Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/46"
(AUTOMATIC EDIT of page 46 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
Line 4: | Line 4: | ||
2. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110130/d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714 | 2. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110130/d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714 | ||
− | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png ; $M ( H _ { \phi } ( E ) )$ ; confidence 0.714 | + | 3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005059.png ; $\mathcal{M} ( \mathcal{H} _ { \phi } ( E ) )$ ; confidence 0.714 |
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714 | 4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714 | ||
Line 12: | Line 12: | ||
6. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015740/b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714 | 6. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015740/b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714 | ||
− | 7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180464.png ; $N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714 | + | 7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180464.png ; $\operatorname { dim } N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714 |
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029012.png ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714 | 8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029012.png ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714 | ||
− | 9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ | + | 9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ a , b ]$ ; confidence 0.713 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008064.png ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) }$ ; confidence 0.713 | + | 10. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008064.png ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) },$ ; confidence 0.713 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002036.png ; $ | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002036.png ; $Q$ ; confidence 0.713 |
12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713 | 12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713 | ||
− | 13. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007017.png ; $F ( | + | 13. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007017.png ; $F ( a ) \in \sigma ( a )$ ; confidence 0.713 |
14. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713 | 14. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713 | ||
− | 15. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega WP$ ; confidence 0.713 | + | 15. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega _{\text{WP}}$ ; confidence 0.713 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201405.png ; $0 < a _ { 0 } < | + | 16. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201405.png ; $0 < a _ { 0 } < a _ { 1 }$ ; confidence 0.713 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028051.png ; $\{ . . \}$ ; confidence 0.713 | + | 17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028051.png ; $\{ \, .\, ,\, . \, \}$ ; confidence 0.713 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049031.png ; $ | + | 18. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049031.png ; $\chi ^ { 2 }_{m}$ ; confidence 0.713 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038021.png ; $\operatorname { | + | 19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038021.png ; $\operatorname { Int } _ { \rho } A$ ; confidence 0.713 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209048.png ; $x ^ { | + | 20. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209048.png ; $x ^ { n } = 0$ ; confidence 0.713 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004020.png ; $M = R ^ { d }$ ; confidence 0.713 | + | 21. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o13004020.png ; $M = \mathbf{R} ^ { d }$ ; confidence 0.713 |
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007071.png ; $Q ( x )$ ; confidence 0.713 | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007071.png ; $Q ( x )$ ; confidence 0.713 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001077.png ; $\square _ { A } ^ { A } | + | 23. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001077.png ; $\square _ { A } ^ { A } \mathcal{C}$ ; confidence 0.713 |
24. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713 | 24. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713 | ||
Line 50: | Line 50: | ||
25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022090.png ; $a ( \xi ) = v$ ; confidence 0.713 | 25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022090.png ; $a ( \xi ) = v$ ; confidence 0.713 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020116.png ; $m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713 | + | 26. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020116.png ; $am \otimes m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043038.png ; $k [ x$ ; confidence 0.713 | + | 27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043038.png ; $k [ x ]$ ; confidence 0.713 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004021.png ; $\operatorname { Re } s > 1 , a \in C \backslash Z _ { 0 }$ ; confidence 0.713 | + | 28. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004021.png ; $\operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }$ ; confidence 0.713 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002052.png ; $M ^ { p }$ ; confidence 0.712 | + | 29. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002052.png ; $\mathcal{M} ^ { p }$ ; confidence 0.712 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001065.png ; $J ^ { 2 } = id$ ; confidence 0.712 | + | 30. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001065.png ; $J ^ { 2 } = \operatorname{id}$ ; confidence 0.712 |
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712 | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712 | ||
− | 32. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002040.png ; $( S )$ ; confidence 0.712 | + | 32. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002040.png ; $( \operatorname{S} )$ ; confidence 0.712 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060140.png ; $E ( \mu )$ ; confidence 0.712 | + | 33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060140.png ; $\mathfrak{E} ( \mu )$ ; confidence 0.712 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ]$ ; confidence 0.712 | + | 34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ];$ ; confidence 0.712 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 }$ ; confidence 0.712 | + | 35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 },$ ; confidence 0.712 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r t ( r + 1 , r ) = \infty$ ; confidence 0.712 | + | 36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r . t ( r + 1 , r ) = \infty$ ; confidence 0.712 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040119.png ; $ | + | 37. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040119.png ; $c_{i , j}$ ; confidence 0.712 |
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019074.png ; $b _ { 3 }$ ; confidence 0.712 | 38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019074.png ; $b _ { 3 }$ ; confidence 0.712 | ||
Line 78: | Line 78: | ||
39. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712 | 39. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $\pi$ ; confidence 0.712 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j }$ ; confidence 0.712 | + | 41. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j },$ ; confidence 0.712 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $ | + | 42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $a _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in R$ ; confidence 0.712 | + | 43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in \mathbf{R},$ ; confidence 0.712 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \}$ ; confidence 0.712 | + | 44. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \},$ ; confidence 0.712 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034051.png ; $c _ { 1 } \in H ^ { 2 } ( M ; Z )$ ; confidence 0.712 | + | 45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034051.png ; $c _ { 1 } \in H ^ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.712 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290202.png ; $t _ { i } \leq | + | 46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290202.png ; $t _ { i } \leq t_{i + 1} + 1$ ; confidence 0.712 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024045.png ; $\square ( E / Q )$ ; confidence 0.712 | + | 47. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024045.png ; $\square ( E / \mathbf{Q} )$ ; confidence 0.712 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016065.png ; $\mu _ { | + | 48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016065.png ; $\mu _ { t }$ ; confidence 0.712 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200104.png ; $( M , g ) = ( R ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712 | + | 49. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200104.png ; $( M , g ) = ( \mathbf{R} ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007023.png ; $ | + | 50. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007023.png ; $\operatorname{L} ^ { 2 }$ ; confidence 0.712 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061190/l06119027.png ; $x \in R ^ { 3 }$ ; confidence 0.712 | + | 51. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061190/l06119027.png ; $x \in \mathbf{R} ^ { 3 }$ ; confidence 0.712 |
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712 | 52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712 | ||
Line 108: | Line 108: | ||
54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003083.png ; $X ^ { * * * }$ ; confidence 0.711 | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003083.png ; $X ^ { * * * }$ ; confidence 0.711 | ||
− | 55. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622208.png ; $\Omega ^ { | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622208.png ; $\Omega ^ { J }$ ; confidence 0.711 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 }$ ; confidence 0.711 | + | 56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 },$ ; confidence 0.711 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160167.png ; $ | + | 57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160167.png ; $k_{i j t}$ ; confidence 0.711 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005032.png ; $A = R .1 \oplus N$ ; confidence 0.711 | + | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005032.png ; $A = \mathbf{R} .1 \oplus N$ ; confidence 0.711 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $ | + | 59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $\mathbf{Z}_{3}$ ; confidence 0.711 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711 | + | 60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.711 |
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711 | 61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711 | + | 62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M },$ ; confidence 0.711 |
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711 | 63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711 | ||
Line 128: | Line 128: | ||
64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029037.png ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711 | 64. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029037.png ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584035.png ; $K _ { + }$ ; confidence 0.711 | + | 65. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584035.png ; $\mathcal{K} _ { + }$ ; confidence 0.711 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028018.png ; $\pi ( B C ) \cong C$ ; confidence 0.711 | + | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028018.png ; $\pi ( \mathcal{B} C ) \cong C$ ; confidence 0.711 |
67. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711 | 67. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711 | ||
− | 68. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002031.png ; $\tilde { \varphi }$ ; confidence 0.711 | + | 68. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002031.png ; $\tilde { \varphi }_{2}$ ; confidence 0.711 |
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028066.png ; $K \times L$ ; confidence 0.711 | 69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028066.png ; $K \times L$ ; confidence 0.711 | ||
− | 70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036035.png ; $n ( x )$ ; confidence 0.711 | + | 70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036035.png ; $\mathbf{n} ( x )$ ; confidence 0.711 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003019.png ; $f : I \times G \rightarrow R ^ { m }$ ; confidence 0.711 | + | 71. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003019.png ; $f : I \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.711 |
72. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016031.png ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710 | 72. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016031.png ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710 | ||
Line 148: | Line 148: | ||
74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013019.png ; $L | F$ ; confidence 0.710 | 74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013019.png ; $L | F$ ; confidence 0.710 | ||
− | 75. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020215.png ; $I \backslash \cup | + | 75. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020215.png ; $I \backslash \cup I_{j}$ ; confidence 0.710 |
76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710 | 76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710 | ||
− | 77. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007038.png ; $L ^ { 2 } ( R ^ { n } )$ ; confidence 0.710 | + | 77. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007038.png ; $L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.710 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq | + | 78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq y_0;$ ; confidence 0.710 |
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710 | 79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710 | ||
− | 80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $ | + | 80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $Z_{2}$ ; confidence 0.710 |
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710 | 81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710 | ||
Line 164: | Line 164: | ||
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042020.png ; $W \otimes V$ ; confidence 0.710 | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042020.png ; $W \otimes V$ ; confidence 0.710 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006028.png ; $x \in X _ { | + | 83. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006028.png ; $x \in X _ { P }$ ; confidence 0.710 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029094.png ; $ | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029094.png ; $\operatorname{l} _ { A } ( H _ { m } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710 |
85. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710 | 85. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710 | ||
Line 172: | Line 172: | ||
86. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043270/g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709 | 86. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043270/g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019065.png ; $H = \{ u \in G : \omega ^ { | + | 87. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019065.png ; $H = \{ u \in G : \omega ^ { u } = \omega \}$ ; confidence 0.709 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045052.png ; $- 3 P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ]$ ; confidence 0.709 | + | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045052.png ; $- 3 \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ],$ ; confidence 0.709 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005015.png ; $h \in QS ( R )$ ; confidence 0.709 | + | 89. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005015.png ; $h \in \operatorname {QS} ( \mathbf{R} )$ ; confidence 0.709 |
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006065.png ; $N = Z$ ; confidence 0.709 | 90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006065.png ; $N = Z$ ; confidence 0.709 | ||
− | 91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030033.png ; $[ \theta ( d v _ { \alpha } ) ] = K _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709 | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030033.png ; $[ \theta ( d v _ { \alpha } ) ] = \mathcal{K} _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032024.png ; $E ( Y ) = \theta$ ; confidence 0.709 | + | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032024.png ; $\mathsf{E} ( Y ) = \theta$ ; confidence 0.709 |
93. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709 | 93. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709 | ||
− | 94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024094.png ; $ | + | 94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024094.png ; $\gamma$ ; confidence 0.709 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201509.png ; $( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709 | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201509.png ; $\operatorname {Ad}( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709 |
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003043.png ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709 | 96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003043.png ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709 | ||
− | 97. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709 | + | 97. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\mathbf{true}\equiv \lambda x y \cdot x$ ; confidence 0.709 |
98. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709 | 98. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709 | ||
Line 198: | Line 198: | ||
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709 | 99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007026.png ; $f \in \operatorname { Hol } ( \Delta , C )$ ; confidence 0.709 | + | 100. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007026.png ; $f \in \operatorname { Hol } ( \Delta , \mathbf{C} )$ ; confidence 0.709 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005042.png ; $ | + | 101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005042.png ; $w , g ( w ) , g ^ { 2 } ( w ), \dots$ ; confidence 0.709 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007088.png ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { | + | 102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007088.png ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { h } = \sum _ { i = 1 } ^ { k } n _ { i } ^ { h }$ ; confidence 0.709 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002064.png ; $\ | + | 103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002064.png ; $\tilde { M } _ { k }$ ; confidence 0.709 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \ | + | 104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \chi_{f }( h )$ ; confidence 0.709 |
105. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007032.png ; $z \in \Delta$ ; confidence 0.709 | 105. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007032.png ; $z \in \Delta$ ; confidence 0.709 | ||
Line 220: | Line 220: | ||
110. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708 | 110. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708 | ||
− | 111. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001068.png ; $F _ { 2 }$ ; confidence 0.708 | + | 111. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001068.png ; $\mathbf{F} _ { 2 }$ ; confidence 0.708 |
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201101.png ; $h : F \rightarrow F$ ; confidence 0.708 | 112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201101.png ; $h : F \rightarrow F$ ; confidence 0.708 | ||
− | 113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028024.png ; $A x \in \ | + | 113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028024.png ; $A \mathbf{x} \in \tilde { B }$ ; confidence 0.708 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004074.png ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }$ ; confidence 0.708 | + | 114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004074.png ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }.$ ; confidence 0.708 |
115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160171.png ; $x _ { j t }$ ; confidence 0.708 | 115. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160171.png ; $x _ { j t }$ ; confidence 0.708 | ||
Line 234: | Line 234: | ||
117. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001087.png ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708 | 117. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001087.png ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708 | ||
− | 118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011023.png ; $ | + | 118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011023.png ; $\chi ( T _ { A } ) = \left\{ N _ { B } : N \bigotimes _ { B } T = 0 \right\}.$ ; confidence 0.708 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002053.png ; $H _ { | + | 119. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002053.png ; $H _ { \phi }$ ; confidence 0.708 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041041.png ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x )$ ; confidence 0.708 | + | 120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041041.png ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x ).$ ; confidence 0.708 |
121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070231.png ; $T \in \Re ( C )$ ; confidence 0.707 | 121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070231.png ; $T \in \Re ( C )$ ; confidence 0.707 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003020.png ; $a \in R ^ { + }$ ; confidence 0.707 | + | 122. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003020.png ; $a \in \mathbf{R} ^ { + }$ ; confidence 0.707 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707 | + | 123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $\mathbf{M} _ { \mathcal{H} } = \mathbf{Z} _ { 1 } ^ { \prime }\mathbf{ Z} _ { 1 }$ ; confidence 0.707 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i1200805.png ; $H = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.707 | + | 124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i1200805.png ; $\mathcal{H} = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }.$ ; confidence 0.707 |
125. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080104.png ; $a \in \partial D$ ; confidence 0.707 | 125. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080104.png ; $a \in \partial D$ ; confidence 0.707 | ||
− | 126. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840104.png ; $K _ { | + | 126. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840104.png ; $K _ { \mathcal{L} }$ ; confidence 0.707 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300133.png ; $ | + | 127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300133.png ; $N_{i}$ ; confidence 0.707 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001028.png ; $E \subset C ^ { | + | 128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001028.png ; $E \subset \mathbf{C} ^ { n }$ ; confidence 0.707 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004050.png ; $\ | + | 129. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004050.png ; $\overset{\rightharpoonup}{x} . \overset{\rightharpoonup}{ v } > 0$ ; confidence 0.707 |
130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707 | 130. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017068.png ; $ | + | 131. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017068.png ; $a = 0.6197$ ; confidence 0.707 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707 | + | 132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in \mathbf{R} ^ { n \times n }$ ; confidence 0.707 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540283.png ; $K = R$ ; confidence 0.707 | + | 133. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540283.png ; $K = \mathbf{R}$ ; confidence 0.707 |
134. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663040.png ; $\Omega \neq \emptyset$ ; confidence 0.707 | 134. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663040.png ; $\Omega \neq \emptyset$ ; confidence 0.707 | ||
− | 135. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t$ ; confidence 0.706 | + | 135. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t,$ ; confidence 0.706 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009029.png ; $\Omega \subset R ^ { | + | 136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009029.png ; $\Omega \subset \mathbf{R} ^ { n }$ ; confidence 0.706 |
137. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706 | 137. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706 | ||
− | 138. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0$ ; confidence 0.706 | + | 138. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { ; m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0,$ ; confidence 0.706 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019022.png ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.706 | + | 139. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019022.png ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.706 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008025.png ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } ( - \frac { H } { k _ { B } T } )$ ; confidence 0.706 | + | 140. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008025.png ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } \left( - \frac { \mathcal{H} } { k _ { B } T } \right).$ ; confidence 0.706 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022019.png ; $u \in R ^ { N }$ ; confidence 0.706 | + | 141. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022019.png ; $u \in \mathbf{R} ^ { N }$ ; confidence 0.706 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005033.png ; $D = Dbx _ { f }$ ; confidence 0.706 | + | 142. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005033.png ; $D = \operatorname{Dbx} _ { f }$ ; confidence 0.706 |
143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706 | 143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021014.png ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706 | 144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021014.png ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005048.png ; $\operatorname { dim } ( \Gamma _ { | + | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005048.png ; $\operatorname { dim } ( \Gamma _ { X } \cap ( \mathbf{R} ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) | \Delta ^ { 2 } \alpha _ { k } | < \infty$ ; confidence 0.706 | + | 146. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) \left| \Delta ^ { 2 } \alpha _ { k } \right| < \infty.$ ; confidence 0.706 |
147. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706 | 147. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706 | ||
Line 296: | Line 296: | ||
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302309.png ; $f \in H$ ; confidence 0.705 | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302309.png ; $f \in H$ ; confidence 0.705 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028050.png ; $D | + | 149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028050.png ; $D _{*} H _{*} \Omega ^ { \infty } X$ ; confidence 0.705 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008013.png ; $E [ T _ { p } ] = E [ W _ { p } ] + b _ { p }$ ; confidence 0.705 | + | 150. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008013.png ; $\mathsf{E} [ T _ { p } ] = \mathsf{E} [ W _ { p } ] + b _ { p }$ ; confidence 0.705 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014069.png ; $M _ { i j } ^ { \beta } \in M _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705 | + | 151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014069.png ; $M _ { i j } ^ { \beta } \in \mathbf{M} _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705 |
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705 | 152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705 | ||
Line 306: | Line 306: | ||
153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230129.png ; $[ K , L ]$ ; confidence 0.705 | 153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230129.png ; $[ K , L ]$ ; confidence 0.705 | ||
− | 154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027012.png ; $P _ { | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027012.png ; $P _ { n } x \rightarrow x$ ; confidence 0.705 |
155. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008065.png ; $T _ { c } > 0$ ; confidence 0.705 | 155. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008065.png ; $T _ { c } > 0$ ; confidence 0.705 | ||
− | 156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032013.png ; $E _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } P _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705 | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032013.png ; $\mathsf{E} _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } \mathsf{P} _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705 |
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705 | 157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130090/l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705 | ||
− | 158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $CPC$ ; confidence 0.705 | + | 158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $\operatorname{CPC}$ ; confidence 0.705 |
159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705 | 159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705 | ||
− | 160. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050031.png ; $X \in F$ ; confidence 0.705 | + | 160. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050031.png ; $X \in \mathcal{F}$ ; confidence 0.705 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019012.png ; $\times \Gamma ( \frac { 1 } { 2 } - k - i \tau ) \int _ { 1 } ^ { \infty } P _ { i \tau } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau } ^ { ( k ) } | + | 161. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019012.png ; $\times \Gamma \left( \frac { 1 } { 2 } - k - i \tau \right) \int _ { 1 } ^ { \infty } P _ { i \tau - 1/2 } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau -1/2} ^ { ( k ) } ( x ) F ( \tau ) d \tau.$ ; confidence 0.705 |
162. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705 | 162. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705 | ||
− | 163. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200303.png ; $K = \{ x _ { n } / n : n \in N \} \cup \{ 0 \}$ ; confidence 0.705 | + | 163. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200303.png ; $K = \{ x _ { n } / n : n \in \mathbf{N} \} \cup \{ 0 \}$ ; confidence 0.705 |
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016050.png ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705 | 164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016050.png ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705 | ||
Line 332: | Line 332: | ||
166. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705 | 166. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032020.png ; $E ( Y ) E ( N ) = E ( S _ { N } )$ ; confidence 0.705 | + | 167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032020.png ; $\mathsf{E} ( Y ) \mathsf{E} ( N ) = \mathsf{E} ( S _ { N } ).$ ; confidence 0.705 |
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009044.png ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705 | 168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009044.png ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705 | ||
Line 342: | Line 342: | ||
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680168.png ; $x \in S$ ; confidence 0.704 | 171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680168.png ; $x \in S$ ; confidence 0.704 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094072.png ; $C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.704 | + | 172. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094072.png ; $\mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.704 |
173. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005044.png ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704 | 173. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005044.png ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704 | ||
Line 348: | Line 348: | ||
174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004024.png ; $f _ { i + 1 / 2 }$ ; confidence 0.704 | 174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004024.png ; $f _ { i + 1 / 2 }$ ; confidence 0.704 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100119.png ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \ | + | 175. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100119.png ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \bigcup _ { \beta < \alpha } \mathcal{P} ( V _ { \beta + 1 } ) ; \text { and } V = \bigcup _ { \alpha } V _ { \alpha }.$ ; confidence 0.704 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } P _ { + } \overline { \Lambda } P _ { + } \overline { \Psi } | + | 176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } \mathcal{P} _ { + } \overline { \Lambda } \mathcal{P} _ { + } \overline { \Psi } \square ^ { - 1 }_{1} f,$ ; confidence 0.704 |
177. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010131.png ; $Z \subseteq X \times X$ ; confidence 0.704 | 177. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010131.png ; $Z \subseteq X \times X$ ; confidence 0.704 | ||
− | 178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704 | + | 178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : \mathcal{U} \rightarrow \mathcal{U} $ ; confidence 0.704 |
179. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704 | 179. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704 | ||
− | 180. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230117.png ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } L ( K _ { 2 } ) \omega \ | + | 180. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230117.png ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } \mathcal{L} ( K _ { 2 } ) \omega \bigwedge K _ { 1 } +$ ; confidence 0.704 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001080.png ; $G = SL ( 2 , Q )$ ; confidence 0.704 | + | 181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001080.png ; $G = \operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.704 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031019.png ; $M _ { sa }$ ; confidence 0.704 | + | 182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031019.png ; $M _ { \operatorname{sa} }$ ; confidence 0.704 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680806.png ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z }$ ; confidence 0.704 | + | 183. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680806.png ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z },$ ; confidence 0.704 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005062.png ; $ | + | 184. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005062.png ; $\mathbf{P}^{1}$ ; confidence 0.704 |
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704 | 185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007082.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.704 | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007082.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }.$ ; confidence 0.704 |
187. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h0479402.png ; $g : Y \rightarrow X$ ; confidence 0.703 | 187. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h0479402.png ; $g : Y \rightarrow X$ ; confidence 0.703 | ||
− | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png ; $P ( \square ^ { n } E ) \rightarrow P ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703 | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005051.png ; $\mathcal{P} ( \square ^ { n } E ) \rightarrow \mathcal{P} ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021028.png ; $x , y \in R ^ { x }$ ; confidence 0.703 | + | 189. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021028.png ; $x , y \in \mathbf{R} ^ { x }$ ; confidence 0.703 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007056.png ; $U \in SGL _ { n } ( Z G )$ ; confidence 0.703 | + | 190. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007056.png ; $U \in \operatorname{SGL} _ { n } ( \mathbf{Z} G )$ ; confidence 0.703 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { | + | 191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { \operatorname{obs} }$ ; confidence 0.703 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489060.png ; $K _ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489060.png ; $K _ { q }$ ; confidence 0.703 |
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703 | 193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703 | ||
Line 390: | Line 390: | ||
195. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k05545027.png ; $| x | \rightarrow \infty$ ; confidence 0.702 | 195. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k05545027.png ; $| x | \rightarrow \infty$ ; confidence 0.702 | ||
− | 196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008028.png ; $P = - i \ | + | 196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008028.png ; $P = - i \overset{\rightharpoonup}{ \nabla }$ ; confidence 0.702 |
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070202.png ; $\tau \in T$ ; confidence 0.702 | 197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070202.png ; $\tau \in T$ ; confidence 0.702 | ||
− | 198. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601091.png ; $\tau ( W \ | + | 198. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601091.png ; $\tau ( W \bigcup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } ).$ ; confidence 0.702 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040038.png ; $G \times \ | + | 199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040038.png ; $G \times^{\varrho} F$ ; confidence 0.702 |
200. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702 | 200. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \ | + | 201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \mathcal{S} ) - 1$ ; confidence 0.702 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030016.png ; $S ^ { * } S ^ { \prime } \in C$ ; confidence 0.702 | + | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030016.png ; $S ^ { * } S ^ { \prime } \in \mathbf{C}I$ ; confidence 0.702 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050155.png ; $ | + | 203. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050155.png ; $a : = \pi ( A )$ ; confidence 0.702 |
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200170.png ; $\alpha _ { i j } = 2$ ; confidence 0.702 | 204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200170.png ; $\alpha _ { i j } = 2$ ; confidence 0.702 | ||
− | 205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007043.png ; $\| u \|$ ; confidence 0.702 | + | 205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007043.png ; $\| u \|_{\infty}$ ; confidence 0.702 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001015.png ; $\hat { f }$ ; confidence 0.702 | + | 206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001015.png ; $\hat { f }^{\prime}$ ; confidence 0.702 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018010.png ; $E W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702 | + | 207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018010.png ; $\mathsf{E} W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002053.png ; $( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702 | + | 208. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002053.png ; $\operatorname { map } _ { * } ( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702 |
209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108106.png ; $D _ { t }$ ; confidence 0.702 | 209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108106.png ; $D _ { t }$ ; confidence 0.702 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028021.png ; $z \mapsto z ^ { | + | 210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028021.png ; $z \mapsto z ^ { n }$ ; confidence 0.701 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830354.png ; $r = | + | 211. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830354.png ; $r = s$ ; confidence 0.701 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B ($ ; confidence 0.701 | + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B (\text{budget constraint}),$ ; confidence 0.701 |
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004023.png ; $x _ { 0 }$ ; confidence 0.701 | 213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004023.png ; $x _ { 0 }$ ; confidence 0.701 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021025.png ; $\lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }$ ; confidence 0.701 | + | 214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021025.png ; $\operatorname { Re } \lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }.$ ; confidence 0.701 |
215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010064.png ; $( G , c )$ ; confidence 0.701 | 215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010064.png ; $( G , c )$ ; confidence 0.701 | ||
Line 432: | Line 432: | ||
216. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001041.png ; $R _ { V }$ ; confidence 0.700 | 216. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001041.png ; $R _ { V }$ ; confidence 0.700 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021083.png ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots$ ; confidence 0.700 | + | 217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021083.png ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots,$ ; confidence 0.700 |
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203204.png ; $\| . \| p$ ; confidence 0.700 | 218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203204.png ; $\| . \| p$ ; confidence 0.700 | ||
− | 219. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050101.png ; $( x ^ { k } ) _ { k \in N }$ ; confidence 0.700 | + | 219. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050101.png ; $( x ^ { k } ) _ { k \in \mathbf{N} }$ ; confidence 0.700 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203205.png ; $p ( x ) = 0$ ; confidence 0.700 | + | 220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203205.png ; $p ( x ) = \overline{0}$ ; confidence 0.700 |
221. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540032.png ; $2 ^ { m - 1 }$ ; confidence 0.700 | 221. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035400/e03540032.png ; $2 ^ { m - 1 }$ ; confidence 0.700 | ||
− | 222. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005043.png ; $ | + | 222. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005043.png ; $l ^ { \infty }$ ; confidence 0.700 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003028.png ; $D \subseteq ca ( \Omega , F )$ ; confidence 0.700 | + | 223. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003028.png ; $\mathcal{D} \subseteq \operatorname{ ca} ( \Omega , \mathcal{F} )$ ; confidence 0.700 |
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210113.png ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700 | 224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210113.png ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700 | ||
Line 450: | Line 450: | ||
225. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406079.png ; $B ^ { * }$ ; confidence 0.700 | 225. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406079.png ; $B ^ { * }$ ; confidence 0.700 | ||
− | 226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009025.png ; $F ^ { \mu \ | + | 226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009025.png ; $F ^ { \mu \nu_{ , \nu} } = F ^ { \mu \nu_{ , , \nu}} = S ^ { \mu }.$ ; confidence 0.700 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001024.png ; $\operatorname { exp } ( - \sum _ { p \leq x } \frac { 1 } { p } | + | 227. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001024.png ; $.\operatorname { exp } \left( - \sum _ { p \leq x } \frac { 1 } { p } . ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i \alpha _ { 0 } } ) ) \right).$ ; confidence 0.700 |
228. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300606.png ; $\tau \in H$ ; confidence 0.700 | 228. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300606.png ; $\tau \in H$ ; confidence 0.700 | ||
− | 229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301404.png ; $x = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700 | + | 229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301404.png ; $\mathbf{x} = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180322.png ; $W ( g ) = R ( g ) - g A ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.700 | + | 230. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180322.png ; $W ( g ) = R ( g ) - g .A ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} $ ; confidence 0.700 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050102.png ; $ | + | 231. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050102.png ; $\sigma_{\text{l}}$ ; confidence 0.700 |
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202007.png ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700 | 232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202007.png ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700 | ||
− | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080112.png ; $\| \varphi \| _ { S } : = \| M$ ; confidence 0.700 | + | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080112.png ; $\| \varphi \| _ { \text{S} } : = \| M\|$ ; confidence 0.700 |
234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700 | 234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700 | ||
− | 235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006064.png ; $S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700 | + | 235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006064.png ; $\operatorname{ ind } S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700 |
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699 | 236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005043.png ; $\partial ^ { - | + | 237. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005043.png ; $\partial ^ { - 1_{x} }$ ; confidence 0.699 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016034.png ; $\operatorname { Re } ( E ) \nabla ^ { 2 } E = \nabla E \ | + | 238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016034.png ; $\operatorname { Re } ( \mathcal{E} ) \nabla ^ { 2 } \mathcal{E} = \nabla \mathcal{E} . \nabla \mathcal{E},$ ; confidence 0.699 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png ; $\phi : A \rightarrow C$ ; confidence 0.699 | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005039.png ; $\phi : \mathcal{A} \rightarrow \mathbf{C}$ ; confidence 0.699 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w | + | 240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w } ) } , \quad z \in \mathbf{C},$ ; confidence 0.699 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120260/m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ { j }$ ; confidence 0.699 | + | 241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120260/m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ {i j }.$ ; confidence 0.699 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { | + | 242. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { q } ( G ) \otimes A$ ; confidence 0.699 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040115.png ; $X ^ { * }$ ; confidence 0.699 | + | 243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040115.png ; $X ^ { * }_{c}$ ; confidence 0.699 |
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699 | 244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699 | ||
− | 245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007035.png ; $\{ H ^ { n } ( C , - ) : n \geq 0 \}$ ; confidence 0.699 | + | 245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007035.png ; $\{ H ^ { n } ( \mathcal{C} , - ) : n \geq 0 \}$ ; confidence 0.699 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \ | + | 246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $\mathcal{T} ^ { + } = \bigcap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302803.png ; $A x < b$ ; confidence 0.699 | + | 247. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302803.png ; $A \mathbf{x} < \mathbf{b}$ ; confidence 0.699 |
248. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263080.png ; $\| x \|$ ; confidence 0.699 | 248. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263080.png ; $\| x \|$ ; confidence 0.699 | ||
− | 249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021065.png ; $( \frac { \partial } { \partial \lambda } ) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +$ ; confidence 0.699 | + | 249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021065.png ; $\left( \frac { \partial } { \partial \lambda } \right) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +\dots$ ; confidence 0.699 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745207.png ; $B \ | + | 250. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p0745207.png ; $B \subseteq P$ ; confidence 0.699 |
251. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699 | 251. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699 | ||
− | 252. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700087.png ; $F c _ { k _ { 1 } } c _ { k _ { 2 } } = c _ { f | + | 252. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700087.png ; $F \mathbf{c} _ { k _ { 1 } } \mathbf{c} _ { k _ { 2 } } = \mathbf{c} _ { f ( k _ { 1 } , k _ { 2 } )}$ ; confidence 0.698 |
253. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285052.png ; $d ( . , . )$ ; confidence 0.698 | 253. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285052.png ; $d ( . , . )$ ; confidence 0.698 | ||
Line 510: | Line 510: | ||
255. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698 | 255. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698 | ||
− | 256. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001031.png ; $F _ { q ^ { i } }$ ; confidence 0.698 | + | 256. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001031.png ; $\mathbf{F} _ { q ^ { i } }$ ; confidence 0.698 |
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698 | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698 | ||
− | 258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009011.png ; $\nabla | + | 258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009011.png ; $\nabla _{\times}$ ; confidence 0.698 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x$ ; confidence 0.698 | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x.$ ; confidence 0.698 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202501.png ; $U \subseteq R ^ { | + | 260. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202501.png ; $U \subseteq \mathbf{R} ^ { n }$ ; confidence 0.698 |
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698 | 261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.698 | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } ),$ ; confidence 0.698 |
263. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698 | 263. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005083.png ; $\overline { C } _ { + }$ ; confidence 0.698 | + | 264. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005083.png ; $\overline { \mathbf{C} } _ { + }$ ; confidence 0.698 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008068.png ; $D ( | + | 265. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008068.png ; $D ( a , R )$ ; confidence 0.698 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051086.png ; $\sigma ( u ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698 | + | 266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051086.png ; $\sigma ( \mathbf{u} ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698 |
267. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698 | 267. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170113.png ; $( A + i B ) x = 0 \Leftrightarrow A x = 0 = B x$ ; confidence 0.698 | + | 268. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170113.png ; $( \mathcal{A} + i \mathcal{B} ) x = 0 \Leftrightarrow \mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.698 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002012.png ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o ( n ^ { - 1 / 2 } )$ ; confidence 0.698 | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002012.png ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o \left( n ^ { - 1 / 2 } \right)$ ; confidence 0.698 |
270. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074020/p07402071.png ; $1 , \ldots , r$ ; confidence 0.698 | 270. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074020/p07402071.png ; $1 , \ldots , r$ ; confidence 0.698 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010162.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } }$ ; confidence 0.698 | + | 271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010162.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } },$ ; confidence 0.698 |
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697 | 272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697 | ||
Line 548: | Line 548: | ||
274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007012.png ; $F ( a ) \neq 0$ ; confidence 0.697 | 274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007012.png ; $F ( a ) \neq 0$ ; confidence 0.697 | ||
− | 275. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022053.png ; $\int _ { | + | 275. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022053.png ; $\int _ { a } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024061.png ; $\psi : J _ { t } \rightarrow R ^ { | + | 276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024061.png ; $\psi : J _ { t } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.697 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } ) , \quad x \in H$ ; confidence 0.697 | + | 277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } \left( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } \right) , \quad x \in H.$ ; confidence 0.697 |
278. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003050.png ; $b \in D$ ; confidence 0.697 | 278. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003050.png ; $b \in D$ ; confidence 0.697 | ||
Line 558: | Line 558: | ||
279. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697 | 279. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840297.png ; $\tilde { K } \supset K$ ; confidence 0.697 | + | 280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840297.png ; $\tilde { \mathcal{K} } \supset \mathcal{K}$ ; confidence 0.697 |
281. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697 | 281. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697 | ||
Line 566: | Line 566: | ||
283. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002014.png ; $e ^ { \beta z }$ ; confidence 0.697 | 283. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002014.png ; $e ^ { \beta z }$ ; confidence 0.697 | ||
− | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026020.png ; $F = F ( \mu ) = \{ P ( \theta , \mu ) : \theta \in \Theta ( \mu ) \}$ ; confidence 0.697 | + | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026020.png ; $F = F ( \mu ) = \{ \mathsf{P} ( \theta , \mu ) : \theta \in \Theta ( \mu ) \},$ ; confidence 0.697 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005065.png ; $GL ( A )$ ; confidence 0.697 | + | 285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005065.png ; $\operatorname{GL} ( A )$ ; confidence 0.697 |
286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697 | 286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697 | ||
Line 580: | Line 580: | ||
290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008065.png ; $E ( a , R )$ ; confidence 0.696 | 290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008065.png ; $E ( a , R )$ ; confidence 0.696 | ||
− | 291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022068.png ; $C \times ( C \backslash ( - \infty , 0 ) )$ ; confidence 0.696 | + | 291. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022068.png ; $\mathbf{C} \times ( \mathbf{C} \backslash ( - \infty , 0 ) )$ ; confidence 0.696 |
292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696 | 292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696 | ||
− | 293. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l0570209.png ; $F _ { | + | 293. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l0570209.png ; $F _ { n+1 } + 1 \rightarrow F _ { n }$ ; confidence 0.696 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520468.png ; $\ | + | 294. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520468.png ; $\tilde { A }$ ; confidence 0.696 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( \varphi _ { 0 } \lambda \varphi _ { 1 } )$ ; confidence 0.696 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001040.png ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }$ ; confidence 0.696 | + | 296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001040.png ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }.$ ; confidence 0.696 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302805.png ; $A x < b + \varepsilon$ ; confidence 0.696 | + | 297. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302805.png ; $A \mathbf{x} < \mathbf{b} + \varepsilon$ ; confidence 0.696 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696 | + | 298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z },$ ; confidence 0.696 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020081.png ; $\{ S ^ { \lambda } : \lambda \text { a partition of } n$ ; confidence 0.696 | + | 299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020081.png ; $\left\{ S ^ { \lambda } : \lambda \text { a partition of } n \right\}$ ; confidence 0.696 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011030.png ; $f ( T ^ { | + | 300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011030.png ; $f ( T ^ { n } x )$ ; confidence 0.696 |
Revision as of 19:34, 13 April 2020
List
1. ; $\int _ { 0 } ^ { \infty } x ^ { n } | q ( x ) | d x = o ( n ^ { b x } )$ ; confidence 0.714
2. ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714
3. ; $\mathcal{M} ( \mathcal{H} _ { \phi } ( E ) )$ ; confidence 0.714
4. ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
5. ; $S \in F ( X , Y )$ ; confidence 0.714
6. ; $\operatorname { Lip } \alpha$ ; confidence 0.714
7. ; $\operatorname { dim } N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714
8. ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714
9. ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ a , b ]$ ; confidence 0.713
10. ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) },$ ; confidence 0.713
11. ; $Q$ ; confidence 0.713
12. ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713
13. ; $F ( a ) \in \sigma ( a )$ ; confidence 0.713
14. ; $\hbar \nmid 2 e$ ; confidence 0.713
15. ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega _{\text{WP}}$ ; confidence 0.713
16. ; $0 < a _ { 0 } < a _ { 1 }$ ; confidence 0.713
17. ; $\{ \, .\, ,\, . \, \}$ ; confidence 0.713
18. ; $\chi ^ { 2 }_{m}$ ; confidence 0.713
19. ; $\operatorname { Int } _ { \rho } A$ ; confidence 0.713
20. ; $x ^ { n } = 0$ ; confidence 0.713
21. ; $M = \mathbf{R} ^ { d }$ ; confidence 0.713
22. ; $Q ( x )$ ; confidence 0.713
23. ; $\square _ { A } ^ { A } \mathcal{C}$ ; confidence 0.713
24. ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713
25. ; $a ( \xi ) = v$ ; confidence 0.713
26. ; $am \otimes m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713
27. ; $k [ x ]$ ; confidence 0.713
28. ; $\operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }$ ; confidence 0.713
29. ; $\mathcal{M} ^ { p }$ ; confidence 0.712
30. ; $J ^ { 2 } = \operatorname{id}$ ; confidence 0.712
31. ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712
32. ; $( \operatorname{S} )$ ; confidence 0.712
33. ; $\mathfrak{E} ( \mu )$ ; confidence 0.712
34. ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ];$ ; confidence 0.712
35. ; $M = S _ { 1 } ^ { - 1 } S _ { 2 },$ ; confidence 0.712
36. ; $\operatorname { lim } _ { r \rightarrow \infty } r . t ( r + 1 , r ) = \infty$ ; confidence 0.712
37. ; $c_{i , j}$ ; confidence 0.712
38. ; $b _ { 3 }$ ; confidence 0.712
39. ; $M ^ { 0 } N \equiv N$ ; confidence 0.712
40. ; $\pi$ ; confidence 0.712
41. ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j },$ ; confidence 0.712
42. ; $a _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
43. ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in \mathbf{R},$ ; confidence 0.712
44. ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \},$ ; confidence 0.712
45. ; $c _ { 1 } \in H ^ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.712
46. ; $t _ { i } \leq t_{i + 1} + 1$ ; confidence 0.712
47. ; $\square ( E / \mathbf{Q} )$ ; confidence 0.712
48. ; $\mu _ { t }$ ; confidence 0.712
49. ; $( M , g ) = ( \mathbf{R} ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712
50. ; $\operatorname{L} ^ { 2 }$ ; confidence 0.712
51. ; $x \in \mathbf{R} ^ { 3 }$ ; confidence 0.712
52. ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712
53. ; $o _ { A } : 1 \rightarrow L A$ ; confidence 0.712
54. ; $X ^ { * * * }$ ; confidence 0.711
55. ; $\Omega ^ { J }$ ; confidence 0.711
56. ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 },$ ; confidence 0.711
57. ; $k_{i j t}$ ; confidence 0.711
58. ; $A = \mathbf{R} .1 \oplus N$ ; confidence 0.711
59. ; $\mathbf{Z}_{3}$ ; confidence 0.711
60. ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.711
61. ; $p \times p$ ; confidence 0.711
62. ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M },$ ; confidence 0.711
63. ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711
64. ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711
65. ; $\mathcal{K} _ { + }$ ; confidence 0.711
66. ; $\pi ( \mathcal{B} C ) \cong C$ ; confidence 0.711
67. ; $\Lambda \neq 0$ ; confidence 0.711
68. ; $\tilde { \varphi }_{2}$ ; confidence 0.711
69. ; $K \times L$ ; confidence 0.711
70. ; $\mathbf{n} ( x )$ ; confidence 0.711
71. ; $f : I \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.711
72. ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710
73. ; $| a _ { n } | \rightarrow \infty$ ; confidence 0.710
74. ; $L | F$ ; confidence 0.710
75. ; $I \backslash \cup I_{j}$ ; confidence 0.710
76. ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710
77. ; $L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.710
78. ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq y_0;$ ; confidence 0.710
79. ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710
80. ; $Z_{2}$ ; confidence 0.710
81. ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
82. ; $W \otimes V$ ; confidence 0.710
83. ; $x \in X _ { P }$ ; confidence 0.710
84. ; $\operatorname{l} _ { A } ( H _ { m } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710
85. ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710
86. ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709
87. ; $H = \{ u \in G : \omega ^ { u } = \omega \}$ ; confidence 0.709
88. ; $- 3 \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ],$ ; confidence 0.709
89. ; $h \in \operatorname {QS} ( \mathbf{R} )$ ; confidence 0.709
90. ; $N = Z$ ; confidence 0.709
91. ; $[ \theta ( d v _ { \alpha } ) ] = \mathcal{K} _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709
92. ; $\mathsf{E} ( Y ) = \theta$ ; confidence 0.709
93. ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709
94. ; $\gamma$ ; confidence 0.709
95. ; $\operatorname {Ad}( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709
96. ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709
97. ; $\mathbf{true}\equiv \lambda x y \cdot x$ ; confidence 0.709
98. ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
99. ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709
100. ; $f \in \operatorname { Hol } ( \Delta , \mathbf{C} )$ ; confidence 0.709
101. ; $w , g ( w ) , g ^ { 2 } ( w ), \dots$ ; confidence 0.709
102. ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { h } = \sum _ { i = 1 } ^ { k } n _ { i } ^ { h }$ ; confidence 0.709
103. ; $\tilde { M } _ { k }$ ; confidence 0.709
104. ; $\chi ( h ) = \chi _ { e } ( h ) + \chi_{f }( h )$ ; confidence 0.709
105. ; $z \in \Delta$ ; confidence 0.709
106. ; $x \xi : = x _ { 1 } \xi _ { 1 } + \ldots + x _ { n } \xi _ { n }$ ; confidence 0.708
107. ; $t = b$ ; confidence 0.708
108. ; $M ( \hat { G } )$ ; confidence 0.708
109. ; $P _ { 0 } | 0 \rangle = | 0 \rangle$ ; confidence 0.708
110. ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708
111. ; $\mathbf{F} _ { 2 }$ ; confidence 0.708
112. ; $h : F \rightarrow F$ ; confidence 0.708
113. ; $A \mathbf{x} \in \tilde { B }$ ; confidence 0.708
114. ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }.$ ; confidence 0.708
115. ; $x _ { j t }$ ; confidence 0.708
116. ; $x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$ ; confidence 0.708
117. ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708
118. ; $\chi ( T _ { A } ) = \left\{ N _ { B } : N \bigotimes _ { B } T = 0 \right\}.$ ; confidence 0.708
119. ; $H _ { \phi }$ ; confidence 0.708
120. ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x ).$ ; confidence 0.708
121. ; $T \in \Re ( C )$ ; confidence 0.707
122. ; $a \in \mathbf{R} ^ { + }$ ; confidence 0.707
123. ; $\mathbf{M} _ { \mathcal{H} } = \mathbf{Z} _ { 1 } ^ { \prime }\mathbf{ Z} _ { 1 }$ ; confidence 0.707
124. ; $\mathcal{H} = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }.$ ; confidence 0.707
125. ; $a \in \partial D$ ; confidence 0.707
126. ; $K _ { \mathcal{L} }$ ; confidence 0.707
127. ; $N_{i}$ ; confidence 0.707
128. ; $E \subset \mathbf{C} ^ { n }$ ; confidence 0.707
129. ; $\overset{\rightharpoonup}{x} . \overset{\rightharpoonup}{ v } > 0$ ; confidence 0.707
130. ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707
131. ; $a = 0.6197$ ; confidence 0.707
132. ; $A \in \mathbf{R} ^ { n \times n }$ ; confidence 0.707
133. ; $K = \mathbf{R}$ ; confidence 0.707
134. ; $\Omega \neq \emptyset$ ; confidence 0.707
135. ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t,$ ; confidence 0.706
136. ; $\Omega \subset \mathbf{R} ^ { n }$ ; confidence 0.706
137. ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706
138. ; $u ( x ; 0 ) = \Phi ( x ) , u _ { ; m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0,$ ; confidence 0.706
139. ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.706
140. ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } \left( - \frac { \mathcal{H} } { k _ { B } T } \right).$ ; confidence 0.706
141. ; $u \in \mathbf{R} ^ { N }$ ; confidence 0.706
142. ; $D = \operatorname{Dbx} _ { f }$ ; confidence 0.706
143. ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706
144. ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706
145. ; $\operatorname { dim } ( \Gamma _ { X } \cap ( \mathbf{R} ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706
146. ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) \left| \Delta ^ { 2 } \alpha _ { k } \right| < \infty.$ ; confidence 0.706
147. ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706
148. ; $f \in H$ ; confidence 0.705
149. ; $D _{*} H _{*} \Omega ^ { \infty } X$ ; confidence 0.705
150. ; $\mathsf{E} [ T _ { p } ] = \mathsf{E} [ W _ { p } ] + b _ { p }$ ; confidence 0.705
151. ; $M _ { i j } ^ { \beta } \in \mathbf{M} _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705
152. ; $u _ { 0 } \in D ( A )$ ; confidence 0.705
153. ; $[ K , L ]$ ; confidence 0.705
154. ; $P _ { n } x \rightarrow x$ ; confidence 0.705
155. ; $T _ { c } > 0$ ; confidence 0.705
156. ; $\mathsf{E} _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } \mathsf{P} _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705
157. ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705
158. ; $\operatorname{CPC}$ ; confidence 0.705
159. ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705
160. ; $X \in \mathcal{F}$ ; confidence 0.705
161. ; $\times \Gamma \left( \frac { 1 } { 2 } - k - i \tau \right) \int _ { 1 } ^ { \infty } P _ { i \tau - 1/2 } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau -1/2} ^ { ( k ) } ( x ) F ( \tau ) d \tau.$ ; confidence 0.705
162. ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705
163. ; $K = \{ x _ { n } / n : n \in \mathbf{N} \} \cup \{ 0 \}$ ; confidence 0.705
164. ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705
165. ; $V = - V _ { - }$ ; confidence 0.705
166. ; $f , g \in L _ { 2 , r }$ ; confidence 0.705
167. ; $\mathsf{E} ( Y ) \mathsf{E} ( N ) = \mathsf{E} ( S _ { N } ).$ ; confidence 0.705
168. ; $- \frac { 1 + \alpha ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705
169. ; $p _ { h } \in P ( k )$ ; confidence 0.705
170. ; $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ ; confidence 0.704
171. ; $x \in S$ ; confidence 0.704
172. ; $\mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.704
173. ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704
174. ; $f _ { i + 1 / 2 }$ ; confidence 0.704
175. ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \bigcup _ { \beta < \alpha } \mathcal{P} ( V _ { \beta + 1 } ) ; \text { and } V = \bigcup _ { \alpha } V _ { \alpha }.$ ; confidence 0.704
176. ; $B f = \Psi _ { 2 } ^ { - 1 } \mathcal{P} _ { + } \overline { \Lambda } \mathcal{P} _ { + } \overline { \Psi } \square ^ { - 1 }_{1} f,$ ; confidence 0.704
177. ; $Z \subseteq X \times X$ ; confidence 0.704
178. ; $T _ { E } : \mathcal{U} \rightarrow \mathcal{U} $ ; confidence 0.704
179. ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704
180. ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } \mathcal{L} ( K _ { 2 } ) \omega \bigwedge K _ { 1 } +$ ; confidence 0.704
181. ; $G = \operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.704
182. ; $M _ { \operatorname{sa} }$ ; confidence 0.704
183. ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z },$ ; confidence 0.704
184. ; $\mathbf{P}^{1}$ ; confidence 0.704
185. ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704
186. ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }.$ ; confidence 0.704
187. ; $g : Y \rightarrow X$ ; confidence 0.703
188. ; $\mathcal{P} ( \square ^ { n } E ) \rightarrow \mathcal{P} ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703
189. ; $x , y \in \mathbf{R} ^ { x }$ ; confidence 0.703
190. ; $U \in \operatorname{SGL} _ { n } ( \mathbf{Z} G )$ ; confidence 0.703
191. ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { \operatorname{obs} }$ ; confidence 0.703
192. ; $K _ { q }$ ; confidence 0.703
193. ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703
194. ; $U _ { n } ( x , y )$ ; confidence 0.703
195. ; $| x | \rightarrow \infty$ ; confidence 0.702
196. ; $P = - i \overset{\rightharpoonup}{ \nabla }$ ; confidence 0.702
197. ; $\tau \in T$ ; confidence 0.702
198. ; $\tau ( W \bigcup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } ).$ ; confidence 0.702
199. ; $G \times^{\varrho} F$ ; confidence 0.702
200. ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702
201. ; $\lambda = \operatorname { dim } ( \mathcal{S} ) - 1$ ; confidence 0.702
202. ; $S ^ { * } S ^ { \prime } \in \mathbf{C}I$ ; confidence 0.702
203. ; $a : = \pi ( A )$ ; confidence 0.702
204. ; $\alpha _ { i j } = 2$ ; confidence 0.702
205. ; $\| u \|_{\infty}$ ; confidence 0.702
206. ; $\hat { f }^{\prime}$ ; confidence 0.702
207. ; $\mathsf{E} W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702
208. ; $\operatorname { map } _ { * } ( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702
209. ; $D _ { t }$ ; confidence 0.702
210. ; $z \mapsto z ^ { n }$ ; confidence 0.701
211. ; $r = s$ ; confidence 0.701
212. ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B (\text{budget constraint}),$ ; confidence 0.701
213. ; $x _ { 0 }$ ; confidence 0.701
214. ; $\operatorname { Re } \lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }.$ ; confidence 0.701
215. ; $( G , c )$ ; confidence 0.701
216. ; $R _ { V }$ ; confidence 0.700
217. ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots,$ ; confidence 0.700
218. ; $\| . \| p$ ; confidence 0.700
219. ; $( x ^ { k } ) _ { k \in \mathbf{N} }$ ; confidence 0.700
220. ; $p ( x ) = \overline{0}$ ; confidence 0.700
221. ; $2 ^ { m - 1 }$ ; confidence 0.700
222. ; $l ^ { \infty }$ ; confidence 0.700
223. ; $\mathcal{D} \subseteq \operatorname{ ca} ( \Omega , \mathcal{F} )$ ; confidence 0.700
224. ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700
225. ; $B ^ { * }$ ; confidence 0.700
226. ; $F ^ { \mu \nu_{ , \nu} } = F ^ { \mu \nu_{ , , \nu}} = S ^ { \mu }.$ ; confidence 0.700
227. ; $.\operatorname { exp } \left( - \sum _ { p \leq x } \frac { 1 } { p } . ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i \alpha _ { 0 } } ) ) \right).$ ; confidence 0.700
228. ; $\tau \in H$ ; confidence 0.700
229. ; $\mathbf{x} = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700
230. ; $W ( g ) = R ( g ) - g .A ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} $ ; confidence 0.700
231. ; $\sigma_{\text{l}}$ ; confidence 0.700
232. ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700
233. ; $\| \varphi \| _ { \text{S} } : = \| M\|$ ; confidence 0.700
234. ; $v _ { i } = \frac { D u _ { i } } { D t }$ ; confidence 0.700
235. ; $\operatorname{ ind } S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700
236. ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699
237. ; $\partial ^ { - 1_{x} }$ ; confidence 0.699
238. ; $\operatorname { Re } ( \mathcal{E} ) \nabla ^ { 2 } \mathcal{E} = \nabla \mathcal{E} . \nabla \mathcal{E},$ ; confidence 0.699
239. ; $\phi : \mathcal{A} \rightarrow \mathbf{C}$ ; confidence 0.699
240. ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w } ) } , \quad z \in \mathbf{C},$ ; confidence 0.699
241. ; $f _ { j } = \sum _ { i } c _ { i } g _ {i j }.$ ; confidence 0.699
242. ; $L : A \rightarrow \operatorname { Fun } _ { q } ( G ) \otimes A$ ; confidence 0.699
243. ; $X ^ { * }_{c}$ ; confidence 0.699
244. ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699
245. ; $\{ H ^ { n } ( \mathcal{C} , - ) : n \geq 0 \}$ ; confidence 0.699
246. ; $\mathcal{T} ^ { + } = \bigcap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
247. ; $A \mathbf{x} < \mathbf{b}$ ; confidence 0.699
248. ; $\| x \|$ ; confidence 0.699
249. ; $\left( \frac { \partial } { \partial \lambda } \right) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +\dots$ ; confidence 0.699
250. ; $B \subseteq P$ ; confidence 0.699
251. ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699
252. ; $F \mathbf{c} _ { k _ { 1 } } \mathbf{c} _ { k _ { 2 } } = \mathbf{c} _ { f ( k _ { 1 } , k _ { 2 } )}$ ; confidence 0.698
253. ; $d ( . , . )$ ; confidence 0.698
254. ; $\operatorname { exp } ( i \pi \langle S x , x \rangle )$ ; confidence 0.698
255. ; $v _ { j } \in \Sigma$ ; confidence 0.698
256. ; $\mathbf{F} _ { q ^ { i } }$ ; confidence 0.698
257. ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698
258. ; $\nabla _{\times}$ ; confidence 0.698
259. ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x.$ ; confidence 0.698
260. ; $U \subseteq \mathbf{R} ^ { n }$ ; confidence 0.698
261. ; $j = 1 , \ldots , J$ ; confidence 0.698
262. ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } ),$ ; confidence 0.698
263. ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698
264. ; $\overline { \mathbf{C} } _ { + }$ ; confidence 0.698
265. ; $D ( a , R )$ ; confidence 0.698
266. ; $\sigma ( \mathbf{u} ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698
267. ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698
268. ; $( \mathcal{A} + i \mathcal{B} ) x = 0 \Leftrightarrow \mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.698
269. ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o \left( n ^ { - 1 / 2 } \right)$ ; confidence 0.698
270. ; $1 , \ldots , r$ ; confidence 0.698
271. ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } },$ ; confidence 0.698
272. ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697
273. ; $A _ { 1 } , \dots , A _ { k }$ ; confidence 0.697
274. ; $F ( a ) \neq 0$ ; confidence 0.697
275. ; $\int _ { a } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697
276. ; $\psi : J _ { t } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.697
277. ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } \left( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } \right) , \quad x \in H.$ ; confidence 0.697
278. ; $b \in D$ ; confidence 0.697
279. ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697
280. ; $\tilde { \mathcal{K} } \supset \mathcal{K}$ ; confidence 0.697
281. ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697
282. ; $( \lambda x , x x ) ( \lambda x , x x )$ ; confidence 0.697
283. ; $e ^ { \beta z }$ ; confidence 0.697
284. ; $F = F ( \mu ) = \{ \mathsf{P} ( \theta , \mu ) : \theta \in \Theta ( \mu ) \},$ ; confidence 0.697
285. ; $\operatorname{GL} ( A )$ ; confidence 0.697
286. ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697
287. ; $\epsilon \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.697
288. ; $C _ { 36 }$ ; confidence 0.697
289. ; $P _ { L } ( v , z ) = \sum _ { i = m } ^ { N } P _ { i } ( v ) z ^ { i }$ ; confidence 0.697
290. ; $E ( a , R )$ ; confidence 0.696
291. ; $\mathbf{C} \times ( \mathbf{C} \backslash ( - \infty , 0 ) )$ ; confidence 0.696
292. ; $C _ { 0 } ( G )$ ; confidence 0.696
293. ; $F _ { n+1 } + 1 \rightarrow F _ { n }$ ; confidence 0.696
294. ; $\tilde { A }$ ; confidence 0.696
295. ; $( \varphi _ { 0 } \lambda \varphi _ { 1 } )$ ; confidence 0.696
296. ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }.$ ; confidence 0.696
297. ; $A \mathbf{x} < \mathbf{b} + \varepsilon$ ; confidence 0.696
298. ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z },$ ; confidence 0.696
299. ; $\left\{ S ^ { \lambda } : \lambda \text { a partition of } n \right\}$ ; confidence 0.696
300. ; $f ( T ^ { n } x )$ ; confidence 0.696
Maximilian Janisch/latexlist/latex/NoNroff/46. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/46&oldid=45345