Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/42"
(AUTOMATIC EDIT of page 42 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) (→List) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350236.png ; $ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350236.png ; $\Xi$ ; confidence 0.780 |
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430109.png ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779 | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430109.png ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779 | ||
− | 3. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007090.png ; $= \operatorname { sup } \{ h ( z ) : \ | + | 3. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007090.png ; $= \operatorname { sup } \left\{ h ( z ) : \begin{array}{ c c } { h \in \operatorname{PSH}(\Omega), \, h<0,} \\{h ( \zeta ) - \operatorname { log } \| \zeta - w \| = O ( 1 ) ( \zeta \rightarrow w )} \end{array} \right\}.$ ; confidence 0.779 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005010.png ; $S = S ^ { - 1 } : = \{ s ^ { - 1 } : s \in S \}$ ; confidence 0.779 | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005010.png ; $S = S ^ { - 1 } : = \left\{ s ^ { - 1 } : s \in S \right\}$ ; confidence 0.779 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020056.png ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in | + | 5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020056.png ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ ; confidence 0.779 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007044.png ; $C ^ { 0 } ( \Gamma , k , v )$ ; confidence 0.779 | + | 6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007044.png ; $C ^ { 0 } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.779 |
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210136.png ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779 | 7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210136.png ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779 | ||
Line 16: | Line 16: | ||
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a1203106.png ; $W ^ { * }$ ; confidence 0.779 | 8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a1203106.png ; $W ^ { * }$ ; confidence 0.779 | ||
− | 9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020117.png ; $\phi \in BMO$ ; confidence 0.779 | + | 9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020117.png ; $\phi \in \operatorname{BMO}$ ; confidence 0.779 |
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779 | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779 | + | 11. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $\mathcal{K} ( L ^ { 2 } ( S ) )$ ; confidence 0.779 |
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023032.png ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779 | 12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023032.png ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779 | ||
Line 28: | Line 28: | ||
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610226.png ; $N = 1$ ; confidence 0.779 | 14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610226.png ; $N = 1$ ; confidence 0.779 | ||
− | 15. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022052.png ; $ | + | 15. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022052.png ; $\mathbf{Z} ^ { 2 }$ ; confidence 0.779 |
16. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021070.png ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779 | 16. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021070.png ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779 | ||
Line 34: | Line 34: | ||
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201405.png ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779 | 17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e1201405.png ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032074.png ; $ | + | 18. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032074.png ; $\operatorname{Mod}_{A}$ ; confidence 0.779 |
19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779 | 19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008063.png ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003029.png ; $g \in L ^ { 2 } ( R )$ ; confidence 0.779 | + | 20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003029.png ; $g \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.779 |
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045026.png ; $F _ { Y } ( Y )$ ; confidence 0.779 | 21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045026.png ; $F _ { Y } ( Y )$ ; confidence 0.779 | ||
− | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050203.png ; $P$ ; confidence 0.779 | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050203.png ; $\mathcal{P}$ ; confidence 0.779 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z1300308.png ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w }$ ; confidence 0.779 | + | 23. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z1300308.png ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w },$ ; confidence 0.779 |
24. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006024.png ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778 | 24. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006024.png ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778 | ||
− | 25. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012011.png ; $SL ( 2 , C )$ ; confidence 0.778 | + | 25. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012011.png ; $\operatorname{SL} ( 2 , \mathbf{C} )$ ; confidence 0.778 |
26. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007047.png ; $r D$ ; confidence 0.778 | 26. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007047.png ; $r D$ ; confidence 0.778 | ||
Line 60: | Line 60: | ||
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020092.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778 | 30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020092.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778 | ||
− | 31. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010059.png ; $ | + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010059.png ; $\operatorname{Tr}D$ ; confidence 0.778 |
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013023.png ; $e = e ( L | F )$ ; confidence 0.778 | 32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013023.png ; $e = e ( L | F )$ ; confidence 0.778 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025054.png ; $PG ( 3 , q )$ ; confidence 0.778 | + | 33. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025054.png ; $\operatorname{PG} ( 3 , q )$ ; confidence 0.778 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022055.png ; $H _ { M } ^ { 2 j } ( X , Q ( j ) ) \cong CH ^ { j } ( X ) \otimes Q$ ; confidence 0.778 | + | 34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022055.png ; $H _ { \mathcal{M} } ^ { 2 j } ( X , \mathbf{Q} ( j ) ) \cong \operatorname{CH} ^ { j } ( X ) \otimes \mathbf{Q}$ ; confidence 0.778 |
35. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004099.png ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778 | 35. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004099.png ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778 | ||
− | 36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027023.png ; $n \in Z$ ; confidence 0.778 | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027023.png ; $n \in \mathbf{Z}$ ; confidence 0.778 |
37. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700036.png ; $F V ( M ) = \emptyset$ ; confidence 0.778 | 37. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700036.png ; $F V ( M ) = \emptyset$ ; confidence 0.778 | ||
− | 38. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004028.png ; $= \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 }$ ; confidence 0.778 | + | 38. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004028.png ; $= \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 },$ ; confidence 0.778 |
39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160167.png ; $( w \notin S )$ ; confidence 0.778 | 39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160167.png ; $( w \notin S )$ ; confidence 0.778 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png ; $ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png ; $a , b , c \in A$ ; confidence 0.778 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007036.png ; $\prod _ { l = 1 } ^ { n } A ^ { \text { | + | 41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007036.png ; $\prod _ { l = 1 } ^ { n } A ^ { \text { in/out } } ( f _ { l } ) \Omega = \operatorname { lim } _ { t \rightarrow \pm \infty } \prod _ { l = 1 } ^ { n } A ( f _ { l } ^ { t } ) \Omega,$ ; confidence 0.778 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011024.png ; $( T ( T _ { A } ) , F ( T _ { A } ) )$ ; confidence 0.778 | + | 42. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011024.png ; $( \mathcal{T} ( T _ { A } ) , \mathcal{F} ( T _ { A } ) )$ ; confidence 0.778 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024020.png ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , GL ( n , C ) )$ ; confidence 0.778 | + | 43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024020.png ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , \operatorname{GL} ( n , \mathbf{C} ) )$ ; confidence 0.778 |
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260111.png ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778 | 44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260111.png ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778 | ||
Line 98: | Line 98: | ||
49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008085.png ; $x _ { i j } ^ { k }$ ; confidence 0.777 | 49. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008085.png ; $x _ { i j } ^ { k }$ ; confidence 0.777 | ||
− | 50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008021.png ; $F ( x , y ) \in O _ { S } ^ { * } \text { in } ( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.777 | + | 50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008021.png ; $F ( x , y ) \in \mathcal{O} _ { S } ^ { * } \text { in } ( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.777 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170293.png ; $0 \rightarrow P _ { n } \rightarrow \ldots \rightarrow P _ { 0 } \rightarrow Z \rightarrow 0$ ; confidence 0.777 | + | 51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170293.png ; $0 \rightarrow P _ { n } \rightarrow \ldots \rightarrow P _ { 0 } \rightarrow \mathbf{Z} \rightarrow 0$ ; confidence 0.777 |
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777 | 52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777 | ||
Line 106: | Line 106: | ||
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777 | 53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004040.png ; $X _ { g } ^ { * }$ ; confidence 0.777 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019025.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } ) = \sum _ { h } \frac { S ( h f ^ { \prime } ; M _ { 1 } , M _ { 2 } ) } { h }$ ; confidence 0.777 | + | 54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019025.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } ) = \sum _ { h } \frac { S ( h f ^ { \prime } ; M _ { 1 } , M _ { 2 } ) } { h },$ ; confidence 0.777 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( N \Theta )$ ; confidence 0.777 | + | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( \mathbf{N} \Theta )$ ; confidence 0.777 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110126.png ; $E \frac { \mu _ { N } ( x ) } { M } \rightarrow \frac { 1 } { x ( x + 1 ) }$ ; confidence 0.777 | + | 56. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110126.png ; $\textsf{E} \frac { \mu _ { N } ( x ) } { M } \rightarrow \frac { 1 } { x ( x + 1 ) },$ ; confidence 0.777 |
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012068.png ; $k , N > 0$ ; confidence 0.776 | 57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012068.png ; $k , N > 0$ ; confidence 0.776 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006074.png ; $N = | + | 58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006074.png ; $N = N_{j}$ ; confidence 0.776 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001031.png ; $v u \simeq | + | 59. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001031.png ; $v u \simeq 1_{Y}$ ; confidence 0.776 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460205.png ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Res } > 0 } | F ( s ) |$ ; confidence 0.776 | + | 60. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460205.png ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Res } > 0 } | F ( s ) |.$ ; confidence 0.776 |
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776 | 61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013054.png ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776 | ||
− | 62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017017.png ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )$ ; confidence 0.776 | + | 62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017017.png ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )=$ ; confidence 0.776 |
63. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201705.png ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776 | 63. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201705.png ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776 | ||
− | 64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106406.png ; $ | + | 64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106406.png ; $k_2$ ; confidence 0.776 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { | + | 65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060117.png ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { as }\, n \rightarrow \infty ,$ ; confidence 0.776 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028026.png ; $\operatorname { | + | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028026.png ; $\mathcal{C}\operatorname { rs } ( A \otimes B , C ) \cong \mathcal{C}\operatorname { rs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.776 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016054.png ; $f ( , t )$ ; confidence 0.776 | + | 67. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016054.png ; $f (\, .\, , t )$ ; confidence 0.776 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006059.png ; $S ( k ) = - \kappa$ ; confidence 0.776 | + | 68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006059.png ; $\operatorname {ind} S ( k ) = - \kappa$ ; confidence 0.776 |
69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001044.png ; $c ( D )$ ; confidence 0.776 | 69. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001044.png ; $c ( D )$ ; confidence 0.776 | ||
Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776 | 70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507011.png ; $H ^ { 1 } ( M , C ) \cong A ^ { 1 } \ | + | 71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507011.png ; $H ^ { 1 } ( M , \mathbf{C} ) \cong A ^ { 1 } \bigoplus \overline { A } \square ^ { 1 },$ ; confidence 0.776 |
72. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001057.png ; $G ^ { c }$ ; confidence 0.775 | 72. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001057.png ; $G ^ { c }$ ; confidence 0.775 | ||
Line 146: | Line 146: | ||
73. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t0935607.png ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775 | 73. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t0935607.png ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034088.png ; $S _ { H } ( x ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t$ ; confidence 0.775 | + | 74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034088.png ; $S _ { H } ( \tilde{x} ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t,$ ; confidence 0.775 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014011.png ; $G = SU ( N )$ ; confidence 0.775 | + | 75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014011.png ; $G = \operatorname {SU} ( N )$ ; confidence 0.775 |
76. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014130/a01413018.png ; $p _ { 1 } , \dots , p _ { k }$ ; confidence 0.775 | 76. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014130/a01413018.png ; $p _ { 1 } , \dots , p _ { k }$ ; confidence 0.775 | ||
− | 77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020094.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq ( \frac { n } { 2 e ( m + n ) } ) ^ { n } | b _ { 1 } + \ldots + b _ { n } |$ ; confidence 0.775 | + | 77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020094.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq \left( \frac { n } { 2 e ( m + n ) } \right) ^ { n } | b _ { 1 } + \ldots + b _ { n } |.$ ; confidence 0.775 |
78. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022020.png ; $o ( g )$ ; confidence 0.775 | 78. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022020.png ; $o ( g )$ ; confidence 0.775 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007034.png ; $k < m | + | 79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007034.png ; $k < m \leq n$ ; confidence 0.775 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023041.png ; $d f _ { t } = t ^ { - 1 } ( I - R _ { t } ) = ( ( \partial f ) ^ { - 1 } + t I ) ^ { - 1 }$ ; confidence 0.775 | + | 80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023041.png ; $d f _ { t } = t ^ { - 1 } ( I - R _ { t } ) = ( ( \partial f ) ^ { - 1 } + t I ) ^ { - 1 },$ ; confidence 0.775 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095330/u09533017.png ; $1 | + | 81. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095330/u09533017.png ; $1 / 6$ ; confidence 0.775 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014062.png ; $\sigma ( T _ { \phi } ) = \operatorname { conv } ( R ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ]$ ; confidence 0.775 | + | 82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014062.png ; $\sigma ( T _ { \phi } ) = \operatorname { conv } ( \mathcal{R} ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ].$ ; confidence 0.775 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005015.png ; $ | + | 83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005015.png ; $\mathbf{F}$ ; confidence 0.775 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007030.png ; $\# A / ( \sqrt { q \operatorname { log } q | + | 84. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007030.png ; $\# A / ( \sqrt { q }\operatorname { log } q ) \rightarrow \infty$ ; confidence 0.775 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002026.png ; $\overline { f } - ap$ ; confidence 0.775 | + | 85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002026.png ; $\overline { f }_{ - \text{ap}}$ ; confidence 0.775 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110212.png ; $( R ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775 | + | 86. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110212.png ; $( \mathbf{R} ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210112.png ; $( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774 | + | 87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210112.png ; $\operatorname { Hom } _ { a }( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774 |
88. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003056.png ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774 | 88. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003056.png ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774 | ||
Line 178: | Line 178: | ||
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065024.png ; $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ ; confidence 0.774 | 89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065024.png ; $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ ; confidence 0.774 | ||
− | 90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301903.png ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) )$ ; confidence 0.774 | + | 90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301903.png ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) ),$ ; confidence 0.774 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021092.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots$ ; confidence 0.774 | + | 91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021092.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots,$ ; confidence 0.774 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501034.png ; $B O _ { | + | 92. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501034.png ; $B O _ { n }$ ; confidence 0.774 |
93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020031.png ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774 | 93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020031.png ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774 | ||
Line 188: | Line 188: | ||
94. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570013.png ; $\rho ( X )$ ; confidence 0.774 | 94. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570013.png ; $\rho ( X )$ ; confidence 0.774 | ||
− | 95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280145.png ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 | + | 95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280145.png ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 n - 2 } }.$ ; confidence 0.774 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $ | + | 96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $\mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} }$ ; confidence 0.774 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060101.png ; $Y _ { 1 } \in \{ y _ { 1 | + | 97. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060101.png ; $Y _ { 1 } \in \{ y _ { 1 , 1} , y _ { 1 , 3} , y _ { 1 ,8} \}$ ; confidence 0.774 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013078.png ; $A | + | 98. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013078.png ; $A^{\mp}$ ; confidence 0.774 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066590/n06659020.png ; $\theta$ ; confidence 0.774 | + | 99. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066590/n06659020.png ; $\overline{\theta}$ ; confidence 0.774 |
100. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037041.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.774 | 100. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037041.png ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.774 | ||
− | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007033.png ; $C ^ { * } ( C , - )$ ; confidence 0.774 | + | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007033.png ; $C ^ { * } ( \mathcal{C} , - )$ ; confidence 0.774 |
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019026.png ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774 | 102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019026.png ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076370/q07637068.png ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774 | 103. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076370/q07637068.png ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001043.png ; $\operatorname { span } | + | 104. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001043.png ; $\operatorname { span } \langle D \rangle = 4 c ( D )$ ; confidence 0.774 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050122.png ; $f : V ^ { n } \rightarrow R$ ; confidence 0.774 | + | 105. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050122.png ; $f : V ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.774 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013036.png ; $n \rightarrow \infty | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774 | + | 106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013036.png ; $\operatorname {lim} \operatorname {sup}_{n \rightarrow \infty} | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430124.png ; $k \langle u ^ { i } \ | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430124.png ; $k \langle u ^ { i } \square_{ j} \rangle$ ; confidence 0.774 |
108. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302307.png ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774 | 108. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302307.png ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774 | ||
− | 109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034053.png ; $\varphi _ { | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034053.png ; $\varphi _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.773 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \ | + | 110. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \bigcup _ { i < m } N _ { i } \right\},$ ; confidence 0.773 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301006.png ; $T \leq 1$ ; confidence 0.773 | + | 111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301006.png ; $\operatorname {p.dim} T \leq 1$ ; confidence 0.773 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025025.png ; $ | + | 112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025025.png ; $Y_{j}$ ; confidence 0.773 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003061.png ; $E _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in C ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773 | + | 113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003061.png ; $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773 |
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011076.png ; $g : K \rightarrow \overline { M }$ ; confidence 0.773 | 114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011076.png ; $g : K \rightarrow \overline { M }$ ; confidence 0.773 | ||
− | 115. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002042.png ; $F ( S ) ^ { q }$ ; confidence 0.773 | + | 115. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002042.png ; $\mathcal{F} ( S ) ^ { q }$ ; confidence 0.773 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $ | + | 116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $\mathcal{C} ^ { m } ( \Omega )$ ; confidence 0.773 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013011.png ; $ | + | 117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013011.png ; $\operatorname {diag} ( S _ { 1 } ) = I$ ; confidence 0.773 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066051.png ; $\Omega = \{ ( x , y ) : x , y \in R ^ { n } , x \neq y \}$ ; confidence 0.773 | + | 118. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066051.png ; $\Omega = \{ ( x , y ) : x , y \in \mathbf{R} ^ { n } , x \neq y \}$ ; confidence 0.773 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180167.png ; $\ | + | 119. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180167.png ; $\mathcal{E} \otimes \mathcal{E}$ ; confidence 0.773 |
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200238.png ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773 | 120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200238.png ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028027.png ; $c ^ { T } x$ ; confidence 0.773 | + | 121. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028027.png ; $\mathbf{c} ^ { T } \mathbf{x}$ ; confidence 0.773 |
122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025046.png ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773 | 122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025046.png ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773 | ||
− | 123. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022082.png ; $O _ { X }$ ; confidence 0.773 | + | 123. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022082.png ; $\mathcal{O} _ { X }$ ; confidence 0.773 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014014.png ; $| \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }$ ; confidence 0.773 | + | 124. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014014.png ; $\operatorname {lim} \operatorname{sup} | \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }.$ ; confidence 0.773 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090223.png ; $X = \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes Z _ { p } [ \chi ]$ ; confidence 0.772 | + | 125. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090223.png ; $X = \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.772 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030079.png ; $L ^ { 2 } ( Y ^ { \prime } , | + | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030079.png ; $L ^ { 2 } ( Y ^ { \prime } , \text{l} ^ { 2 } ( \mathbf{N} ) )$ ; confidence 0.772 |
127. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014023.png ; $\tilde { f } \in A$ ; confidence 0.772 | 127. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014023.png ; $\tilde { f } \in A$ ; confidence 0.772 | ||
− | 128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002084.png ; $( LD )$ ; confidence 0.772 | + | 128. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002084.png ; $( \operatorname {LD} )$ ; confidence 0.772 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016012.png ; $\ | + | 129. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016012.png ; $\chi_{ T + K} = \chi _{T}$ ; confidence 0.772 |
130. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890220.png ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772 | 130. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890220.png ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772 | ||
− | 131. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001095.png ; $S = \frac { k ^ { 2 } V } { 4 \pi } | + | 131. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001095.png ; $S = \frac { k ^ { 2 } V } { 4 \pi } . \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right),$ ; confidence 0.772 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380105.png ; $ | + | 132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380105.png ; $\leq m$ ; confidence 0.772 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023048.png ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , | + | 133. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023048.png ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , I _ { n } )$ ; confidence 0.772 |
134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180491.png ; $( N , g )$ ; confidence 0.772 | 134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180491.png ; $( N , g )$ ; confidence 0.772 | ||
− | 135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081038.png ; $( . . )$ ; confidence 0.772 | + | 135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081038.png ; $( \, . \, . \, )$ ; confidence 0.772 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\ | + | 136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\tau$ ; confidence 0.772 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301702.png ; $x _ { t } : \Omega \rightarrow R ^ { x }$ ; confidence 0.772 | + | 137. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301702.png ; $x _ { t } : \Omega \rightarrow \mathbf{R} ^ { x }$ ; confidence 0.772 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012041.png ; $Q = Q _ { | + | 138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012041.png ; $Q = Q _ { \text{l} } ( R )$ ; confidence 0.772 |
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png ; $m \in M$ ; confidence 0.772 | 139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png ; $m \in M$ ; confidence 0.772 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180131.png ; $E \ | + | 140. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180131.png ; $E \subseteq F$ ; confidence 0.772 |
141. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001027.png ; $C ( \theta _ { r } )$ ; confidence 0.772 | 141. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001027.png ; $C ( \theta _ { r } )$ ; confidence 0.772 | ||
Line 284: | Line 284: | ||
142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010029.png ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772 | 142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010029.png ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772 | ||
− | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240124.png ; $E / Q$ ; confidence 0.772 | + | 143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240124.png ; $E / \mathbf{Q}$ ; confidence 0.772 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300107.png ; $F = N _ { V } \int _ { V } ( f _ { 0 } ( c ) + \kappa | \nabla c | ^ { 2 } ) d V$ ; confidence 0.772 | + | 144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300107.png ; $F = N _ { V } \int _ { V } ( f _ { 0 } ( c ) + \kappa | \nabla c | ^ { 2 } ) d V,$ ; confidence 0.772 |
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018031.png ; $v < t$ ; confidence 0.772 | 145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018031.png ; $v < t$ ; confidence 0.772 | ||
Line 296: | Line 296: | ||
148. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008078.png ; $N = N _ { c }$ ; confidence 0.771 | 148. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008078.png ; $N = N _ { c }$ ; confidence 0.771 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003065.png ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } F _ { p }$ ; confidence 0.771 | + | 149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003065.png ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } \mathbf{F} _ { p }.$ ; confidence 0.771 |
150. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010025.png ; $\forall x \varphi$ ; confidence 0.771 | 150. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010025.png ; $\forall x \varphi$ ; confidence 0.771 | ||
Line 302: | Line 302: | ||
151. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016074.png ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771 | 151. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016074.png ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771 | ||
− | 152. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450441.png ; $A _ { | + | 152. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450441.png ; $A _ { n } ( k )$ ; confidence 0.771 |
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240104.png ; $y _ { i }$ ; confidence 0.771 | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240104.png ; $y _ { i }$ ; confidence 0.771 | ||
Line 312: | Line 312: | ||
156. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002011.png ; $\zeta _ { K } ( s )$ ; confidence 0.771 | 156. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002011.png ; $\zeta _ { K } ( s )$ ; confidence 0.771 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240205.png ; $X _ { 3 } \beta \neq 0$ ; confidence 0.771 | + | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240205.png ; $\mathbf{X} _ { 3 } \beta \neq 0$ ; confidence 0.771 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060107.png ; $F R$ ; confidence 0.771 | + | 158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060107.png ; $F \mathbf{R}$ ; confidence 0.771 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015082.png ; $( Ad , g )$ ; confidence 0.771 | + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015082.png ; $( \operatorname{Ad} , g )$ ; confidence 0.771 |
160. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h120070122.png ; $4 D$ ; confidence 0.771 | 160. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h120070122.png ; $4 D$ ; confidence 0.771 | ||
Line 322: | Line 322: | ||
161. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004045.png ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771 | 161. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004045.png ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006060.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \ | + | 162. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006060.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \not\equiv 0$ ; confidence 0.771 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x )$ ; confidence 0.770 | + | 163. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x ),$ ; confidence 0.770 |
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230114.png ; $E ^ { 2 k }$ ; confidence 0.770 | 164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230114.png ; $E ^ { 2 k }$ ; confidence 0.770 | ||
Line 330: | Line 330: | ||
165. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090443.png ; $S ( n , r )$ ; confidence 0.770 | 165. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090443.png ; $S ( n , r )$ ; confidence 0.770 | ||
− | 166. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006081.png ; $q \Rightarrow S$ ; confidence 0.770 | + | 166. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006081.png ; $q \Rightarrow \mathcal{S}$ ; confidence 0.770 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200130.png ; $| 1 - z | + | 167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200130.png ; $| 1 - z _{l + 1} | > \delta _ { 2 }$ ; confidence 0.770 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420132.png ; $R : H \otimes H \rightarrow | + | 168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420132.png ; $\mathcal{R} : H \otimes H \rightarrow k $ ; confidence 0.770 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001081.png ; $\Gamma = SL ( 2 , Z )$ ; confidence 0.770 | + | 169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001081.png ; $\Gamma = \operatorname{SL} ( 2 , \mathbf{Z} )$ ; confidence 0.770 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e03580021.png ; $ | + | 170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e03580021.png ; $\nu_2$ ; confidence 0.770 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019027.png ; $C [ \Gamma ]$ ; confidence 0.770 | + | 171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019027.png ; $\mathbf{C} [ \Gamma ]$ ; confidence 0.770 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008010.png ; $( | + | 172. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008010.png ; $\left( \text{l} _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0,$ ; confidence 0.770 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050156.png ; $| | + | 173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050156.png ; $| a | = c ^ { \partial ( a ) }$ ; confidence 0.770 |
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020085.png ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769 | 174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020085.png ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008057.png ; $\pm m _ { | + | 175. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008057.png ; $\pm m _ { s }$ ; confidence 0.769 |
176. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001085.png ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769 | 176. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001085.png ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769 | ||
Line 354: | Line 354: | ||
177. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067096.png ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769 | 177. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067096.png ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769 | ||
− | 178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001020.png ; $R \subset X ^ { ( r ) }$ ; confidence 0.769 | + | 178. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001020.png ; $\mathcal{R} \subset X ^ { ( r ) }$ ; confidence 0.769 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306602.png ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t )$ ; confidence 0.769 | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306602.png ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t ),$ ; confidence 0.769 |
180. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015310/b01531042.png ; $q \geq 0$ ; confidence 0.769 | 180. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015310/b01531042.png ; $q \geq 0$ ; confidence 0.769 | ||
Line 364: | Line 364: | ||
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013032.png ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769 | 182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013032.png ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s0860204.png ; $t ( 0 ) = t ( | + | 183. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s0860204.png ; $t ( 0 ) = t ( l )$ ; confidence 0.769 |
184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043880/g04388018.png ; $t \downarrow 0$ ; confidence 0.769 | 184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043880/g04388018.png ; $t \downarrow 0$ ; confidence 0.769 | ||
Line 370: | Line 370: | ||
185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005076.png ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769 | 185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005076.png ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022031.png ; $\Gamma _ { 0 } ( 2 ) ^ { + } : = \ | + | 186. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022031.png ; $\Gamma _ { 0 } ( 2 ) ^ { + } : = \left( \Gamma _ { 0 } ( 2 ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { 2 } & { 0 } \end{array} \right) \right)$ ; confidence 0.769 |
187. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105032.png ; $F _ { X }$ ; confidence 0.769 | 187. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105032.png ; $F _ { X }$ ; confidence 0.769 | ||
Line 378: | Line 378: | ||
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047021.png ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769 | 189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047021.png ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769 | ||
− | 190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015011.png ; $h \in H ^ { 2 } ( T )$ ; confidence 0.769 | + | 190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015011.png ; $h \in H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.769 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430147.png ; $A _ { q } ^ { 2 } \ | + | 191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430147.png ; $\mathcal{A} _ { q } ^ { 2 } \rtimes \operatorname { GL} _ { q } ( 2 )$ ; confidence 0.769 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329045.png ; $\Pi _ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329045.png ; $\Pi _ { n }$ ; confidence 0.769 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009026.png ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0$ ; confidence 0.769 | + | 193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009026.png ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0.$ ; confidence 0.769 |
194. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g04427053.png ; $s = 1 , \dots , r$ ; confidence 0.769 | 194. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g04427053.png ; $s = 1 , \dots , r$ ; confidence 0.769 | ||
Line 390: | Line 390: | ||
195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029013.png ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768 | 195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029013.png ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768 | ||
− | 196. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230142.png ; $GF ( 2 )$ ; confidence 0.768 | + | 196. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e036230142.png ; $\operatorname {GF} ( 2 )$ ; confidence 0.768 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002057.png ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } | + | 197. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002057.png ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } . d B _ { s }.$ ; confidence 0.768 |
198. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064064.png ; $I + W _ { \tau } ( k )$ ; confidence 0.768 | 198. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064064.png ; $I + W _ { \tau } ( k )$ ; confidence 0.768 | ||
− | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040262.png ; $ | + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040262.png ; $\textsf{BA}$ ; confidence 0.768 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017038.png ; $a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768 | + | 200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017038.png ; $\langle a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220223.png ; $M _ { Q }$ ; confidence 0.768 | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220223.png ; $\mathcal{M} _ { Q }$ ; confidence 0.768 |
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020070.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768 | 202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020070.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768 | ||
Line 406: | Line 406: | ||
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016011.png ; $a _ { j } ^ { i } \in C ( [ 0,1 ] )$ ; confidence 0.768 | 203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016011.png ; $a _ { j } ^ { i } \in C ( [ 0,1 ] )$ ; confidence 0.768 | ||
− | 204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768 | + | 204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i },$ ; confidence 0.768 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768 | + | 205. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }.$ ; confidence 0.768 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702051.png ; $H ^ { i } ( X , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( X , F _ { n } )$ ; confidence 0.768 | + | 206. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702051.png ; $H ^ { i } ( \overline{X} , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.768 |
207. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006031.png ; $p \nmid k$ ; confidence 0.768 | 207. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006031.png ; $p \nmid k$ ; confidence 0.768 | ||
− | 208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160173.png ; $P = BPP$ ; confidence 0.768 | + | 208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160173.png ; $P = \operatorname {BPP}$ ; confidence 0.768 |
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303603.png ; $X _ { t } ^ { + }$ ; confidence 0.768 | 209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303603.png ; $X _ { t } ^ { + }$ ; confidence 0.768 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006082.png ; $\mathfrak { V } ^ { ( l ) } = ( A _ { 1 } ^ { ( l ) } , A _ { 2 } ^ { ( l ) } , H ^ { ( l ) } , \Phi ^ { ( l ) } , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.768 | + | 210. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006082.png ; $\mathfrak { V } ^ { ( l ) } = ( A _ { 1 } ^ { ( l ) } , A _ { 2 } ^ { ( l ) } , \mathcal{H} ^ { ( l ) } , \Phi ^ { ( l ) } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.768 |
211. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017082.png ; $B ^ { * }$ ; confidence 0.768 | 211. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017082.png ; $B ^ { * }$ ; confidence 0.768 | ||
Line 426: | Line 426: | ||
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040077.png ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768 | 213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040077.png ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011029.png ; $R ^ { n } + i \Gamma _ { j }$ ; confidence 0.767 | + | 214. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011029.png ; $\mathbf{R} ^ { n } + i \Gamma _ { j }$ ; confidence 0.767 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005045.png ; $ | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005045.png ; $\alpha _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767 |
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029033.png ; $( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.767 | 216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029033.png ; $( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.767 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029076.png ; $\phi _ { | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029076.png ; $\phi _ { \tilde{f} } : \mathcal{M} ( Q ) \rightarrow \mathcal{M} ( Q )$ ; confidence 0.767 |
218. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001025.png ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767 | 218. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001025.png ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767 | ||
Line 438: | Line 438: | ||
219. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003057.png ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767 | 219. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003057.png ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767 | ||
− | 220. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007016.png ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K ( , y ) \|$ ; confidence 0.767 | + | 220. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007016.png ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K (\, .\, , y ) \|.$ ; confidence 0.767 |
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023031.png ; $( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.767 | 221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023031.png ; $( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.767 | ||
Line 444: | Line 444: | ||
222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767 | 222. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767 | ||
− | 223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009081.png ; $F _ { | + | 223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009081.png ; $F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.767 |
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025018.png ; $H ^ { s } ( \Omega )$ ; confidence 0.767 | 224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025018.png ; $H ^ { s } ( \Omega )$ ; confidence 0.767 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001039.png ; $| f | +$ ; confidence 0.767 | + | 225. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001039.png ; $| f |_{ +}$ ; confidence 0.767 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003089.png ; $ | + | 226. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003089.png ; $\text{l} _ { \infty }$ ; confidence 0.767 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311096.png ; $C ^ { * }$ ; confidence 0.767 | + | 227. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311096.png ; $\mathbf{C} ^ { * }$ ; confidence 0.767 |
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032036.png ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767 | 228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032036.png ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767 | ||
Line 458: | Line 458: | ||
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005061.png ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767 | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005061.png ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101206.png ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right)$ ; confidence 0.766 | + | 230. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101206.png ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right),$ ; confidence 0.766 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006031.png ; $m _ { E } , E _ { 2 }$ ; confidence 0.766 | + | 231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006031.png ; $m _ { E _{1} , E _ { 2 }}$ ; confidence 0.766 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160148.png ; $[ n ^ { | + | 232. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160148.png ; $\operatorname{ATIMEALT}[ n ^ { O ( 1 ) } , 1 ] = \operatorname{NP}$ ; confidence 0.766 |
233. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005053.png ; $| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T$ ; confidence 0.766 | 233. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005053.png ; $| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T$ ; confidence 0.766 | ||
− | 234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010078.png ; $L ( L _ { C } ^ { p } ( G ) )$ ; confidence 0.766 | + | 234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010078.png ; $\mathcal{L} ( L _ { \text{C} } ^ { p } ( G ) )$ ; confidence 0.766 |
235. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005047.png ; $D _ { A } ^ { k }$ ; confidence 0.766 | 235. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005047.png ; $D _ { A } ^ { k }$ ; confidence 0.766 | ||
Line 472: | Line 472: | ||
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007030.png ; $\sum \xi _ { j } a$ ; confidence 0.766 | 236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007030.png ; $\sum \xi _ { j } a$ ; confidence 0.766 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103304.png ; $B _ { | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103304.png ; $B _ { r }$ ; confidence 0.766 |
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021054.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766 | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021054.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - | + | 239. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g_0 ) \psi ( t ).$ ; confidence 0.766 |
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200304.png ; $a , b > 0$ ; confidence 0.766 | 240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200304.png ; $a , b > 0$ ; confidence 0.766 | ||
− | 241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010025.png ; $S _ { + } ^ { \nu - 1 } = \{ \eta \in R ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \}$ ; confidence 0.766 | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010025.png ; $\mathcal{S} _ { + } ^ { \nu - 1 } = \{ \eta \in \mathbf{R} ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \}$ ; confidence 0.766 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009052.png ; $R _ { + } ^ { n } = \{ ( x , t ) : x \in R ^ { n - 1 } , t > 0 \}$ ; confidence 0.766 | + | 242. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009052.png ; $\mathbf{R} _ { + } ^ { n } = \{ ( x , t ) : x \in \mathbf{R} ^ { n - 1 } , t > 0 \}.$ ; confidence 0.766 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001033.png ; $C [ X ]$ ; confidence 0.766 | + | 243. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001033.png ; $\mathbf{C} [ X ]$ ; confidence 0.766 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d0307108.png ; $ | + | 244. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d0307108.png ; $C ^ { 3 }$ ; confidence 0.766 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003018.png ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi ( \frac { x - b } { a } ) d x$ ; confidence 0.766 | + | 245. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003018.png ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x,$ ; confidence 0.766 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090105.png ; $\wedge g$ ; confidence 0.766 | + | 246. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090105.png ; $\wedge \mathfrak{g}$ ; confidence 0.766 |
247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220253.png ; $S L _ { 2 }$ ; confidence 0.766 | 247. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220253.png ; $S L _ { 2 }$ ; confidence 0.766 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004015.png ; $Cl _ { 2 } ( z )$ ; confidence 0.766 | + | 248. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004015.png ; $\operatorname{Cl} _ { 2 } ( z )$ ; confidence 0.766 |
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019051.png ; $S = \{ 0 \}$ ; confidence 0.765 | 249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019051.png ; $S = \{ 0 \}$ ; confidence 0.765 | ||
− | 250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004065.png ; $1 < | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004065.png ; $1 < p_{ X}$ ; confidence 0.765 |
251. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002016.png ; $e ^ { i \vartheta }$ ; confidence 0.765 | 251. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002016.png ; $e ^ { i \vartheta }$ ; confidence 0.765 | ||
− | 252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203208.png ; $\| y \| _ { p } = \| | + | 252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203208.png ; $\| y \| _ { p } = \| v \| _ { p }$ ; confidence 0.765 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110116.png ; $M = \tau _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110116.png ; $M = \tau _ { x _ { 0 } , \xi _ { 0 }}$ ; confidence 0.765 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200608.png ; $x < Q _ { i } y$ ; confidence 0.765 | + | 254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200608.png ; $x <_{ Q _ { i }} y$ ; confidence 0.765 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520315.png ; $\{ | + | 255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520315.png ; $\left\{ a ^ { * } ( f ) : f \in L _ { 2 } ( M , \sigma ) \right\}$ ; confidence 0.765 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003041.png ; $\| . \| ^ { \prime }$ ; confidence 0.765 | + | 256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003041.png ; $\| \, . \, \| ^ { \prime }$ ; confidence 0.765 |
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015022.png ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765 | 257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015022.png ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765 | ||
− | 258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340184.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma | + | 258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340184.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma . \varphi _ { i } ( s , t ) ) = x _ { i } ( t )$ ; confidence 0.765 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200207.png ; $\Gamma _ { | + | 259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200207.png ; $\Gamma _ { n }$ ; confidence 0.765 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300802.png ; $( L / K )$ ; confidence 0.765 | + | 260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300802.png ; $\operatorname {Gal}( L / K )$ ; confidence 0.765 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a1301406.png ; $2 ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765 | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a1301406.png ; $d_{2} ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110120.png ; $Q ( D ^ { n } ) \rightarrow B ( R ^ { n } )$ ; confidence 0.765 | + | 262. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110120.png ; $\mathcal{Q} ( D ^ { n } ) \rightarrow \mathcal{B} ( \mathbf{R} ^ { n } )$ ; confidence 0.765 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010070.png ; $Z ( K )$ ; confidence 0.765 | + | 263. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010070.png ; $\tilde{Z} ( K )$ ; confidence 0.765 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027014.png ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \}$ ; confidence 0.765 | + | 264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027014.png ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \},$ ; confidence 0.765 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001036.png ; $M : = \{ \theta : \theta \in C ^ { 3 } , \theta . \theta = 1 \}$ ; confidence 0.765 | + | 265. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001036.png ; $M : = \{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta . \theta = 1 \}$ ; confidence 0.765 |
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030048.png ; $\alpha = 1 + ( m - 1 ) 3 ^ { C _ { m } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.765 | 266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030048.png ; $\alpha = 1 + ( m - 1 ) 3 ^ { C _ { m } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.765 | ||
− | 267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017099.png ; $B x = b x - x d$ ; confidence 0.765 | + | 267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017099.png ; $\mathcal{B} x = b x - x d$ ; confidence 0.765 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180242.png ; $ | + | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180242.png ; $ k = + m$ ; confidence 0.764 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015016.png ; $( B )$ ; confidence 0.764 | + | 269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015016.png ; $( \operatorname {B} )$ ; confidence 0.764 |
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017028.png ; $w ^ { * } ( a )$ ; confidence 0.764 | 270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017028.png ; $w ^ { * } ( a )$ ; confidence 0.764 | ||
Line 542: | Line 542: | ||
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034026.png ; $D ^ { \circ }$ ; confidence 0.764 | 271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034026.png ; $D ^ { \circ }$ ; confidence 0.764 | ||
− | 272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004053.png ; $2 ^ { | + | 272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004053.png ; $2 ^ { r } - 1$ ; confidence 0.764 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004017.png ; $a _ { | + | 273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004017.png ; $a _ { n } = \tau$ ; confidence 0.764 |
274. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013056.png ; $2 ^ { \nu }$ ; confidence 0.764 | 274. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013056.png ; $2 ^ { \nu }$ ; confidence 0.764 | ||
− | 275. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011042.png ; $( x _ { m | + | 275. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011042.png ; $( x _ { m, j} + m l + U t , y _ { m , j } \pm b / 2 )$ ; confidence 0.764 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764 | + | 276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\tilde{\gamma}$ ; confidence 0.764 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028023.png ; $\{ n : | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028023.png ; $\{ n : \tilde{x} ( n ) \neq 0 \}$ ; confidence 0.764 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209504.png ; $x \geq | + | 278. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c0209504.png ; $x \geq x_0$ ; confidence 0.764 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200605.png ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ]$ ; confidence 0.764 | + | 279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200605.png ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ],$ ; confidence 0.764 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008072.png ; $\operatorname { exp } \{ \frac { 1 } { k _ { | + | 280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008072.png ; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \left[ J S _ { i } S _ { i + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i + 1 } ) \right] \right\} =$ ; confidence 0.764 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006038.png ; $( A _ { i } )$ ; confidence 0.764 | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006038.png ; $\operatorname { Aut} ( A _ { i } )$ ; confidence 0.764 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005085.png ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \}$ ; confidence 0.763 | + | 282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005085.png ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \},$ ; confidence 0.763 |
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032031.png ; $T = \lambda$ ; confidence 0.763 | 283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032031.png ; $T = \lambda$ ; confidence 0.763 | ||
Line 572: | Line 572: | ||
286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002086.png ; $q \geq n$ ; confidence 0.763 | 286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002086.png ; $q \geq n$ ; confidence 0.763 | ||
− | 287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019011.png ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma ( \frac { 1 } { 2 } - k + i \tau )$ ; confidence 0.763 | + | 287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019011.png ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times$ ; confidence 0.763 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149066.png ; $x \rightarrow | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149066.png ; $x \rightarrow x_{0}$ ; confidence 0.763 |
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016023.png ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763 | 289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016023.png ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \ | + | 290. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $\mathcal{Z} = \mathcal{S} / \mathcal{F} _ { \tau }$ ; confidence 0.763 |
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763 | 291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png ; $( f ) = \{ ( x , r ) \in E \times R : x \in E , r \geq f ( x ) \}$ ; confidence 0.763 | + | 292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png ; $\operatorname{epi} ( f ) = \{ ( x , r ) \in E \times \mathbf{R} : x \in E , r \geq f ( x ) \}.$ ; confidence 0.763 |
293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840290.png ; $0 \notin \sigma _ { p } ( A )$ ; confidence 0.763 | 293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840290.png ; $0 \notin \sigma _ { p } ( A )$ ; confidence 0.763 | ||
Line 592: | Line 592: | ||
296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060193.png ; $x > a$ ; confidence 0.763 | 296. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060193.png ; $x > a$ ; confidence 0.763 | ||
− | 297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230170.png ; $\Omega ( d L \Delta ) = \sum _ { | \alpha | = 0 } ^ { k } \frac { \partial L } { \partial y _ { \alpha } ^ { | + | 297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230170.png ; $\Omega ( d L \Delta ) = \sum _ { | \alpha | = 0 } ^ { k } \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \omega _ { \alpha } ^ { a } \bigotimes \Delta$ ; confidence 0.763 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005036.png ; $f _ { a p } ^ { \prime }$ ; confidence 0.763 | + | 298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005036.png ; $f _ { \operatorname{a p} } ^ { \prime }$ ; confidence 0.763 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180118.png ; $A \subset R ^ { | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180118.png ; $A \subset \mathbf{R} ^ { n }$ ; confidence 0.762 |
300. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x1200105.png ; $Q = Q _ { s } ( R )$ ; confidence 0.762 | 300. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x1200105.png ; $Q = Q _ { s } ( R )$ ; confidence 0.762 |
Revision as of 21:49, 12 April 2020
List
1. ; $\Xi$ ; confidence 0.780
2. ; $k \langle \alpha , \beta , \gamma , \delta \rangle$ ; confidence 0.779
3. ; $= \operatorname { sup } \left\{ h ( z ) : \begin{array}{ c c } { h \in \operatorname{PSH}(\Omega), \, h<0,} \\{h ( \zeta ) - \operatorname { log } \| \zeta - w \| = O ( 1 ) ( \zeta \rightarrow w )} \end{array} \right\}.$ ; confidence 0.779
4. ; $S = S ^ { - 1 } : = \left\{ s ^ { - 1 } : s \in S \right\}$ ; confidence 0.779
5. ; $\sigma = ( 452 ) ( 89 ) ( 316 ) \in S_{9}$ ; confidence 0.779
6. ; $C ^ { 0 } ( \Gamma , k , \mathbf{v} )$ ; confidence 0.779
7. ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779
8. ; $W ^ { * }$ ; confidence 0.779
9. ; $\phi \in \operatorname{BMO}$ ; confidence 0.779
10. ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
11. ; $\mathcal{K} ( L ^ { 2 } ( S ) )$ ; confidence 0.779
12. ; $X X ^ { \prime } = I _ { p }$ ; confidence 0.779
13. ; $d - 1$ ; confidence 0.779
14. ; $N = 1$ ; confidence 0.779
15. ; $\mathbf{Z} ^ { 2 }$ ; confidence 0.779
16. ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779
17. ; $\rho : \Phi \rightarrow \{ 0,1 , \ldots \}$ ; confidence 0.779
18. ; $\operatorname{Mod}_{A}$ ; confidence 0.779
19. ; $\frac { d } { d t } \left( \begin{array} { l } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) =$ ; confidence 0.779
20. ; $g \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.779
21. ; $F _ { Y } ( Y )$ ; confidence 0.779
22. ; $\mathcal{P}$ ; confidence 0.779
23. ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w },$ ; confidence 0.779
24. ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778
25. ; $\operatorname{SL} ( 2 , \mathbf{C} )$ ; confidence 0.778
26. ; $r D$ ; confidence 0.778
27. ; $\forall$ ; confidence 0.778
28. ; $t = q$ ; confidence 0.778
29. ; $w = w _ { 1 } \leftarrow \ldots \leftarrow w _ { k } = w ^ { \prime }$ ; confidence 0.778
30. ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778
31. ; $\operatorname{Tr}D$ ; confidence 0.778
32. ; $e = e ( L | F )$ ; confidence 0.778
33. ; $\operatorname{PG} ( 3 , q )$ ; confidence 0.778
34. ; $H _ { \mathcal{M} } ^ { 2 j } ( X , \mathbf{Q} ( j ) ) \cong \operatorname{CH} ^ { j } ( X ) \otimes \mathbf{Q}$ ; confidence 0.778
35. ; $\operatorname { lk } ( K _ { 0 } )$ ; confidence 0.778
36. ; $n \in \mathbf{Z}$ ; confidence 0.778
37. ; $F V ( M ) = \emptyset$ ; confidence 0.778
38. ; $= \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 },$ ; confidence 0.778
39. ; $( w \notin S )$ ; confidence 0.778
40. ; $a , b , c \in A$ ; confidence 0.778
41. ; $\prod _ { l = 1 } ^ { n } A ^ { \text { in/out } } ( f _ { l } ) \Omega = \operatorname { lim } _ { t \rightarrow \pm \infty } \prod _ { l = 1 } ^ { n } A ( f _ { l } ^ { t } ) \Omega,$ ; confidence 0.778
42. ; $( \mathcal{T} ( T _ { A } ) , \mathcal{F} ( T _ { A } ) )$ ; confidence 0.778
43. ; $f _ { \pm } \in A ( \overline { D } _ { \pm } , \operatorname{GL} ( n , \mathbf{C} ) )$ ; confidence 0.778
44. ; $y = ( y _ { 1 } , \dots , y _ { n } )$ ; confidence 0.778
45. ; $S _ { k } ( z )$ ; confidence 0.777
46. ; $k _ { \mu }$ ; confidence 0.777
47. ; $D \alpha D = \coprod _ { \alpha ^ { \prime } \in A } D \alpha ^ { \prime }$ ; confidence 0.777
48. ; $\operatorname { log } | P |$ ; confidence 0.777
49. ; $x _ { i j } ^ { k }$ ; confidence 0.777
50. ; $F ( x , y ) \in \mathcal{O} _ { S } ^ { * } \text { in } ( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.777
51. ; $0 \rightarrow P _ { n } \rightarrow \ldots \rightarrow P _ { 0 } \rightarrow \mathbf{Z} \rightarrow 0$ ; confidence 0.777
52. ; $( q , n - r )$ ; confidence 0.777
53. ; $X _ { g } ^ { * }$ ; confidence 0.777
54. ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } ) = \sum _ { h } \frac { S ( h f ^ { \prime } ; M _ { 1 } , M _ { 2 } ) } { h },$ ; confidence 0.777
55. ; $\operatorname { tr } ( \mathbf{N} \Theta )$ ; confidence 0.777
56. ; $\textsf{E} \frac { \mu _ { N } ( x ) } { M } \rightarrow \frac { 1 } { x ( x + 1 ) },$ ; confidence 0.777
57. ; $k , N > 0$ ; confidence 0.776
58. ; $N = N_{j}$ ; confidence 0.776
59. ; $v u \simeq 1_{Y}$ ; confidence 0.776
60. ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Res } > 0 } | F ( s ) |.$ ; confidence 0.776
61. ; $\gamma _ { n } = n ^ { - 2 / 3 }$ ; confidence 0.776
62. ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )=$ ; confidence 0.776
63. ; $\delta _ { A , B } ( X ) = A X - X B$ ; confidence 0.776
64. ; $k_2$ ; confidence 0.776
65. ; $G ^ { \# } ( n ) \sim C Z _ { G } ( q ^ { - 1 } ) q ^ { n } n ^ { - \alpha } \text { as }\, n \rightarrow \infty ,$ ; confidence 0.776
66. ; $\mathcal{C}\operatorname { rs } ( A \otimes B , C ) \cong \mathcal{C}\operatorname { rs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.776
67. ; $f (\, .\, , t )$ ; confidence 0.776
68. ; $\operatorname {ind} S ( k ) = - \kappa$ ; confidence 0.776
69. ; $c ( D )$ ; confidence 0.776
70. ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776
71. ; $H ^ { 1 } ( M , \mathbf{C} ) \cong A ^ { 1 } \bigoplus \overline { A } \square ^ { 1 },$ ; confidence 0.776
72. ; $G ^ { c }$ ; confidence 0.775
73. ; $f ( x x ^ { * } ) = f ( x ^ { * } x )$ ; confidence 0.775
74. ; $S _ { H } ( \tilde{x} ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t,$ ; confidence 0.775
75. ; $G = \operatorname {SU} ( N )$ ; confidence 0.775
76. ; $p _ { 1 } , \dots , p _ { k }$ ; confidence 0.775
77. ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq \left( \frac { n } { 2 e ( m + n ) } \right) ^ { n } | b _ { 1 } + \ldots + b _ { n } |.$ ; confidence 0.775
78. ; $o ( g )$ ; confidence 0.775
79. ; $k < m \leq n$ ; confidence 0.775
80. ; $d f _ { t } = t ^ { - 1 } ( I - R _ { t } ) = ( ( \partial f ) ^ { - 1 } + t I ) ^ { - 1 },$ ; confidence 0.775
81. ; $1 / 6$ ; confidence 0.775
82. ; $\sigma ( T _ { \phi } ) = \operatorname { conv } ( \mathcal{R} ( \phi ) ) = [ \operatorname { essinf } \phi , \operatorname { esssup } \phi ].$ ; confidence 0.775
83. ; $\mathbf{F}$ ; confidence 0.775
84. ; $\# A / ( \sqrt { q }\operatorname { log } q ) \rightarrow \infty$ ; confidence 0.775
85. ; $\overline { f }_{ - \text{ap}}$ ; confidence 0.775
86. ; $( \mathbf{R} ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775
87. ; $\operatorname { Hom } _ { a }( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774
88. ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774
89. ; $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ ; confidence 0.774
90. ; $S ( f ; M _ { 1 } , M _ { 2 } ) = \sum _ { M _ { 1 } < m < M _ { 2 } } e ( f ( m ) ),$ ; confidence 0.774
91. ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots,$ ; confidence 0.774
92. ; $B O _ { n }$ ; confidence 0.774
93. ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774
94. ; $\rho ( X )$ ; confidence 0.774
95. ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 n - 2 } }.$ ; confidence 0.774
96. ; $\mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} }$ ; confidence 0.774
97. ; $Y _ { 1 } \in \{ y _ { 1 , 1} , y _ { 1 , 3} , y _ { 1 ,8} \}$ ; confidence 0.774
98. ; $A^{\mp}$ ; confidence 0.774
99. ; $\overline{\theta}$ ; confidence 0.774
100. ; $( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.774
101. ; $C ^ { * } ( \mathcal{C} , - )$ ; confidence 0.774
102. ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774
103. ; $n _ { 1 } , n _ { 2 } , \dots$ ; confidence 0.774
104. ; $\operatorname { span } \langle D \rangle = 4 c ( D )$ ; confidence 0.774
105. ; $f : V ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.774
106. ; $\operatorname {lim} \operatorname {sup}_{n \rightarrow \infty} | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774
107. ; $k \langle u ^ { i } \square_{ j} \rangle$ ; confidence 0.774
108. ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774
109. ; $\varphi _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.773
110. ; $P _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \bigcup _ { i < m } N _ { i } \right\},$ ; confidence 0.773
111. ; $\operatorname {p.dim} T \leq 1$ ; confidence 0.773
112. ; $Y_{j}$ ; confidence 0.773
113. ; $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773
114. ; $g : K \rightarrow \overline { M }$ ; confidence 0.773
115. ; $\mathcal{F} ( S ) ^ { q }$ ; confidence 0.773
116. ; $\mathcal{C} ^ { m } ( \Omega )$ ; confidence 0.773
117. ; $\operatorname {diag} ( S _ { 1 } ) = I$ ; confidence 0.773
118. ; $\Omega = \{ ( x , y ) : x , y \in \mathbf{R} ^ { n } , x \neq y \}$ ; confidence 0.773
119. ; $\mathcal{E} \otimes \mathcal{E}$ ; confidence 0.773
120. ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773
121. ; $\mathbf{c} ^ { T } \mathbf{x}$ ; confidence 0.773
122. ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773
123. ; $\mathcal{O} _ { X }$ ; confidence 0.773
124. ; $\operatorname {lim} \operatorname{sup} | \epsilon _ { n } | \leq \frac { 1 } { 2 ( \theta - 1 ) ^ { 2 } }.$ ; confidence 0.773
125. ; $X = \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.772
126. ; $L ^ { 2 } ( Y ^ { \prime } , \text{l} ^ { 2 } ( \mathbf{N} ) )$ ; confidence 0.772
127. ; $\tilde { f } \in A$ ; confidence 0.772
128. ; $( \operatorname {LD} )$ ; confidence 0.772
129. ; $\chi_{ T + K} = \chi _{T}$ ; confidence 0.772
130. ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772
131. ; $S = \frac { k ^ { 2 } V } { 4 \pi } . \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right),$ ; confidence 0.772
132. ; $\leq m$ ; confidence 0.772
133. ; $X \sim T _ { p , n } ( \delta , 0 , \Sigma , I _ { n } )$ ; confidence 0.772
134. ; $( N , g )$ ; confidence 0.772
135. ; $( \, . \, . \, )$ ; confidence 0.772
136. ; $\tau$ ; confidence 0.772
137. ; $x _ { t } : \Omega \rightarrow \mathbf{R} ^ { x }$ ; confidence 0.772
138. ; $Q = Q _ { \text{l} } ( R )$ ; confidence 0.772
139. ; $m \in M$ ; confidence 0.772
140. ; $E \subseteq F$ ; confidence 0.772
141. ; $C ( \theta _ { r } )$ ; confidence 0.772
142. ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772
143. ; $E / \mathbf{Q}$ ; confidence 0.772
144. ; $F = N _ { V } \int _ { V } ( f _ { 0 } ( c ) + \kappa | \nabla c | ^ { 2 } ) d V,$ ; confidence 0.772
145. ; $v < t$ ; confidence 0.772
146. ; $\lambda ( x ^ { \prime \prime } )$ ; confidence 0.772
147. ; $u _ { j } | _ { V } \equiv 0$ ; confidence 0.771
148. ; $N = N _ { c }$ ; confidence 0.771
149. ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } \mathbf{F} _ { p }.$ ; confidence 0.771
150. ; $\forall x \varphi$ ; confidence 0.771
151. ; $\mathfrak { B } [ \Lambda ]$ ; confidence 0.771
152. ; $A _ { n } ( k )$ ; confidence 0.771
153. ; $y _ { i }$ ; confidence 0.771
154. ; $[ K : Q ]$ ; confidence 0.771
155. ; $u ^ { n } ( x )$ ; confidence 0.771
156. ; $\zeta _ { K } ( s )$ ; confidence 0.771
157. ; $\mathbf{X} _ { 3 } \beta \neq 0$ ; confidence 0.771
158. ; $F \mathbf{R}$ ; confidence 0.771
159. ; $( \operatorname{Ad} , g )$ ; confidence 0.771
160. ; $4 D$ ; confidence 0.771
161. ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771
162. ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \not\equiv 0$ ; confidence 0.771
163. ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x ),$ ; confidence 0.770
164. ; $E ^ { 2 k }$ ; confidence 0.770
165. ; $S ( n , r )$ ; confidence 0.770
166. ; $q \Rightarrow \mathcal{S}$ ; confidence 0.770
167. ; $| 1 - z _{l + 1} | > \delta _ { 2 }$ ; confidence 0.770
168. ; $\mathcal{R} : H \otimes H \rightarrow k $ ; confidence 0.770
169. ; $\Gamma = \operatorname{SL} ( 2 , \mathbf{Z} )$ ; confidence 0.770
170. ; $\nu_2$ ; confidence 0.770
171. ; $\mathbf{C} [ \Gamma ]$ ; confidence 0.770
172. ; $\left( \text{l} _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0,$ ; confidence 0.770
173. ; $| a | = c ^ { \partial ( a ) }$ ; confidence 0.770
174. ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769
175. ; $\pm m _ { s }$ ; confidence 0.769
176. ; $d _ { \lambda } ( x I _ { n } - A )$ ; confidence 0.769
177. ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769
178. ; $\mathcal{R} \subset X ^ { ( r ) }$ ; confidence 0.769
179. ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t ),$ ; confidence 0.769
180. ; $q \geq 0$ ; confidence 0.769
181. ; $\square ^ { \prime \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.769
182. ; $W _ { 0 } ^ { q , 1 } ( G )$ ; confidence 0.769
183. ; $t ( 0 ) = t ( l )$ ; confidence 0.769
184. ; $t \downarrow 0$ ; confidence 0.769
185. ; $n \geq i _ { 1 } \geq \ldots \geq i _ { r } \geq 0$ ; confidence 0.769
186. ; $\Gamma _ { 0 } ( 2 ) ^ { + } : = \left( \Gamma _ { 0 } ( 2 ) , \left( \begin{array} { c c } { 0 } & { - 1 } \\ { 2 } & { 0 } \end{array} \right) \right)$ ; confidence 0.769
187. ; $F _ { X }$ ; confidence 0.769
188. ; $e _ { \alpha } ^ { i } / i !$ ; confidence 0.769
189. ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769
190. ; $h \in H ^ { 2 } ( \mathbf{T} )$ ; confidence 0.769
191. ; $\mathcal{A} _ { q } ^ { 2 } \rtimes \operatorname { GL} _ { q } ( 2 )$ ; confidence 0.769
192. ; $\Pi _ { n }$ ; confidence 0.769
193. ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0.$ ; confidence 0.769
194. ; $s = 1 , \dots , r$ ; confidence 0.769
195. ; $T _ { \operatorname { min } } ( a , b ) = a \wedge b$ ; confidence 0.768
196. ; $\operatorname {GF} ( 2 )$ ; confidence 0.768
197. ; $X _ { t } = X _ { 0 } + \int _ { 0 } ^ { t } H _ { s } . d B _ { s }.$ ; confidence 0.768
198. ; $I + W _ { \tau } ( k )$ ; confidence 0.768
199. ; $\textsf{BA}$ ; confidence 0.768
200. ; $\langle a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768
201. ; $\mathcal{M} _ { Q }$ ; confidence 0.768
202. ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768
203. ; $a _ { j } ^ { i } \in C ( [ 0,1 ] )$ ; confidence 0.768
204. ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i },$ ; confidence 0.768
205. ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }.$ ; confidence 0.768
206. ; $H ^ { i } ( \overline{X} , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( \overline{X} , \overline{F} _ { n } )$ ; confidence 0.768
207. ; $p \nmid k$ ; confidence 0.768
208. ; $P = \operatorname {BPP}$ ; confidence 0.768
209. ; $X _ { t } ^ { + }$ ; confidence 0.768
210. ; $\mathfrak { V } ^ { ( l ) } = ( A _ { 1 } ^ { ( l ) } , A _ { 2 } ^ { ( l ) } , \mathcal{H} ^ { ( l ) } , \Phi ^ { ( l ) } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.768
211. ; $B ^ { * }$ ; confidence 0.768
212. ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768
213. ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768
214. ; $\mathbf{R} ^ { n } + i \Gamma _ { j }$ ; confidence 0.767
215. ; $\alpha _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767
216. ; $( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.767
217. ; $\phi _ { \tilde{f} } : \mathcal{M} ( Q ) \rightarrow \mathcal{M} ( Q )$ ; confidence 0.767
218. ; $f : \text { Edge } ( D ) \rightarrow \{ 1,2 \}$ ; confidence 0.767
219. ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767
220. ; $| f ( y ) | \leq c ( y ) \| f \| , c ( y ) : = \| K (\, .\, , y ) \|.$ ; confidence 0.767
221. ; $( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.767
222. ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767
223. ; $F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.767
224. ; $H ^ { s } ( \Omega )$ ; confidence 0.767
225. ; $| f |_{ +}$ ; confidence 0.767
226. ; $\text{l} _ { \infty }$ ; confidence 0.767
227. ; $\mathbf{C} ^ { * }$ ; confidence 0.767
228. ; $\| x + y \| = \operatorname { max } \{ \| x \| , \| y \| \}$ ; confidence 0.767
229. ; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767
230. ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right), \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right),$ ; confidence 0.766
231. ; $m _ { E _{1} , E _ { 2 }}$ ; confidence 0.766
232. ; $\operatorname{ATIMEALT}[ n ^ { O ( 1 ) } , 1 ] = \operatorname{NP}$ ; confidence 0.766
233. ; $| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T$ ; confidence 0.766
234. ; $\mathcal{L} ( L _ { \text{C} } ^ { p } ( G ) )$ ; confidence 0.766
235. ; $D _ { A } ^ { k }$ ; confidence 0.766
236. ; $\sum \xi _ { j } a$ ; confidence 0.766
237. ; $B _ { r }$ ; confidence 0.766
238. ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766
239. ; $( \Omega _ { + } - 1 ) ( g - g_0 ) \psi ( t ).$ ; confidence 0.766
240. ; $a , b > 0$ ; confidence 0.766
241. ; $\mathcal{S} _ { + } ^ { \nu - 1 } = \{ \eta \in \mathbf{R} ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \}$ ; confidence 0.766
242. ; $\mathbf{R} _ { + } ^ { n } = \{ ( x , t ) : x \in \mathbf{R} ^ { n - 1 } , t > 0 \}.$ ; confidence 0.766
243. ; $\mathbf{C} [ X ]$ ; confidence 0.766
244. ; $C ^ { 3 }$ ; confidence 0.766
245. ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x,$ ; confidence 0.766
246. ; $\wedge \mathfrak{g}$ ; confidence 0.766
247. ; $S L _ { 2 }$ ; confidence 0.766
248. ; $\operatorname{Cl} _ { 2 } ( z )$ ; confidence 0.766
249. ; $S = \{ 0 \}$ ; confidence 0.765
250. ; $1 < p_{ X}$ ; confidence 0.765
251. ; $e ^ { i \vartheta }$ ; confidence 0.765
252. ; $\| y \| _ { p } = \| v \| _ { p }$ ; confidence 0.765
253. ; $M = \tau _ { x _ { 0 } , \xi _ { 0 }}$ ; confidence 0.765
254. ; $x <_{ Q _ { i }} y$ ; confidence 0.765
255. ; $\left\{ a ^ { * } ( f ) : f \in L _ { 2 } ( M , \sigma ) \right\}$ ; confidence 0.765
256. ; $\| \, . \, \| ^ { \prime }$ ; confidence 0.765
257. ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765
258. ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma . \varphi _ { i } ( s , t ) ) = x _ { i } ( t )$ ; confidence 0.765
259. ; $\Gamma _ { n }$ ; confidence 0.765
260. ; $\operatorname {Gal}( L / K )$ ; confidence 0.765
261. ; $d_{2} ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765
262. ; $\mathcal{Q} ( D ^ { n } ) \rightarrow \mathcal{B} ( \mathbf{R} ^ { n } )$ ; confidence 0.765
263. ; $\tilde{Z} ( K )$ ; confidence 0.765
264. ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \},$ ; confidence 0.765
265. ; $M : = \{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta . \theta = 1 \}$ ; confidence 0.765
266. ; $\alpha = 1 + ( m - 1 ) 3 ^ { C _ { m } ^ { 1 } + C _ { m } ^ { 2 } + C _ { m } ^ { 3 } }$ ; confidence 0.765
267. ; $\mathcal{B} x = b x - x d$ ; confidence 0.765
268. ; $ k = + m$ ; confidence 0.764
269. ; $( \operatorname {B} )$ ; confidence 0.764
270. ; $w ^ { * } ( a )$ ; confidence 0.764
271. ; $D ^ { \circ }$ ; confidence 0.764
272. ; $2 ^ { r } - 1$ ; confidence 0.764
273. ; $a _ { n } = \tau$ ; confidence 0.764
274. ; $2 ^ { \nu }$ ; confidence 0.764
275. ; $( x _ { m, j} + m l + U t , y _ { m , j } \pm b / 2 )$ ; confidence 0.764
276. ; $\tilde{\gamma}$ ; confidence 0.764
277. ; $\{ n : \tilde{x} ( n ) \neq 0 \}$ ; confidence 0.764
278. ; $x \geq x_0$ ; confidence 0.764
279. ; $- \psi [ 1 ] _ { xx } + u [ 1 ] \psi [ 1 ] = \lambda \psi [ 1 ],$ ; confidence 0.764
280. ; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \left[ J S _ { i } S _ { i + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i + 1 } ) \right] \right\} =$ ; confidence 0.764
281. ; $\operatorname { Aut} ( A _ { i } )$ ; confidence 0.764
282. ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \},$ ; confidence 0.763
283. ; $T = \lambda$ ; confidence 0.763
284. ; $K : = f _ { 0 } ^ { - 1 } ( ] - \infty , 0 ] )$ ; confidence 0.763
285. ; $x _ { i } ^ { * } ( x ) = 0$ ; confidence 0.763
286. ; $q \geq n$ ; confidence 0.763
287. ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times$ ; confidence 0.763
288. ; $x \rightarrow x_{0}$ ; confidence 0.763
289. ; $\| \Delta A \| _ { 2 } \leq c n ^ { 2 } u \| A \| _ { 2 }$ ; confidence 0.763
290. ; $\mathcal{Z} = \mathcal{S} / \mathcal{F} _ { \tau }$ ; confidence 0.763
291. ; $1 \leq n \leq N$ ; confidence 0.763
292. ; $\operatorname{epi} ( f ) = \{ ( x , r ) \in E \times \mathbf{R} : x \in E , r \geq f ( x ) \}.$ ; confidence 0.763
293. ; $0 \notin \sigma _ { p } ( A )$ ; confidence 0.763
294. ; $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ ; confidence 0.763
295. ; $S ^ { ( n ) }$ ; confidence 0.763
296. ; $x > a$ ; confidence 0.763
297. ; $\Omega ( d L \Delta ) = \sum _ { | \alpha | = 0 } ^ { k } \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \omega _ { \alpha } ^ { a } \bigotimes \Delta$ ; confidence 0.763
298. ; $f _ { \operatorname{a p} } ^ { \prime }$ ; confidence 0.763
299. ; $A \subset \mathbf{R} ^ { n }$ ; confidence 0.762
300. ; $Q = Q _ { s } ( R )$ ; confidence 0.762
Maximilian Janisch/latexlist/latex/NoNroff/42. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/42&oldid=45327