Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/20"
(AUTOMATIC EDIT of page 20 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
Line 2: | Line 2: | ||
1. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983 | 1. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983 | ||
− | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021047.png ; $V ( a )$ ; confidence 0.983 | + | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021047.png ; $V ( \mathfrak{a} )$ ; confidence 0.983 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029033.png ; $M ( P )$ ; confidence 0.983 | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029033.png ; $\mathcal{M} ( P )$ ; confidence 0.983 |
4. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983 | 4. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983 | ||
Line 20: | Line 20: | ||
10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983 | 10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032015.png ; $p ( [ x , y ] ) = p ( x ) + p ( y )$ ; confidence 0.983 | + | 11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032015.png ; $p ( [ x , y ] ) = p ( x ) + p ( y ),$ ; confidence 0.983 |
12. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983 | 12. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983 | ||
Line 28: | Line 28: | ||
14. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png ; $\{ G , \vee , \wedge \}$ ; confidence 0.983 | 14. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png ; $\{ G , \vee , \wedge \}$ ; confidence 0.983 | ||
− | 15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983 | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v,$ ; confidence 0.983 |
16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009084.png ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983 | 16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009084.png ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983 | ||
Line 34: | Line 34: | ||
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983 | 17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png ; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983 | + | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png ; $\mathcal{M} _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983 |
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201402.png ; $\sigma ( z )$ ; confidence 0.983 | 19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201402.png ; $\sigma ( z )$ ; confidence 0.983 | ||
− | 20. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983 | + | 20. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau,$ ; confidence 0.983 |
21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983 | 21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983 | ||
− | 22. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022074.png ; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983 | + | 22. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022074.png ; $( 2 \pi i ) ^ { j } A \subset \mathbf{C}$ ; confidence 0.983 |
23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983 | 23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983 | ||
Line 48: | Line 48: | ||
24. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530309.png ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983 | 24. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530309.png ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983 | ||
− | 25. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983 | + | 25. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in \mathcal{M},$ ; confidence 0.983 |
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060179.png ; $x = 2 a$ ; confidence 0.983 | 26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060179.png ; $x = 2 a$ ; confidence 0.983 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983 | + | 27. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0.$ ; confidence 0.983 |
28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983 | 28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983 | ||
− | 29. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230101.png ; $L \in \Omega ^ { | + | 29. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230101.png ; $L \in \Omega ^ { \text{l} + 1 } ( M ; T M )$ ; confidence 0.983 |
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983 | 30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983 | ||
Line 70: | Line 70: | ||
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002035.png ; $C E$ ; confidence 0.982 | 35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002035.png ; $C E$ ; confidence 0.982 | ||
− | 36. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982 | + | 36. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } },$ ; confidence 0.982 |
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982 | 37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n1300505.png ; $( s , r , \mu )$ ; confidence 0.982 | 41. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n1300505.png ; $( s , r , \mu )$ ; confidence 0.982 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010065.png ; $A$ ; confidence 0.982 | + | 42. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010065.png ; $\overline{\mathcal{A}}$ ; confidence 0.982 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png ; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982 | + | 43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png ; $D _ { A } : \Lambda ( \mathcal{X} ) \rightarrow \Lambda ( \mathcal{X} )$ ; confidence 0.982 |
44. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044500/g0445009.png ; $| x | < 1$ ; confidence 0.982 | 44. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044500/g0445009.png ; $| x | < 1$ ; confidence 0.982 | ||
Line 100: | Line 100: | ||
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982 | 50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982 | ||
− | 51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008084.png ; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982 | + | 51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008084.png ; $\operatorname { det } ( \mathcal{P} - \lambda \mathcal{I} ) = 0$ ; confidence 0.982 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012038.png ; $ | + | 52. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012038.png ; $Q_{l} ( R )$ ; confidence 0.982 |
53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982 | 53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982 | + | 54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow \mathbf{R}$ ; confidence 0.982 |
55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006018.png ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982 | 55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006018.png ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982 | ||
Line 118: | Line 118: | ||
59. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982 | 59. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982 | ||
− | 60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png ; $F = F _ { L }$ ; confidence 0.982 | + | 60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png ; $F = F _ { \mathcal{L} }$ ; confidence 0.982 |
61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982 | 61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982 | ||
Line 124: | Line 124: | ||
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028020.png ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982 | 62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028020.png ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982 | ||
− | 63. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982 | + | 63. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s.$ ; confidence 0.982 |
64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982 | 64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982 | ||
− | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982 | + | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta,$ ; confidence 0.982 |
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982 | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982 | ||
Line 134: | Line 134: | ||
67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022034.png ; $\partial M = \emptyset$ ; confidence 0.982 | 67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022034.png ; $\partial M = \emptyset$ ; confidence 0.982 | ||
− | 68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982 | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in \mathcal{C}$ ; confidence 0.982 |
69. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840382.png ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982 | 69. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840382.png ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982 | ||
Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006050.png ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982 | 70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006050.png ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203109.png ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda$ ; confidence 0.982 | + | 71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203109.png ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda.$ ; confidence 0.982 |
72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019091.png ; $( X , \equiv )$ ; confidence 0.982 | 72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019091.png ; $( X , \equiv )$ ; confidence 0.982 | ||
Line 146: | Line 146: | ||
73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982 | 73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025064.png ; $\rho \in D ( R ^ { n } )$ ; confidence 0.982 | + | 74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025064.png ; $\rho \in \mathcal{D} ( \mathbf{R} ^ { n } )$ ; confidence 0.982 |
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015043.png ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982 | 75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015043.png ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982 | ||
− | 76. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png ; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982 | + | 76. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png ; $\mathbf{P} ^ { + } = \{ \alpha \in \mathbf{P} : \alpha \geq 0 \}$ ; confidence 0.982 |
77. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982 | 77. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982 | ||
Line 166: | Line 166: | ||
83. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982 | 83. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982 | ||
− | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982 | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t ),$ ; confidence 0.982 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982 | + | 85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) ),$ ; confidence 0.982 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982 | + | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| \mathbf{d} \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982 |
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982 | 87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982 | ||
Line 176: | Line 176: | ||
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982 | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982 | ||
− | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( L )$ ; confidence 0.982 | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( \text{L} )$ ; confidence 0.982 |
90. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982 | 90. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982 | ||
Line 182: | Line 182: | ||
91. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $C _ { \varphi }$ ; confidence 0.982 | 91. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $C _ { \varphi }$ ; confidence 0.982 | ||
− | 92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982 | + | 92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( \mathbf{w} ^ { i } \mathbf{x} + \theta _ { i } )$ ; confidence 0.982 |
93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982 | 93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982 | ||
Line 188: | Line 188: | ||
94. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040560/f04056017.png ; $( x ^ { i } )$ ; confidence 0.982 | 94. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040560/f04056017.png ; $( x ^ { i } )$ ; confidence 0.982 | ||
− | 95. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png ; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982 | + | 95. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png ; $( A ) ^ { \prime } : = \{ B \in \mathcal{L} ( \mathcal{X} ) : B A = A B \}$ ; confidence 0.982 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png ; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982 | + | 96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png ; $\operatorname { rad } _ { A } ( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982 |
97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982 | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982 | ||
Line 196: | Line 196: | ||
98. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263073.png ; $\square$ ; confidence 0.982 | 98. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263073.png ; $\square$ ; confidence 0.982 | ||
− | 99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080104.png ; $= \| M$ ; confidence 0.982 | + | 99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080104.png ; $\| \varphi \| _ {M_{0} A(G)} = \| M\|_{cb}$ ; confidence 0.982 |
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982 | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982 | ||
Line 240: | Line 240: | ||
120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353040.png ; $s > 1$ ; confidence 0.982 | 120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353040.png ; $s > 1$ ; confidence 0.982 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004027.png ; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982 | + | 121. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004027.png ; $P _ { \overline{L} } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z ).$ ; confidence 0.982 |
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008022.png ; $L < R$ ; confidence 0.982 | 122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008022.png ; $L < R$ ; confidence 0.982 | ||
Line 248: | Line 248: | ||
124. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660286.png ; $C ( f )$ ; confidence 0.982 | 124. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660286.png ; $C ( f )$ ; confidence 0.982 | ||
− | 125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022057.png ; $D _ { \xi } \subset R ^ { p }$ ; confidence 0.982 | + | 125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022057.png ; $D _ { \xi } \subset \mathbf{R} ^ { p }$ ; confidence 0.982 |
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036029.png ; $i , j , k , l$ ; confidence 0.982 | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036029.png ; $i , j , k , l$ ; confidence 0.982 | ||
− | 127. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004058.png ; $s = ( \overline { \zeta } - z )$ ; confidence 0.982 | + | 127. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004058.png ; $s = ( \overline { \zeta } - \overline{z} )$ ; confidence 0.982 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007020.png ; $m$ ; confidence 0.982 | + | 128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007020.png ; $m \quad i$ ; confidence 0.982 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032097.png ; $m \in N$ ; confidence 0.982 | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032097.png ; $m \in \mathbf{N}$ ; confidence 0.982 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015044.png ; $\xi \in D ( S )$ ; confidence 0.982 | + | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015044.png ; $\xi \in \mathcal{D} ( S )$ ; confidence 0.982 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi _ X$ ; confidence 0.982 |
132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982 | 132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982 | ||
Line 268: | Line 268: | ||
134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033032.png ; $H ^ { * } ( X , k )$ ; confidence 0.982 | 134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033032.png ; $H ^ { * } ( X , k )$ ; confidence 0.982 | ||
− | 135. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982 | + | 135. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.982 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520245.png ; $d _ { i } \in N \cup \{ 0 \}$ ; confidence 0.982 | + | 136. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520245.png ; $d _ { i } \in \mathbf{N} \cup \{ 0 \}$ ; confidence 0.982 |
137. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982 | 137. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982 | ||
Line 276: | Line 276: | ||
138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200407.png ; $F M$ ; confidence 0.982 | 138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200407.png ; $F M$ ; confidence 0.982 | ||
− | 139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982 | + | 139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z.$ ; confidence 0.982 |
140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001020.png ; $Z ( x ( n ) )$ ; confidence 0.982 | 140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001020.png ; $Z ( x ( n ) )$ ; confidence 0.982 | ||
Line 282: | Line 282: | ||
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982 | 141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982 | ||
− | 142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002030.png ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }$ ; confidence 0.982 | + | 142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002030.png ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }.$ ; confidence 0.982 |
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982 | 143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982 | ||
Line 288: | Line 288: | ||
144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002025.png ; $B \cap K$ ; confidence 0.982 | 144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002025.png ; $B \cap K$ ; confidence 0.982 | ||
− | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020072.png ; $j | z _ { j } | = 1$ ; confidence 0.982 | + | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020072.png ; $\operatorname{min}_{j} | z _ { j } | = 1$ ; confidence 0.982 |
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982 | 146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982 | ||
Line 298: | Line 298: | ||
149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981 | 149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981 | ||
− | 150. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024050.png ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon )$ ; confidence 0.981 | + | 150. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024050.png ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ).$ ; confidence 0.981 |
151. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981 | 151. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981 | ||
Line 304: | Line 304: | ||
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981 | 152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png ; $A \subset A ^ { \prime \prime }$ ; confidence 0.981 | + | 153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png ; $\mathcal{A} \subset \mathcal{A} ^ { \prime \prime }$ ; confidence 0.981 |
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981 | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981 | ||
Line 310: | Line 310: | ||
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021039.png ; $\delta _ { 0 } ( X )$ ; confidence 0.981 | 155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021039.png ; $\delta _ { 0 } ( X )$ ; confidence 0.981 | ||
− | 156. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232053.png ; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981 | + | 156. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232053.png ; $\Gamma = \left\{ z = e ^ { i \theta } : | z | = 1 \right\}$ ; confidence 0.981 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310100.png ; $P \neq N P$ ; confidence 0.981 | + | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310100.png ; $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ ; confidence 0.981 |
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981 | 158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981 | ||
Line 324: | Line 324: | ||
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004089.png ; $u _ { L } = 0.75$ ; confidence 0.981 | 162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004089.png ; $u _ { L } = 0.75$ ; confidence 0.981 | ||
− | 163. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033010.png ; $H ^ { * } ( M , R )$ ; confidence 0.981 | + | 163. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033010.png ; $H ^ { * } ( M , \mathbf{R} )$ ; confidence 0.981 |
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981 | 164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981 | ||
Line 372: | Line 372: | ||
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981 | 186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006051.png ; $C ( P )$ ; confidence 0.981 | + | 187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006051.png ; $\mathcal{C} ( P )$ ; confidence 0.981 |
188. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007018.png ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981 | 188. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007018.png ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981 | + | 189. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0.$ ; confidence 0.981 |
190. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981 | 190. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981 | ||
Line 388: | Line 388: | ||
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230141.png ; $O ( m ^ { 2 } )$ ; confidence 0.981 | 194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230141.png ; $O ( m ^ { 2 } )$ ; confidence 0.981 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004071.png ; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981 | + | 195. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004071.png ; $\mu ( \mathbf{R} ^ { n } \backslash E ) = 0$ ; confidence 0.981 |
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981 | 196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981 | ||
Line 396: | Line 396: | ||
198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981 | 198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981 | ||
− | 199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003037.png ; $M _ { 5 }$ ; confidence 0.981 | + | 199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003037.png ; $\mathcal{M} _ { 5 }$ ; confidence 0.981 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030019.png ; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981 | + | 200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030019.png ; $( \mathcal{F} _ { t } ; t \geq 0 )$ ; confidence 0.981 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008019.png ; $h ( x ) \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.981 | + | 201. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008019.png ; $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ ; confidence 0.981 |
202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080136.png ; $G = SO ( 1 , n )$ ; confidence 0.981 | 202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080136.png ; $G = SO ( 1 , n )$ ; confidence 0.981 | ||
− | 203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981 | + | 203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +\dots$ ; confidence 0.981 |
204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981 | 204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981 | ||
− | 205. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584016.png ; $K _ { + } , K _ { - } \neq \{ 0 \}$ ; confidence 0.981 | + | 205. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584016.png ; $\mathcal{K} _ { + } , \mathcal{K} _ { - } \neq \{ 0 \}$ ; confidence 0.981 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012092.png ; $X = E _ { 0 } ( A ) \otimes X$ ; confidence 0.981 | + | 206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012092.png ; $X = E _ { 0 } ( A ) \otimes \overline{X}$ ; confidence 0.981 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030025.png ; $L ^ { 1 } ( R ^ { + } , \omega )$ ; confidence 0.981 | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030025.png ; $L ^ { 1 } ( \mathbf{R} ^ { + } , \omega )$ ; confidence 0.981 |
208. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981 | 208. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981 | 210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981 | + | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g _ l)$ ; confidence 0.981 |
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981 | 212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981 | ||
Line 426: | Line 426: | ||
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981 | 213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981 | + | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H]$ ; confidence 0.981 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981 | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B;$ ; confidence 0.981 |
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981 | 216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981 | ||
Line 434: | Line 434: | ||
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981 | 217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981 | ||
− | 218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981 | + | 218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in \mathcal{H}$ ; confidence 0.981 |
219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981 | 219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981 | ||
− | 220. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002020.png ; $A ( \Omega )$ ; confidence 0.981 | + | 220. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002020.png ; $\mathcal{A} ( \Omega )$ ; confidence 0.981 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981 | + | 221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * },$ ; confidence 0.981 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981 | + | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A },$ ; confidence 0.981 |
223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981 | 223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006058.png ; $A \rightarrow R$ ; confidence 0.981 | + | 224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006058.png ; $A \rightarrow \mathbf{R}$ ; confidence 0.981 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007061.png ; $\forall x , y \in P : = \{ x : | + | 225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007061.png ; $\forall x , y \in P : = \{ x : x_ {3} = 0 \}$ ; confidence 0.981 |
226. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442032.png ; $T _ { 0 } = 0$ ; confidence 0.981 | 226. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442032.png ; $T _ { 0 } = 0$ ; confidence 0.981 | ||
Line 460: | Line 460: | ||
230. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602047.png ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981 | 230. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602047.png ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981 | ||
− | 231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $R ^ { p }$ ; confidence 0.981 | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $\mathbf{R} ^ { p }$ ; confidence 0.981 |
232. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981 | 232. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981 | ||
Line 466: | Line 466: | ||
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981 | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981 | ||
− | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027013.png ; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981 | + | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027013.png ; $L ( t ) = R ( t ) + A ( t ).$ ; confidence 0.981 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981 | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } ),$ ; confidence 0.981 |
236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160129.png ; $B < A$ ; confidence 0.981 | 236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160129.png ; $B < A$ ; confidence 0.981 | ||
Line 478: | Line 478: | ||
239. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981 | 239. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981 | ||
− | 240. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981 | + | 240. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E.$ ; confidence 0.981 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981 | + | 241. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }.$ ; confidence 0.981 |
242. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981 | 242. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981 | ||
Line 486: | Line 486: | ||
243. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981 | 243. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981 | + | 244. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u,$ ; confidence 0.981 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b12025012.png ; $T \rightarrow G$ ; confidence 0.981 | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b12025012.png ; $\mathcal{T} \rightarrow G$ ; confidence 0.981 |
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028058.png ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981 | 246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028058.png ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981 | ||
Line 496: | Line 496: | ||
248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981 | 248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981 | ||
− | 249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009012.png ; $a ^ { i } x$ ; confidence 0.981 | + | 249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009012.png ; $\mathbf{a} ^ { i } \mathbf{x}$ ; confidence 0.981 |
250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049019.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981 | 250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049019.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981 | ||
Line 508: | Line 508: | ||
254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981 | 254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981 | ||
− | 255. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021640/c0216407.png ; $\alpha \in C$ ; confidence 0.981 | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021640/c0216407.png ; $\alpha \in \mathbf{C}$ ; confidence 0.981 |
256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981 | 256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981 | ||
Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008014.png ; $w L , v K$ ; confidence 0.981 | 258. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008014.png ; $w L , v K$ ; confidence 0.981 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300207.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981 | + | 259. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300207.png ; $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981 | + | 260. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } ).$ ; confidence 0.981 |
261. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981 | 261. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981 | ||
Line 532: | Line 532: | ||
266. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981 | 266. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981 | ||
− | 267. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005044.png ; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981 | + | 267. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005044.png ; $\operatorname{min} \{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981 |
268. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050114.png ; $0 \leq k < d$ ; confidence 0.981 | 268. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050114.png ; $0 \leq k < d$ ; confidence 0.981 | ||
Line 542: | Line 542: | ||
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981 | 271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981 | ||
− | 272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006082.png ; $g \in D \subset H$ ; confidence 0.981 | + | 272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006082.png ; $g \in \mathcal{D} \subset \mathcal{H}$ ; confidence 0.981 |
273. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404907.png ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981 | 273. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404907.png ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981 | ||
Line 548: | Line 548: | ||
274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001090.png ; $Z ( e )$ ; confidence 0.980 | 274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001090.png ; $Z ( e )$ ; confidence 0.980 | ||
− | 275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305809.png ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980 | + | 275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305809.png ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } ),$ ; confidence 0.980 |
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980 | 276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980 | ||
Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110730/b1107308.png ; $j \geq 0$ ; confidence 0.980 | 277. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110730/b1107308.png ; $j \geq 0$ ; confidence 0.980 | ||
− | 278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980 | + | 278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G ).$ ; confidence 0.980 |
279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012027.png ; $\sigma ( K ) \leq - 4$ ; confidence 0.980 | 279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012027.png ; $\sigma ( K ) \leq - 4$ ; confidence 0.980 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980 | + | 280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 ).$ ; confidence 0.980 |
281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980 | 281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980 | ||
Line 564: | Line 564: | ||
282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202907.png ; $M \rightarrow P$ ; confidence 0.980 | 282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202907.png ; $M \rightarrow P$ ; confidence 0.980 | ||
− | 283. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007068.png ; $u \in L$ ; confidence 0.980 | + | 283. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007068.png ; $u \in \mathcal{L}$ ; confidence 0.980 |
284. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020156.png ; $f \in H ^ { 1 }$ ; confidence 0.980 | 284. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020156.png ; $f \in H ^ { 1 }$ ; confidence 0.980 | ||
Line 576: | Line 576: | ||
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053011.png ; $M ( \nu )$ ; confidence 0.980 | 288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053011.png ; $M ( \nu )$ ; confidence 0.980 | ||
− | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029053.png ; $x ^ { | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029053.png ; $x ^ { \pm }$ ; confidence 0.980 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840204.png ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 }$ ; confidence 0.980 | + | 290. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840204.png ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 },$ ; confidence 0.980 |
291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980 | 291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980 | ||
Line 584: | Line 584: | ||
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980 | 292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980 | ||
− | 293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001010.png ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k } \end{array} \right.$ ; confidence 0.980 | + | 293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001010.png ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k, } \end{array} \right.$ ; confidence 0.980 |
294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980 | 294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980 | ||
− | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029051.png ; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980 | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029051.png ; $u: [ 0,1 ] \times \mathbf{R} \rightarrow M$ ; confidence 0.980 |
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980 | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980 |
Revision as of 17:32, 1 April 2020
List
1. ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983
2. ; $V ( \mathfrak{a} )$ ; confidence 0.983
3. ; $\mathcal{M} ( P )$ ; confidence 0.983
4. ; $p \in \overline { A \cup q }$ ; confidence 0.983
5. ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983
6. ; $> 2$ ; confidence 0.983
7. ; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983
8. ; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983
9. ; $\sigma \in G$ ; confidence 0.983
10. ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983
11. ; $p ( [ x , y ] ) = p ( x ) + p ( y ),$ ; confidence 0.983
12. ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983
13. ; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983
14. ; $\{ G , \vee , \wedge \}$ ; confidence 0.983
15. ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v,$ ; confidence 0.983
16. ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983
17. ; $\omega ( v , J v ) > 0$ ; confidence 0.983
18. ; $\mathcal{M} _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983
19. ; $\sigma ( z )$ ; confidence 0.983
20. ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau,$ ; confidence 0.983
21. ; $m ( \emptyset ) = 0$ ; confidence 0.983
22. ; $( 2 \pi i ) ^ { j } A \subset \mathbf{C}$ ; confidence 0.983
23. ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983
24. ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983
25. ; $| m ( E ) | < M _ { E } , \quad m \in \mathcal{M},$ ; confidence 0.983
26. ; $x = 2 a$ ; confidence 0.983
27. ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0.$ ; confidence 0.983
28. ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983
29. ; $L \in \Omega ^ { \text{l} + 1 } ( M ; T M )$ ; confidence 0.983
30. ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983
31. ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983
32. ; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983
33. ; $| \theta ( e ^ { i t } | = 1$ ; confidence 0.982
34. ; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982
35. ; $C E$ ; confidence 0.982
36. ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } },$ ; confidence 0.982
37. ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982
38. ; $D : A \rightarrow E$ ; confidence 0.982
39. ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982
40. ; $( N = 0 )$ ; confidence 0.982
41. ; $( s , r , \mu )$ ; confidence 0.982
42. ; $\overline{\mathcal{A}}$ ; confidence 0.982
43. ; $D _ { A } : \Lambda ( \mathcal{X} ) \rightarrow \Lambda ( \mathcal{X} )$ ; confidence 0.982
44. ; $| x | < 1$ ; confidence 0.982
45. ; $M _ { K }$ ; confidence 0.982
46. ; $\lambda \in SP ^ { - } ( n )$ ; confidence 0.982
47. ; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982
48. ; $S T : X \rightarrow Y$ ; confidence 0.982
49. ; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982
50. ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982
51. ; $\operatorname { det } ( \mathcal{P} - \lambda \mathcal{I} ) = 0$ ; confidence 0.982
52. ; $Q_{l} ( R )$ ; confidence 0.982
53. ; $f : \overline { M } \rightarrow K$ ; confidence 0.982
54. ; $\rho _ { X } : T _ { X } \rightarrow \mathbf{R}$ ; confidence 0.982
55. ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982
56. ; $V _ { y } Y$ ; confidence 0.982
57. ; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982
58. ; $P _ { \theta _ { 0 } }$ ; confidence 0.982
59. ; $I = ( 0 , q ]$ ; confidence 0.982
60. ; $F = F _ { \mathcal{L} }$ ; confidence 0.982
61. ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982
62. ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982
63. ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s.$ ; confidence 0.982
64. ; $D ^ { \lambda }$ ; confidence 0.982
65. ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta,$ ; confidence 0.982
66. ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982
67. ; $\partial M = \emptyset$ ; confidence 0.982
68. ; $A , B , C \in \mathcal{C}$ ; confidence 0.982
69. ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982
70. ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982
71. ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda.$ ; confidence 0.982
72. ; $( X , \equiv )$ ; confidence 0.982
73. ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982
74. ; $\rho \in \mathcal{D} ( \mathbf{R} ^ { n } )$ ; confidence 0.982
75. ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982
76. ; $\mathbf{P} ^ { + } = \{ \alpha \in \mathbf{P} : \alpha \geq 0 \}$ ; confidence 0.982
77. ; $L _ { \infty } ( T )$ ; confidence 0.982
78. ; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982
79. ; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982
80. ; $A ( x , y ) = \frac { 1 } { 2 } \int _ { ( x + y ) / 2 } ^ { \infty } q ( t ) d t +$ ; confidence 0.982
81. ; $p < 1$ ; confidence 0.982
82. ; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982
83. ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982
84. ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t ),$ ; confidence 0.982
85. ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) ),$ ; confidence 0.982
86. ; $\| \mathbf{d} \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982
87. ; $\square ^ { * }$ ; confidence 0.982
88. ; $1 \rightarrow \infty$ ; confidence 0.982
89. ; $( \text{L} )$ ; confidence 0.982
90. ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
91. ; $C _ { \varphi }$ ; confidence 0.982
92. ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( \mathbf{w} ^ { i } \mathbf{x} + \theta _ { i } )$ ; confidence 0.982
93. ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982
94. ; $( x ^ { i } )$ ; confidence 0.982
95. ; $( A ) ^ { \prime } : = \{ B \in \mathcal{L} ( \mathcal{X} ) : B A = A B \}$ ; confidence 0.982
96. ; $\operatorname { rad } _ { A } ( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982
97. ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982
98. ; $\square$ ; confidence 0.982
99. ; $\| \varphi \| _ {M_{0} A(G)} = \| M\|_{cb}$ ; confidence 0.982
100. ; $\sigma ( n ) > 2 n$ ; confidence 0.982
101. ; $\{ u _ { i } ^ { n + 1 } \}$ ; confidence 0.982
102. ; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982
103. ; $R \subseteq U \times U$ ; confidence 0.982
104. ; $L ^ { 1 } ( m )$ ; confidence 0.982
105. ; $M _ { F }$ ; confidence 0.982
106. ; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982
107. ; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982
108. ; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982
109. ; $M _ { p } ( n )$ ; confidence 0.982
110. ; $k \geq n / 2$ ; confidence 0.982
111. ; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982
112. ; $L _ { 2 } [ 0 , \infty )$ ; confidence 0.982
113. ; $x z \leq y z$ ; confidence 0.982
114. ; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982
115. ; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982
116. ; $( k , R )$ ; confidence 0.982
117. ; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982
118. ; $2 \square$ ; confidence 0.982
119. ; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982
120. ; $s > 1$ ; confidence 0.982
121. ; $P _ { \overline{L} } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z ).$ ; confidence 0.982
122. ; $L < R$ ; confidence 0.982
123. ; $D \leq 92.4$ ; confidence 0.982
124. ; $C ( f )$ ; confidence 0.982
125. ; $D _ { \xi } \subset \mathbf{R} ^ { p }$ ; confidence 0.982
126. ; $i , j , k , l$ ; confidence 0.982
127. ; $s = ( \overline { \zeta } - \overline{z} )$ ; confidence 0.982
128. ; $m \quad i$ ; confidence 0.982
129. ; $m \in \mathbf{N}$ ; confidence 0.982
130. ; $\xi \in \mathcal{D} ( S )$ ; confidence 0.982
131. ; $\pi _ X$ ; confidence 0.982
132. ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982
133. ; $\Delta _ { 3 } U = 0$ ; confidence 0.982
134. ; $H ^ { * } ( X , k )$ ; confidence 0.982
135. ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.982
136. ; $d _ { i } \in \mathbf{N} \cup \{ 0 \}$ ; confidence 0.982
137. ; $L ^ { \infty } ( Q )$ ; confidence 0.982
138. ; $F M$ ; confidence 0.982
139. ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z.$ ; confidence 0.982
140. ; $Z ( x ( n ) )$ ; confidence 0.982
141. ; $f \in C ( X )$ ; confidence 0.982
142. ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }.$ ; confidence 0.982
143. ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982
144. ; $B \cap K$ ; confidence 0.982
145. ; $\operatorname{min}_{j} | z _ { j } | = 1$ ; confidence 0.982
146. ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982
147. ; $\Gamma ( A _ { 1 } )$ ; confidence 0.982
148. ; $q ( x ) \geq 0$ ; confidence 0.981
149. ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981
150. ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ).$ ; confidence 0.981
151. ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981
152. ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981
153. ; $\mathcal{A} \subset \mathcal{A} ^ { \prime \prime }$ ; confidence 0.981
154. ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981
155. ; $\delta _ { 0 } ( X )$ ; confidence 0.981
156. ; $\Gamma = \left\{ z = e ^ { i \theta } : | z | = 1 \right\}$ ; confidence 0.981
157. ; $\mathcal{P} \neq \mathcal{N} \mathcal{P}$ ; confidence 0.981
158. ; $K / k$ ; confidence 0.981
159. ; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981
160. ; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981
161. ; $M , 2 M$ ; confidence 0.981
162. ; $u _ { L } = 0.75$ ; confidence 0.981
163. ; $H ^ { * } ( M , \mathbf{R} )$ ; confidence 0.981
164. ; $\zeta _ { G } ( z )$ ; confidence 0.981
165. ; $\lambda x ( x x )$ ; confidence 0.981
166. ; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981
167. ; $f ( d ) > 0$ ; confidence 0.981
168. ; $C \rightarrow A$ ; confidence 0.981
169. ; $\sigma _ { 0 } ( A )$ ; confidence 0.981
170. ; $N / [ N , N ]$ ; confidence 0.981
171. ; $C ( X )$ ; confidence 0.981
172. ; $C _ { A B }$ ; confidence 0.981
173. ; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981
174. ; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981
175. ; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981
176. ; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981
177. ; $n _ { i } \geq p$ ; confidence 0.981
178. ; $F = 0$ ; confidence 0.981
179. ; $\sigma ^ { \prime }$ ; confidence 0.981
180. ; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981
181. ; $C _ { 2 } > 0$ ; confidence 0.981
182. ; $R - Z R Z ^ { * } = G J G ^ { * }$ ; confidence 0.981
183. ; $A _ { 1 } ( s )$ ; confidence 0.981
184. ; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981
185. ; $t ( M ) = y t ( M - e )$ ; confidence 0.981
186. ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
187. ; $\mathcal{C} ( P )$ ; confidence 0.981
188. ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981
189. ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0.$ ; confidence 0.981
190. ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
191. ; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981
192. ; $SO ( n , 1 )$ ; confidence 0.981
193. ; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981
194. ; $O ( m ^ { 2 } )$ ; confidence 0.981
195. ; $\mu ( \mathbf{R} ^ { n } \backslash E ) = 0$ ; confidence 0.981
196. ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981
197. ; $P _ { \nu } ( z )$ ; confidence 0.981
198. ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981
199. ; $\mathcal{M} _ { 5 }$ ; confidence 0.981
200. ; $( \mathcal{F} _ { t } ; t \geq 0 )$ ; confidence 0.981
201. ; $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ ; confidence 0.981
202. ; $G = SO ( 1 , n )$ ; confidence 0.981
203. ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +\dots$ ; confidence 0.981
204. ; $x > 0$ ; confidence 0.981
205. ; $\mathcal{K} _ { + } , \mathcal{K} _ { - } \neq \{ 0 \}$ ; confidence 0.981
206. ; $X = E _ { 0 } ( A ) \otimes \overline{X}$ ; confidence 0.981
207. ; $L ^ { 1 } ( \mathbf{R} ^ { + } , \omega )$ ; confidence 0.981
208. ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981
209. ; $K _ { i } = K$ ; confidence 0.981
210. ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981
211. ; $( g _ l)$ ; confidence 0.981
212. ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
213. ; $\| A \| _ { \infty }$ ; confidence 0.981
214. ; $R [ H \times H]$ ; confidence 0.981
215. ; $A ( D ) ^ { * } \simeq A / B;$ ; confidence 0.981
216. ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
217. ; $A x = b$ ; confidence 0.981
218. ; $\phi \in \mathcal{H}$ ; confidence 0.981
219. ; $P Q$ ; confidence 0.981
220. ; $\mathcal{A} ( \Omega )$ ; confidence 0.981
221. ; $J : M \rightarrow \mathfrak { g } ^ { * },$ ; confidence 0.981
222. ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A },$ ; confidence 0.981
223. ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981
224. ; $A \rightarrow \mathbf{R}$ ; confidence 0.981
225. ; $\forall x , y \in P : = \{ x : x_ {3} = 0 \}$ ; confidence 0.981
226. ; $T _ { 0 } = 0$ ; confidence 0.981
227. ; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981
228. ; $F _ { L } ( a , x )$ ; confidence 0.981
229. ; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981
230. ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981
231. ; $\mathbf{R} ^ { p }$ ; confidence 0.981
232. ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981
233. ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981
234. ; $L ( t ) = R ( t ) + A ( t ).$ ; confidence 0.981
235. ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } ),$ ; confidence 0.981
236. ; $B < A$ ; confidence 0.981
237. ; $x , y \in G$ ; confidence 0.981
238. ; $L ^ { 2 } ( Q )$ ; confidence 0.981
239. ; $\epsilon : A \rightarrow R$ ; confidence 0.981
240. ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E.$ ; confidence 0.981
241. ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }.$ ; confidence 0.981
242. ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981
243. ; $f ( x _ { 0 } )$ ; confidence 0.981
244. ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u,$ ; confidence 0.981
245. ; $\mathcal{T} \rightarrow G$ ; confidence 0.981
246. ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981
247. ; $( p , q ) \subset F$ ; confidence 0.981
248. ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981
249. ; $\mathbf{a} ^ { i } \mathbf{x}$ ; confidence 0.981
250. ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981
251. ; $\infty \in H ^ { * }$ ; confidence 0.981
252. ; $\operatorname { log } \alpha$ ; confidence 0.981
253. ; $b = \infty$ ; confidence 0.981
254. ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981
255. ; $\alpha \in \mathbf{C}$ ; confidence 0.981
256. ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981
257. ; $\Phi _ { \sigma }$ ; confidence 0.981
258. ; $w L , v K$ ; confidence 0.981
259. ; $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981
260. ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } ).$ ; confidence 0.981
261. ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981
262. ; $\lambda ^ { * } > 0$ ; confidence 0.981
263. ; $p _ { L } = 1.0$ ; confidence 0.981
264. ; $f \in C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.981
265. ; $A ( K ) ^ { * }$ ; confidence 0.981
266. ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981
267. ; $\operatorname{min} \{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981
268. ; $0 \leq k < d$ ; confidence 0.981
269. ; $\psi _ { N } ( x - k )$ ; confidence 0.981
270. ; $F ( u ) = \emptyset$ ; confidence 0.981
271. ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981
272. ; $g \in \mathcal{D} \subset \mathcal{H}$ ; confidence 0.981
273. ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981
274. ; $Z ( e )$ ; confidence 0.980
275. ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } ),$ ; confidence 0.980
276. ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980
277. ; $j \geq 0$ ; confidence 0.980
278. ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G ).$ ; confidence 0.980
279. ; $\sigma ( K ) \leq - 4$ ; confidence 0.980
280. ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 ).$ ; confidence 0.980
281. ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980
282. ; $M \rightarrow P$ ; confidence 0.980
283. ; $u \in \mathcal{L}$ ; confidence 0.980
284. ; $f \in H ^ { 1 }$ ; confidence 0.980
285. ; $p _ { i } ( \lambda )$ ; confidence 0.980
286. ; $y ( x _ { 0 } + h )$ ; confidence 0.980
287. ; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980
288. ; $M ( \nu )$ ; confidence 0.980
289. ; $x ^ { \pm }$ ; confidence 0.980
290. ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 },$ ; confidence 0.980
291. ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980
292. ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980
293. ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k, } \end{array} \right.$ ; confidence 0.980
294. ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980
295. ; $u: [ 0,1 ] \times \mathbf{R} \rightarrow M$ ; confidence 0.980
296. ; $h ( \psi ) \in F$ ; confidence 0.980
297. ; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980
298. ; $A - S \in \Phi ( X , Y )$ ; confidence 0.980
299. ; $p \geq 0$ ; confidence 0.980
300. ; $I = [ - 1,1 ]$ ; confidence 0.980
Maximilian Janisch/latexlist/latex/NoNroff/20. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/20&oldid=45102