181. ; $u_m ( x , t )$ ; confidence 0.565
182. ; $A ^ { 0 } = I$ ; confidence 0.565
183. ; $\{ F ^ { n } \}$ ; confidence 0.565
184. ; $N ( x ) = \lfloor x + 1 / 2 \rfloor$ ; confidence 0.565
185. ; $2 r_ 2 ( k )$ ; confidence 0.565
186. ; $S ^ { - 1 }$ ; confidence 0.565
187. ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565
188. ; $\Phi _ { 2 } = \pm \Phi _ { 1 } + \text{const}$ ; confidence 0.565
189. ; $K_{\text{O}} ( f )$ ; confidence 0.565
190. ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565
191. ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 },$ ; confidence 0.565
192. ; $I_{ \{ x \} } ( . )$ ; confidence 0.565
193. ; $R _ { l } ^ { B }$ ; confidence 0.564
194. ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564
195. ; $E \in \mathcal{A}$ ; confidence 0.564
196. ; $s = 1$ ; confidence 0.564
197. ; $i = 0 , \ldots , h$ ; confidence 0.564
198. ; $\text{ATIMEALT} [ t ( n ) , a ( n )]$ ; confidence 0.564
199. ; $\overline { H } ^ { 1 } ( D )$ ; confidence 0.564
200. ; $\leq d$ ; confidence 0.564
201. ; $\text{degree}- \alpha_{i}$ ; confidence 0.564
202. ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] , T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right].$ ; confidence 0.564
203. ; $q \geq 4$ ; confidence 0.564
204. ; $\alpha ^ { \prime } : \mathfrak { g } \rightarrow \mathfrak { X } ( M , \omega )$ ; confidence 0.564
205. ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564
206. ; $\operatorname { sup } _ { X \in \Phi } \| a ^ { ( k ) } ( X ) \| _ { G _ { X } } m ( X ) ^ { - 1 } < \infty.$ ; confidence 0.564
207. ; $\operatorname {Op} ( a ) \operatorname {Op} ( b ) = \operatorname {Op} ( a \circ b )$ ; confidence 0.564
208. ; $R = \oplus _ { n \geq 0} R _ { n }$ ; confidence 0.563
209. ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563
210. ; $\hat { \sigma }_{ \hat { \psi }} = \| \mathbf{d} \| ( text{MS} _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563
211. ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 },$ ; confidence 0.563
212. ; $D_i$ ; confidence 0.563
213. ; $C$ ; confidence 0.563
214. ; $\mathfrak { M } \models _ { \mathcal{S} } _ { P }} \varphi$ ; confidence 0.563
215. ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563
216. ; $X ^ { \omega }$ ; confidence 0.563
217. ; $\tilde { K } ^ { 2 }$ ; confidence 0.563
218. ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1,$ ; confidence 0.563
219. ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563
220. ; $S _ { C }$ ; confidence 0.563
221. ; $d : B \rightarrow A$ ; confidence 0.563
222. ; $U ^ { 6 } = I$ ; confidence 0.563
223. ; $\mathbf{Q} ( \chi )$ ; confidence 0.563
224. ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563
225. ; $\hat { K } = \mathbf{C} \backslash \Omega _ { \infty }$ ; confidence 0.562
226. ; $\{ a ^ { n } \}$ ; confidence 0.562
227. ; $[ . ]$ ; confidence 0.562
228. ; $v \in Y$ ; confidence 0.562
229. ; $a \| b$ ; confidence 0.562
230. ; $\{ | x - x_{ 0} | < a T \}$ ; confidence 0.562
231. ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562
232. ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n },$ ; confidence 0.562
233. ; $\operatorname { tr } ( \mathbf{M} _ { \mathcal{H} } ( \mathbf{M} _ { H } + \mathbf{M} _ { \mathsf{E} } ) ^ { - 1 } ) > \text{const}$ ; confidence 0.562
234. ; $\overline{X} _ { n } \in M _ { F }$ ; confidence 0.562
235. ; $v _ { t }$ ; confidence 0.562
236. ; $\geq 7$ ; confidence 0.562
237. ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562
238. ; $R = F \langle x , y \rangle$ ; confidence 0.562
239. ; $( \mathbf{Z} / 2 ) ^ { k }$ ; confidence 0.562
240. ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562
241. ; $t = 0,1 , \ldots$ ; confidence 0.562
242. ; $r \geq n$ ; confidence 0.561
243. ; $H _ { 0 }$ ; confidence 0.561
244. ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561
245. ; $\frac { \text{Ma} } { \text{Re} } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda },$ ; confidence 0.561
246. ; $b ^ { s } _{m - 1}$ ; confidence 0.561
247. ; $q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z}$ ; confidence 0.561
248. ; $w ^ { 2 }$ ; confidence 0.561
249. ; $\lambda x . f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561
250. ; $L ^ { X }$ ; confidence 0.561
251. ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda a } \beta ( a ) \Pi ( a ) d a = 1,$ ; confidence 0.561
252. ; $\lambda_{l}$ ; confidence 0.561
253. ; $\mathbf{p} ( n )$ ; confidence 0.561
254. ; $\operatorname {GL} _ { q } ( 2 )$ ; confidence 0.561
255. ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560
256. ; $a ( z ) , b ( z ) \in \mathbf{F} _ { q } [ z ]$ ; confidence 0.560
257. ; $p , q \in P _ { n }$ ; confidence 0.560
258. ; $H _ { y } ( t )$ ; confidence 0.560
259. ; $c , d \in C$ ; confidence 0.560
260. ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }.$ ; confidence 0.560
261. ; $\Delta = o ( \lambda )$ ; confidence 0.560
262. ; $P _ { \sigma } + P _ { \tau } =\operatorname {id}$ ; confidence 0.560
263. ; $\operatorname { spec } ( M , \Delta )$ ; confidence 0.560
264. ; $\overline { b }_j$ ; confidence 0.560
265. ; $\overline { f } _{-\text{ap}} = - \infty$ ; confidence 0.560
266. ; $f \in H ^ { \hat{\otimes} N }$ ; confidence 0.560
267. ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560
268. ; $H _ { f }$ ; confidence 0.560
269. ; $260,430$ ; confidence 0.560
270. ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560
271. ; $c _ { 1 } ( M ) _ { \mathbf{R} } < 0$ ; confidence 0.560
272. ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O \left{ \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / 2 } \right).$ ; confidence 0.560
273. ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560
274. ; $N \in M _ { m \times n } ( K )$ ; confidence 0.560
275. ; $\mathbf{III} _ { 0 }$ ; confidence 0.560
276. ; $P _ { n , \theta }$ ; confidence 0.560
277. ; $\mathbf{F}$ ; confidence 0.560
278. ; $f : \mathcal{S} \rightarrow [ 0 , + \infty )$ ; confidence 0.560
279. ; $\pm$ ; confidence 0.560
280. ; $v$ ; confidence 0.560
281. ; $\tilde{\mathbf{E}} _ { 7 }$ ; confidence 0.560
282. ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \text { as } n \rightarrow \infty.$ ; confidence 0.559
283. ; $P \subset R$ ; confidence 0.559
284. ; $\operatorname { deg } \phi$ ; confidence 0.559
285. ; $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$ ; confidence 0.559
286. ; $R_{h}$ ; confidence 0.559
287. ; $\text{A}$ ; confidence 0.559
288. ; $\{ x _ { t } : t \in \mathbf{Z} \}$ ; confidence 0.559
289. ; $\{ z \in A : z a = a z \text { for each } a \in A \}$ ; confidence 0.559
290. ; $\check{R} : G \rightarrow V ^ { * }$ ; confidence 0.559
291. ; $S _ { n }$ ; confidence 0.559
292. ; $\psi = \Psi ^ { \prime } ^{2}$ ; confidence 0.559
293. ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559
294. ; $\sum x _ { k }$ ; confidence 0.559
295. ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559
296. ; $\mathbf{P} = \mathbf{M} = \mathbf{J} = 0$ ; confidence 0.559
297. ; $\operatorname {rank} ( A ) = r$ ; confidence 0.559
298. ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1,$ ; confidence 0.559
299. ; $1 \leq j \leq J$ ; confidence 0.559
300. ; $\mathbf{R} _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559
Maximilian Janisch/latexlist/latex/NoNroff/54. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/54&oldid=45486