Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/74"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 74 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 74 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002021.png ; $180$ ; confidence 1.000
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023036.png ; $f ( u ) = \{ g \in G : g a c t s \text { trivially on } T \backslash T _ { d } \}$ ; confidence 0.155
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012059.png ; $b > 0$ ; confidence 1.000
+
2. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022028.png ; $L y \equiv \rho _ { N } \frac { d } { d x } ( \rho _ { x } - 1 \cdots \frac { d } { d x } ( \rho _ { 1 } \frac { d } { d x } ( \rho _ { 0 } y ) ) \ldots ) , \rho _ { i } > 0$ ; confidence 0.155
  
3. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011012.png ; $120$ ; confidence 1.000
+
3. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003041.png ; $Z [ e ^ { 2 \pi i m t } f ] ( t , w ) = e ^ { 2 \pi i m t } ( Z f ) ( t , w )$ ; confidence 0.155
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051320/i05132021.png ; $\pi$ ; confidence 0.499
+
4. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010018.png ; $w ^ { em } = J . E + \frac { \partial P } { \partial t } E - M \cdot \frac { \partial B } { \partial t } + \nabla \cdot ( v ( P . E ) )$ ; confidence 0.154
  
5. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014056.png ; $m = 0$ ; confidence 0.997
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154
  
6. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201407.png ; $n > 2$ ; confidence 0.915
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220076.png ; $\alpha \in C ^ { \prime \prime }$ ; confidence 0.154
  
7. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014042.png ; $H = S$ ; confidence 0.993
+
7. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016010.png ; $c x + 1$ ; confidence 0.154
  
8. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070113.png ; $W < G$ ; confidence 0.595
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178026.png ; $50$ ; confidence 0.154
  
9. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070117.png ; $G = W$ ; confidence 0.997
+
9. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100173.png ; $f _ { j } : \Delta \rightarrow C ^ { * }$ ; confidence 0.154
  
10. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015057.png ; $n = 2$ ; confidence 0.997
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180147.png ; $5$ ; confidence 0.154
  
11. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015017.png ; $\mu$ ; confidence 0.995
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153014.png ; $\alpha 1 , \ldots , \alpha _ { x }$ ; confidence 0.154
  
12. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015036.png ; $n + 2$ ; confidence 0.753
+
12. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021037.png ; $\psi : K ^ { n } \rightarrow K ^ { n }$ ; confidence 0.154
  
13. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012025.png ; $103$ ; confidence 0.114
+
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019049.png ; $\phi * ( \operatorname { ind } ( D ) ) = c _ { q } ( \operatorname { Ch } ( D ) T ( M ) f ^ { * } ( \phi ) ) [ T M ]$ ; confidence 0.154
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013750/a0137508.png ; $A , B$ ; confidence 1.000
+
14. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011062.png ; $v _ { i } = - \frac { D _ { x _ { i } } } { D t } = ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }$ ; confidence 0.154
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017016.png ; $\pi$ ; confidence 0.373
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004014.png ; $g _ { k + 1 } ( z ) = z g _ { k } ( z ) - \phi _ { k } f ( z ) , \quad k = 0,1 , \ldots ; \quad g _ { 0 } ( z ) = 1$ ; confidence 0.153
  
16. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017067.png ; $I$ ; confidence 0.923
+
16. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001071.png ; $b j = - 1$ ; confidence 0.153
  
17. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017010.png ; $X = A$ ; confidence 0.959
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011028.png ; $\mathfrak { S } _ { w } \in Z [ x _ { 1 } , x _ { 2 } , \ldots ]$ ; confidence 0.153
  
18. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002017.png ; $103$ ; confidence 0.913
+
18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005077.png ; $\sum ^ { i _ { 1 } } , \dots , i _ { r }$ ; confidence 0.153
  
19. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002027.png ; $B P P$ ; confidence 0.491
+
19. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028036.png ; $\operatorname { sin } ( \hat { G } )$ ; confidence 0.153
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b0164209.png ; $1 - p$ ; confidence 0.970
+
20. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002030.png ; $f \times : H _ { q } ( X , X _ { 0 } ) \rightarrow H _ { q } ( Y , Y _ { 0 } )$ ; confidence 0.153
  
21. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047080/h04708061.png ; $\pi$ ; confidence 0.883
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014081.png ; $E _ { n } ( x , a ) = \sum _ { i = 0 } ^ { | n / 2 | } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i }$ ; confidence 0.153
  
22. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200306.png ; $( G )$ ; confidence 0.651
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012050.png ; $h - r y d$ ; confidence 0.152
  
23. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063670/m06367019.png ; $K = 1$ ; confidence 0.946
+
23. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017063.png ; $P = \langle \alpha _ { 1 } , \dots , a _ { g } | R _ { 1 } , \dots , R _ { N } \rangle$ ; confidence 0.152
  
24. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004047.png ; $K > 1$ ; confidence 0.968
+
24. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001065.png ; $n ^ { k } a ^ { n }$ ; confidence 0.152
  
25. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070139.png ; $H , A$ ; confidence 0.994
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152
  
26. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070108.png ; $g = 1$ ; confidence 0.984
+
26. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011034.png ; $S ( R ^ { 2 x } )$ ; confidence 0.152
  
27. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r1300406.png ; $t = 0$ ; confidence 0.347
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152
  
28. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005014.png ; $( G )$ ; confidence 1.000
+
28. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021031.png ; $E ^ { x }$ ; confidence 0.152
  
29. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032940/d03294063.png ; $A > 0$ ; confidence 0.999
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008022.png ; $\operatorname { det } [ I _ { N } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.152
  
30. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033830/d03383015.png ; $x > y$ ; confidence 0.664
+
30. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300709.png ; $48$ ; confidence 0.152
  
31. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420158.png ; $x < y$ ; confidence 0.913
+
31. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011015.png ; $\left\{ \begin{array} { l l } { \alpha _ { i } \alpha _ { j } + \alpha _ { j } \alpha _ { i } = 0 } & { \text { fori, } j \in \{ x , y , z \} , i \neq j } \\ { \alpha _ { i } \beta + \beta \alpha _ { i } = 0 } & { \text { for } i , j \in \{ x , y , z \} } \end{array} \right.$ ; confidence 0.152
  
32. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015330/b01533015.png ; $d < b$ ; confidence 0.757
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180137.png ; $Id = \{ \langle \alpha , \ldots , \alpha \rangle : \alpha \in U \}$ ; confidence 0.152
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068075.png ; $a + b$ ; confidence 0.288
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020229.png ; $\overline { x } = \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \overline { x } ^ { ( k ) }$ ; confidence 0.152
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png ; $g = 1$ ; confidence 0.978
+
34. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030073.png ; $K _ { 0 } ( O _ { N } ) = Z _ { X } - 1$ ; confidence 0.151
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011039.png ; $q < r$ ; confidence 0.792
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203207.png ; $| x | | _ { p } = | | u | | _ { p }$ ; confidence 0.151
  
36. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773078.png ; $s > r$ ; confidence 0.948
+
36. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300807.png ; $x \in R _ { + } , f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \operatorname { as } x \rightarrow + \infty$ ; confidence 0.151
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301405.png ; $1 > n$ ; confidence 0.441
+
37. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008048.png ; $K _ { p } ( f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 } \cdots D _ { x } - p _ { r - 1 } f }$ ; confidence 0.151
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110060/c11006050.png ; $m > k$ ; confidence 0.986
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220170.png ; $( r _ { D } \oplus z _ { D } ) \otimes R : ( H _ { M } ^ { i + 1 } ( X , Q ( m + 1 ) ) z ^ { \otimes R } ) \oplus ( B ^ { m } ( X ) \otimes R ) \rightleftarrows H _ { D } ^ { i + 1 } ( X _ { / R } , R ( m + 1 ) )$ ; confidence 0.151
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013019.png ; $L | F$ ; confidence 0.710
+
39. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007027.png ; $Z _ { W }$ ; confidence 0.151
  
40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034048.png ; $F S L$ ; confidence 0.180
+
40. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548032.png ; $5 y \{ 2$ ; confidence 0.151
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055025.png ; $X / G$ ; confidence 0.474
+
41. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021073.png ; $( B , \delta ) : 0 \rightarrow B _ { r } \stackrel { \delta _ { r } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } B _ { 1 } \stackrel { \delta _ { 0 } } { \rightarrow } L ( \lambda ) \rightarrow 0$ ; confidence 0.151
  
42. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c02190046.png ; $N > 1$ ; confidence 0.920
+
42. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110148.png ; $a _ { 1 } , \dots , a _ { 2 } , x$ ; confidence 0.151
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041062.png ; $z > 1$ ; confidence 0.990
+
43. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008027.png ; $L _ { 3 } ^ { 11 }$ ; confidence 0.151
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017055.png ; $x > z$ ; confidence 0.255
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022096.png ; $\operatorname { ch } _ { D } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { D } } ( X , A ( j ) )$ ; confidence 0.151
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110790/b11079040.png ; $2 + 3$ ; confidence 0.993
+
45. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055600/k05560069.png ; $\dot { \imath } \uparrow$ ; confidence 0.151
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017054.png ; $y > z$ ; confidence 0.337
+
46. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004074.png ; $u _ { + 1 / 2 } ^ { n + 1 / 2 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + u _ { i + 1 } ^ { n } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } )$ ; confidence 0.151
  
47. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240066.png ; $n = 9$ ; confidence 0.996
+
47. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110138.png ; $\sum _ { 0 \leq k < N } 2 ^ { - k } \sum _ { | \alpha | + | \beta | = k } \frac { ( - 1 ) ^ { \beta | } } { \alpha ! \beta ! } D _ { \xi } ^ { \alpha } \partial _ { x } ^ { \beta } a D _ { \xi } ^ { \beta } \partial _ { x } ^ { \alpha } b$ ; confidence 0.150
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022043.png ; $( M )$ ; confidence 0.979
+
48. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008051.png ; $\vec { \theta } = \sum t _ { \gamma } \vec { V } _ { N }$ ; confidence 0.150
  
49. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050025.png ; $| A |$ ; confidence 0.956
+
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021056.png ; $\phi : E \rightarrow GF ( q ) ^ { x }$ ; confidence 0.150
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047042.png ; $i + 1$ ; confidence 0.829
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019063.png ; $\overline { a _ { 1 } } / q _ { 1 }$ ; confidence 0.150
  
51. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236018.png ; $i - 1$ ; confidence 0.466
+
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024048.png ; $n _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )$ ; confidence 0.150
  
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023083.png ; $A > 0$ ; confidence 0.744
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032087.png ; $( a ; ) _ { j = 1 } ^ { \infty } 1$ ; confidence 0.150
  
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510116.png ; $K = l$ ; confidence 0.346
+
53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027016.png ; $\frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { \frac { N } { N } } } \int _ { \partial D } \varphi \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d f } { \{ w , f \} ^ { N } } =$ ; confidence 0.149
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510157.png ; $a < 3$ ; confidence 0.592
+
54. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230115.png ; $\omega \wedge L _ { K } = L ( \omega \wedge K ) + ( - 1 ) ^ { q + k - 1 } i ( d \omega \wedge K ) , [ \omega \wedge L _ { 1 } , L _ { 2 } ] ^ { \wedge } = \omega \wedge [ L _ { 1 } , L _ { 2 } ] +$ ; confidence 0.149
  
55. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051078.png ; $u = v$ ; confidence 0.470
+
55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230170.png ; $g \Theta _ { i } = \left( \begin{array} { l l l } { \delta _ { i } } & { 0 } & { \ldots } & { 0 } \end{array} \right)$ ; confidence 0.149
  
56. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530106.png ; $| W |$ ; confidence 0.902
+
56. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170168.png ; $\langle M _ { p } ( n ) \hat { f } , g \rangle = \tau ( p f g )$ ; confidence 0.149
  
57. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053033.png ; $| U |$ ; confidence 0.448
+
57. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009018.png ; $\vec { c } ; = 1$ ; confidence 0.149
  
58. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054050.png ; $\pi$ ; confidence 0.690
+
58. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060128.png ; $\sigma ( \Omega ( A ) ) = \left\{ \begin{array} { c c } { \text { boundary of } K _ { 1,2 } ( A ) } & { n = 2 } \\ { \cup _ { i , j = 1 , i \neq j } ^ { n } K _ { i , j } ( A ) } & { n \geq 3 } \end{array} \right.$ ; confidence 0.149
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680253.png ; $R = Z$ ; confidence 0.945
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040127.png ; $\pi = w _ { 1 } \dots w _ { x }$ ; confidence 0.149
  
60. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780157.png ; $\xi$ ; confidence 0.621
+
60. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014050.png ; $\mathscr { Q } ( \underline { \operatorname { dim } } X ) = \chi _ { Q } ( [ X ] )$ ; confidence 0.149
  
61. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058027.png ; $V = 0$ ; confidence 0.994
+
61. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006018.png ; $A , \| A \| _ { \infty } = \operatorname { max } _ { j } \sum _ { i } | \alpha _ { i } j |$ ; confidence 0.149
  
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058024.png ; $V > 0$ ; confidence 0.966
+
62. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004018.png ; $\operatorname { cr } ( K _ { a } , m )$ ; confidence 0.149
  
63. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028046.png ; $r g ]$ ; confidence 0.297
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032026.png ; $R _ { + 1 } ^ { ( i ) } ( z ) = \frac { l R _ { j } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.149
  
64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620101.png ; $\mu$ ; confidence 1.000
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021014.png ; $\{ P _ { N } ^ { / / } \}$ ; confidence 0.149
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015820/b0158205.png ; $1 > 0$ ; confidence 0.742
+
65. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016034.png ; $111$ ; confidence 0.149
  
66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s12029027.png ; $Y = Z$ ; confidence 0.590
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007018.png ; $\operatorname { pr } ( \alpha _ { 1 } , \dots , \alpha _ { R } )$ ; confidence 0.149
  
67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032070.png ; $p | q$ ; confidence 0.948
+
67. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040189.png ; $\alpha \in R ^ { \gamma }$ ; confidence 0.149
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667095.png ; $b = v$ ; confidence 0.874
+
68. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230135.png ; $\frac { ( - 1 ) ^ { ( k - 1 ) l } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma K ( L ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( 1 + 2 ) , \ldots } )$ ; confidence 0.149
  
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340121.png ; $u - V$ ; confidence 0.118
+
69. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520159.png ; $e _ { i } ^ { N _ { i j } }$ ; confidence 0.149
  
70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034040.png ; $- 1 d$ ; confidence 0.761
+
70. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011044.png ; $\xi _ { g } * ( \ldots , \ldots , )$ ; confidence 0.149
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064029.png ; $( a )$ ; confidence 0.804
+
71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013021.png ; $= ( \frac { e ^ { \sum _ { 1 } y _ { i } z ^ { - i } } \tau _ { n + 1 } ( x , y - [ z ] ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , ( L _ { 1 } , L _ { 2 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ) = ( z , z ^ { - 1 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) )$ ; confidence 0.149
  
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065067.png ; $w f p$ ; confidence 0.528
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148
  
73. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033710/d03371051.png ; $( A )$ ; confidence 0.996
+
73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001090.png ; $\sim _ { 0 }$ ; confidence 0.148
  
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005034.png ; $n > p$ ; confidence 0.934
+
74. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067089.png ; $S ( \theta ) _ { 1 , \cdots , j _ { q } } ^ { i _ { 1 } \ldots i _ { p } }$ ; confidence 0.148
  
75. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022180/c02218013.png ; $r + 1$ ; confidence 0.937
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008080.png ; $E _ { 11 }$ ; confidence 0.148
  
76. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005035.png ; $p - n$ ; confidence 0.906
+
76. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232011.png ; $E _ { 2 } ( | x - y | ) = \operatorname { ln } \frac { 1 } { | x - y | } , \quad E _ { n } ( | x - y | ) = \frac { 1 } { | x - y | ^ { n - 2 } }$ ; confidence 0.148
  
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006073.png ; $Z = Z$ ; confidence 0.523
+
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015021.png ; $\frac { D \dot { x } ^ { 2 } } { d t } = \varepsilon ^ { i } = \frac { 1 } { 2 } g ^ { i } \cdot r \dot { x } \square ^ { r } - g ^ { i }$ ; confidence 0.148
  
78. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006065.png ; $N = Z$ ; confidence 0.709
+
78. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017064.png ; $x \sim i y \Leftrightarrow x = y$ ; confidence 0.148
  
79. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060136.png ; $A = B$ ; confidence 1.000
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018061.png ; $Alg _ { 1 - } ( L _ { n } )$ ; confidence 0.148
  
80. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032970/d0329708.png ; $R = 0$ ; confidence 0.960
+
80. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017011.png ; $\operatorname { det } \left( \begin{array} { c c c } { 1 } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right)$ ; confidence 0.148
  
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t1200607.png ; $z > 0$ ; confidence 0.852
+
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204202.png ; $\otimes \rightarrow \otimes ^ { 0 p }$ ; confidence 0.147
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006078.png ; $1 > 1$ ; confidence 0.975
+
82. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
  
83. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644017.png ; $| x |$ ; confidence 0.623
+
83. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015042.png ; $Z [ \zeta _ { e } ]$ ; confidence 0.147
  
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006042.png ; $N > Z$ ; confidence 0.585
+
84. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012027.png ; $\alpha \in \hat { K } _ { p }$ ; confidence 0.147
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006074.png ; $N = N$ ; confidence 0.776
+
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202105.png ; $P _ { N } ^ { \prime } ( A _ { N } ) \rightarrow 0$ ; confidence 0.146
  
86. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006059.png ; $N < Z$ ; confidence 0.692
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007020.png ; $a \circ k b$ ; confidence 0.146
  
87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070138.png ; $L - i$ ; confidence 0.537
+
87. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029014.png ; $T _ { \text { prod } } ( \alpha , b ) = a . b$ ; confidence 0.146
  
88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007057.png ; $> - 1$ ; confidence 0.754
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180170.png ; $8 ^ { r + 2 } E$ ; confidence 0.146
  
89. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007041.png ; $0.5$ ; confidence 0.378
+
89. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300109.png ; $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ ; confidence 0.145
  
90. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110200/p1102006.png ; $a + 4$ ; confidence 0.218
+
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120151.png ; $M = ( K _ { s } ( \overline { \sigma } ) \cap K _ { tot } S ) _ { 1 }$ ; confidence 0.145
  
91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008035.png ; $H > 3$ ; confidence 0.953
+
91. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036930/e03693078.png ; $c X P$ ; confidence 0.145
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010059.png ; $TrD$ ; confidence 0.778
+
92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140164.png ; $\Lambda = \left( \begin{array} { c c c c } { z ^ { k _ { 1 } } } & { 0 } & { \ldots } & { 0 } \\ { 0 } & { z ^ { k } 2 } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 0 } & { 0 } & { \ldots } & { z ^ { k _ { R } } } \end{array} \right) , k _ { 1 } , \ldots , k _ { N } \in Z$ ; confidence 0.145
  
93. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130115.png ; $[ . ]$ ; confidence 0.562
+
93. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012062.png ; $O _ { p } = \{ x \in L : | x | _ { p } \leq 1 \}$ ; confidence 0.145
  
94. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140136.png ; $\pi$ ; confidence 0.480
+
94. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230142.png ; $K _ { X _ { n } } + B _ { n }$ ; confidence 0.145
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014058.png ; $( E )$ ; confidence 0.976
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260124.png ; $A = C \{ Z _ { 1 } , \dots , Z _ { Y } \}$ ; confidence 0.145
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105068.png ; $N + 1$ ; confidence 0.973
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405027.png ; $\hat { p } _ { 2 }$ ; confidence 0.145
  
97. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202028.png ; $z = n$ ; confidence 0.250
+
97. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067094.png ; $S _ { j _ { 1 } } ^ { i _ { 1 } \cdots j _ { p } }$ ; confidence 0.145
  
98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021012.png ; $E = 0$ ; confidence 0.988
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019012.png ; $\hat { r }$ ; confidence 0.144
  
99. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005020.png ; $( R )$ ; confidence 0.801
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144
  
100. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603022.png ; $164$ ; confidence 1.000
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144
  
101. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006023.png ; $( N )$ ; confidence 0.934
+
101. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005032.png ; $\mu _ { 0 } ( \dot { k } _ { C } , R _ { C } ) = i \mu _ { C }$ ; confidence 0.144
  
102. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036930/e03693078.png ; $c X P$ ; confidence 0.145
+
102. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301308.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { N } x _ { N }$ ; confidence 0.144
  
103. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002075.png ; $q = N$ ; confidence 0.962
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020084.png ; $r$ ; confidence 0.144
  
104. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662027.png ; $q < n$ ; confidence 0.917
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004012.png ; $b \subset I _ { 1 }$ ; confidence 0.144
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620104.png ; $q = n$ ; confidence 0.781
+
105. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002044.png ; $\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } | f ( x ) \| \hat { f } ( y ) | e ^ { 2 \pi | y | } < \infty$ ; confidence 0.144
  
106. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020205.png ; $r = p$ ; confidence 0.886
+
106. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048018.png ; $C _ { k } = \Lambda ^ { k } T ^ { * } M \otimes R _ { m } / \delta ( \Lambda ^ { k - 1 } T ^ { * } M \otimes g _ { m + 1 } )$ ; confidence 0.144
  
107. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020206.png ; $t = q$ ; confidence 0.778
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004038.png ; $u _ { i } ^ { n + 1 } = b _ { - 1 } u _ { t - 1 } ^ { n } + b _ { 0 } u _ { i } ^ { n } + b _ { 1 } u _ { + 1 } ^ { n }$ ; confidence 0.144
  
108. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004026.png ; $r > n$ ; confidence 0.561
+
108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200906.png ; $J = ( j _ { 1 } , \ldots , j _ { n } ) \in N ^ { X }$ ; confidence 0.144
  
109. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h04820013.png ; $E > 0$ ; confidence 0.994
+
109. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010048.png ; $\sum _ { i = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h \sum _ { i = 0 } ^ { k } \beta _ { i } f ( x _ { m } + i , y _ { m + i } )$ ; confidence 0.143
  
110. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301104.png ; $b + 1$ ; confidence 0.375
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026025.png ; $f : \overline { \Omega } \subset R ^ { N } \rightarrow R ^ { X }$ ; confidence 0.143
  
111. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475024.png ; $C = 0$ ; confidence 0.886
+
111. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002058.png ; $e \preceq \mathfrak { c } _ { i } \preceq \mathfrak { b } _ { i }$ ; confidence 0.143
  
112. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011071.png ; $V - U$ ; confidence 0.986
+
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005039.png ; $D _ { n } ^ { * } = R [ x _ { 1 } , \ldots , x _ { n } ] / \langle x _ { 1 } , \ldots , x _ { n } \rangle ^ { r + 1 }$ ; confidence 0.143
  
113. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900123.png ; $P < Q$ ; confidence 0.880
+
113. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004056.png ; $s ( l ) = h _ { l } \text { and } s _ { \langle 1 ^ { l } } \rangle = e l$ ; confidence 0.143
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003019.png ; $( X )$ ; confidence 0.812
+
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
  
115. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200504.png ; $A = R$ ; confidence 0.996
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053075.png ; $1 \frac { G } { P }$ ; confidence 0.143
  
116. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
+
116. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003019.png ; $F _ { X } ( q ) = \frac { 1 } { 2 \pi } \int _ { c ^ { 1 } } X f ( \theta , x , \theta + q ) d \theta$ ; confidence 0.143
  
117. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540188.png ; $s > 0$ ; confidence 0.926
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290204.png ; $[ H _ { m } ^ { i } ( R ) ] _ { n } = ( 0 )$ ; confidence 0.143
  
118. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311035.png ; $i > j$ ; confidence 0.993
+
118. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005013.png ; $4,74$ ; confidence 0.143
  
119. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090388.png ; $\pi$ ; confidence 0.889
+
119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230124.png ; $= \frac { 1 } { k ! ! ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( K _ { \sigma 1 } , \ldots , X _ { \sigma k } ) ) ( \omega ( X _ { \sigma ( k + 1 ) } , \ldots , X _ { \sigma ( k + 1 ) } ) ) +$ ; confidence 0.142
  
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110180.png ; $m - 1$ ; confidence 0.789
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027045.png ; $\operatorname { lim } _ { A } u _ { n } = \frac { 1 } { E X _ { 1 } }$ ; confidence 0.142
  
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110266.png ; $g + 1$ ; confidence 0.533
+
121. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002088.png ; $r 0$ ; confidence 0.142
  
122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012056.png ; $C = 0$ ; confidence 0.648
+
122. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011033.png ; $\operatorname { lim } _ { i \rightarrow \infty } \sum _ { j = 1 } ^ { \infty } x _ { i j } x _ { j } = 0$ ; confidence 0.142
  
123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012034.png ; $R = 0$ ; confidence 0.997
+
123. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010029.png ; $\int a \cdot f d m = a \cdot ( C ) \int f d m$ ; confidence 0.142
  
124. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w1201307.png ; $T + S$ ; confidence 0.988
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142
  
125. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014031.png ; $n < n$ ; confidence 0.221
+
125. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008062.png ; $\sum _ { p \in E , S } \rho _ { p } E [ W _ { p } ] + \sum _ { p \in L } \rho _ { p } ( 1 - \frac { \lambda _ { p } R } { 1 - \rho } ) E [ W _ { p } ] =$ ; confidence 0.142
  
126. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080129.png ; $N = 1$ ; confidence 0.969
+
126. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301706.png ; $\| u \| A _ { 2 } ( G ) = \operatorname { inf } \{ N _ { 2 } ( k ) N _ { 2 } ( l ) : k , l \in L _ { C } ^ { 2 } ( G ) , u = \overline { k } ^ { * } t \}$ ; confidence 0.142
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918
+
127. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020119.png ; $\{ \rho _ { N } ( \phi ) \} _ { R } \geq 0 \in I ^ { p }$ ; confidence 0.142
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024029.png ; $g = 0$ ; confidence 0.947
+
128. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009020.png ; $a _ { n } = \frac { 2 } { N } \frac { 1 } { \vec { c } _ { n } } \sum _ { j = 0 } ^ { N } u ( x _ { j } ) \frac { T _ { n } ( x _ { j } ) } { c _ { j } }$ ; confidence 0.142
  
129. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011040.png ; $H > 4$ ; confidence 0.961
+
129. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691037.png ; $\{ f _ { N } \} _ { N }$ ; confidence 0.142
  
130. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011036.png ; $H = 3$ ; confidence 0.953
+
130. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015031.png ; $\frac { d ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } + g _ { i } ^ { i } \frac { d \xi ^ { r } } { d t } + g _ { r } ^ { i } \xi ^ { r } = 0$ ; confidence 0.142
  
131. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018031.png ; $v < t$ ; confidence 0.772
+
131. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011033.png ; $y \in K _ { j } ^ { c }$ ; confidence 0.141
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021043.png ; $N > 1$ ; confidence 0.912
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010127.png ; $n > 0$ ; confidence 0.141
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601085.png ; $u > t$ ; confidence 0.955
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240331.png ; $p _ { 1 }$ ; confidence 0.141
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950110.png ; $N - 1$ ; confidence 0.917
+
134. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022064.png ; $H _ { M } ^ { \bullet } ( M _ { \Sigma } , Q ( * ) )$ ; confidence 0.141
  
135. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847013.png ; $W ( )$ ; confidence 0.478
+
135. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200107.png ; $[ e _ { i } , e _ { j } ] = ( \left( \begin{array} { c } { i + j + 1 } \\ { j } \end{array} \right) - \left( \begin{array} { c } { i + j + 1 } \\ { i } \end{array} \right) ) e _ { i + j }$ ; confidence 0.141
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427
+
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007094.png ; $c ^ { * } \otimes k C$ ; confidence 0.141
  
137. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020022.png ; $\| p$ ; confidence 0.343
+
137. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002018.png ; $.0$ ; confidence 0.141
  
138. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087670/s087670113.png ; $k = 8$ ; confidence 0.920
+
138. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005050.png ; $\psi ( v ) = \operatorname { sup } _ { x > 0 } \{ u v - \varphi ( u ) \}$ ; confidence 0.141
  
139. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076790/q07679049.png ; $4 r r$ ; confidence 0.155
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029058.png ; $( \alpha _ { 1 } , \dots , a _ { i - 1 } ) : \alpha _ { i } = ( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) : m$ ; confidence 0.141
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667068.png ; $k = 4$ ; confidence 0.875
+
140. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005099.png ; $( . . ) _ { D } 2 f ( x ^ { * } )$ ; confidence 0.140
  
141. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013032.png ; $R > r$ ; confidence 0.973
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018018.png ; $L ( \tau ) = \langle Fm _ { \tau } , Mod _ { \tau } , F _ { \tau } , mng _ { \tau } , t _ { \tau } \rangle$ ; confidence 0.140
  
142. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644014.png ; $x < 0$ ; confidence 0.999
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027076.png ; $x \in X _ { y }$ ; confidence 0.140
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601040.png ; $s < t$ ; confidence 0.955
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012036.png ; $( f ^ { * } d \mu ) _ { N } ( x ) = \sum _ { k } \lambda ( \frac { k } { N } ) \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.140
  
144. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010116.png ; $( R )$ ; confidence 0.679
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004063.png ; $- \frac { 1 } { \langle \rho ^ { \prime } , \zeta \} ^ { N } } \sum _ { | \alpha | = 0 } ^ { m } \frac { ( | \alpha | + n - 1 ) ! } { \alpha _ { 1 } ! \ldots \alpha _ { N } ! } ( \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } , \zeta \rangle } ) ^ { \alpha } z ^ { \alpha } \sigma$ ; confidence 0.140
  
145. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010115.png ; $( R )$ ; confidence 0.976
+
145. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026062.png ; $\| U ^ { n } \| _ { \infty } \leq C \| U ^ { 0 } \| _ { \infty } , 1 \leq n$ ; confidence 0.140
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001022.png ; $i$ ; confidence 0.140
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169033.png ; $x = y$ ; confidence 0.886
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
  
148. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004019.png ; $m < 6$ ; confidence 0.843
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084019.png ; $e _ { 1 } , \ldots , e _ { x }$ ; confidence 0.140
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $3$ ; confidence 0.899
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070107.png ; $\{ B _ { j } ( t , x , D _ { x } ) \} _ { j = 1 } ^ { \infty }$ ; confidence 0.140
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022084.png ; $p > 3$ ; confidence 1.000
+
150. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002010.png ; $\times \int _ { - \infty } ^ { \infty } \tau | \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) | ^ { 2 } \times \times \square _ { 2 } F _ { 1 } ( \alpha + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } ) f ( \tau ) d \tau$ ; confidence 0.140
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012010/a01201067.png ; $m > 2$ ; confidence 0.993
+
151. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i05303010.png ; $+ \sigma ^ { 2 } ( t ) f _ { \chi x } ^ { \prime \prime } ( t , X _ { t } ) / 2 ] d t + \sigma ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) d W _ { t }$ ; confidence 0.139
  
152. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007036.png ; $( a )$ ; confidence 0.438
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026041.png ; $f ( \not g ) \cong 0$ ; confidence 0.139
  
153. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007037.png ; $( b )$ ; confidence 0.736
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220243.png ; $\phi _ { i } : CH ^ { i } ( X ) ^ { 0 } \rightarrow \operatorname { Ext } _ { H } ^ { 1 } ( Z ( 0 ) , h ^ { 2 i - 1 } ( X ) ( i ) )$ ; confidence 0.139
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485060.png ; $a + b$ ; confidence 0.945
+
154. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110230.png ; $\vec { R } ^ { x } +$ ; confidence 0.139
  
155. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008042.png ; $k > i$ ; confidence 0.452
+
155. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008025.png ; $L _ { 1 } ^ { 11 }$ ; confidence 0.139
  
156. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079032.png ; $x = 2$ ; confidence 0.998
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018055.png ; $Alg _ { + } ( L ) = Alg _ { \operatorname { mod } e l s } ( L )$ ; confidence 0.139
  
157. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095330/u09533017.png ; $1 + 6$ ; confidence 0.775
+
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006049.png ; $+ \frac { \{ U _ { i } = ( u _ { t } + 1 , \ldots , u _ { t } + k ) : s _ { j } < u + j \leq t _ { j } , 1 \leq j \leq k \} } { \# \{ U _ { i } = ( u _ { t } + 1 , \ldots , u + k ) \} }$ ; confidence 0.139
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $20$ ; confidence 0.863
+
158. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053016.png ; $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ ; confidence 0.138
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $23$ ; confidence 0.711
+
159. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025052.png ; $\hat { A } ( t | \beta ) = \int _ { 0 , t } \frac { 1 } { \sum _ { k = 1 } ^ { n } l _ { k } ( s - ) e ^ { Z _ { k } ^ { T } ( s - ) \beta } } d \overline { N } ( s )$ ; confidence 0.138
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002035.png ; $C E$ ; confidence 0.982
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220206.png ; $L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m } \equiv \operatorname { det } ( \Pi ) \cdot \operatorname { det } \langle . . \rangle$ ; confidence 0.138
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040262.png ; $3 A$ ; confidence 0.768
+
161. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010052.png ; $c ^ { EM }$ ; confidence 0.137
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250
+
162. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100140.png ; $\operatorname { Aut } ( \hat { G } , \tau )$ ; confidence 0.137
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040143.png ; $S 5$ ; confidence 0.850
+
163. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300902.png ; $f ( x _ { 1 } , \dots , x _ { n } ) = g ( a _ { 1 } x _ { 1 } + \ldots + a _ { n } x _ { n } ) = g ( a x )$ ; confidence 0.137
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $21$ ; confidence 0.266
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001011.png ; $12$ ; confidence 0.581
+
165. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050133.png ; $\sigma _ { H } : = \sigma _ { I } \cup \sigma _ { r }$ ; confidence 0.137
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404
+
166. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702043.png ; $\overline { k } _ { S }$ ; confidence 0.137
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004059.png ; $F m$ ; confidence 0.283
+
167. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302107.png ; $a _ { N } | a _ { x } + 1 = a _ { x }$ ; confidence 0.137
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040403.png ; $P K$ ; confidence 0.879
+
168. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f1201407.png ; $72 +$ ; confidence 0.137
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040402.png ; $SK$ ; confidence 0.606
+
169. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011085.png ; $Cd$ ; confidence 0.137
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040737.png ; $= 0$ ; confidence 0.847
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008049.png ; $\operatorname { ln } 1 d s$ ; confidence 0.137
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300402.png ; $Fm$ ; confidence 0.913
+
171. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080183.png ; $( \kappa \partial _ { \vec { \alpha } } + M _ { \dot { \alpha } } ) \psi = 0$ ; confidence 0.136
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005094.png ; $t )$ ; confidence 0.993
+
172. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007059.png ; $| u ( y ) | \leq \sum _ { j = 1 } ^ { \infty } | u _ { j } , \varphi _ { j } ( y ) | \leq c \Lambda \| _ { V } \| = c \Lambda \| u \| _ { + }$ ; confidence 0.136
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401
+
173. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020073.png ; $\sigma e _ { t } = e _ { \sigma } t$ ; confidence 0.136
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007098.png ; $2 m$ ; confidence 0.936
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060129.png ; $90$ ; confidence 0.933
+
176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007061.png ; $- 8$ ; confidence 1.000
+
177. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009036.png ; $\left. \begin{array}{l}{ U _ { 0 } ^ { ( k ) } ( x ) = 0 }\\{ U _ { 1 } ^ { ( k ) } ( x ) = 1 }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { n } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) , \quad n = 2 , \ldots , k }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { k } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) }\\{ n = k + 1 , k + 2 , \ldots }\end{array} \right.$ ; confidence 0.136
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007014.png ; $21$ ; confidence 1.000
+
178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230157.png ; $L _ { Z ^ { k } } ( L , \Delta ) = Z ^ { k } _ { \perp } d L \Delta + d ( Z ^ { k } , L , \Delta )$ ; confidence 0.136
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001057.png ; $10$ ; confidence 1.000
+
179. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290161.png ; $( X , T ) \in | L \cap F T O$ ; confidence 0.136
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007034.png ; $52$ ; confidence 0.999
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040595.png ; $\mathfrak { D } \mathfrak { N } \in$ ; confidence 0.136
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008085.png ; $13$ ; confidence 0.688
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011029.png ; $w \in S _ { \infty } = \cup S _ { X }$ ; confidence 0.136
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010018.png ; $- A$ ; confidence 1.000
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180479.png ; $s ^ { 2 } \mathfrak { g } \in S ^ { 2 } \not$ ; confidence 0.135
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012037.png ; $A v$ ; confidence 0.570
+
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003035.png ; $e ^ { 2 \pi i m n a k b } e ^ { 2 \pi i m b x } g ( \gamma - m b )$ ; confidence 0.135
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030019.png ; $T V$ ; confidence 0.595
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200105.png ; $C ^ { \prime \prime }$ ; confidence 0.135
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103203.png ; $u m$ ; confidence 0.575
+
185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012030.png ; $L ( \theta | Y _ { 0 b s } ) = \int _ { M ( Y _ { \text { aug } } ) = Y _ { \text { obs } } } L ( \theta | Y _ { \text { aug } } ) d Y _ { \text { aug } }$ ; confidence 0.135
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160145.png ; $Q i$ ; confidence 0.734
+
186. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002088.png ; $14$ ; confidence 0.135
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016027.png ; $21$ ; confidence 0.451
+
187. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030129.png ; $\Sigma ( \Gamma ) : = \{ f \in [ 0,1 ] ^ { \Gamma } : \begin{array} { c c } { f ( \gamma ) \neq 0 } \\ { \text { for at most countabl } } \end{array}$ ; confidence 0.135
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016077.png ; $A V$ ; confidence 0.974
+
188. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060121.png ; $\sigma ( B ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.135
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160154.png ; $y i$ ; confidence 0.615
+
189. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001087.png ; $\rho ( v ) = v ^ { \{ 1 \} } \otimes _ { V } v ^ { ( 2 ) } \in V \otimes _ { k } A$ ; confidence 0.135
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016066.png ; $C ]$ ; confidence 0.366
+
190. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002081.png ; $- P [ ( X - \hat { X } ) ( Y - \hat { Y } ) < 0 ] =$ ; confidence 0.134
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016083.png ; $16$ ; confidence 1.000
+
191. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200101.png ; $F = ( F _ { 1 } , \dots , F _ { N } ) : C ^ { * } \rightarrow C ^ { * }$ ; confidence 0.134
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160167.png ; $k j$ ; confidence 0.711
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301205.png ; $A ^ { * } = \{ f : \| f \| _ { A } ^ { * } = \sum _ { k = 0 } ^ { \infty } \operatorname { sup } _ { k \leq p | < \infty } | \hat { f } ( m ) | < \infty \}$ ; confidence 0.134
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160137.png ; $13$ ; confidence 1.000
+
193. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010111.png ; $A I$ ; confidence 0.134
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160129.png ; $W E$ ; confidence 0.943
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040163.png ; $24$ ; confidence 1.000
+
195. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016029.png ; $a =$ ; confidence 0.129
+
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010025.png ; $\{ \sum _ { n = 1 } ^ { \infty } N _ { p } ( k _ { n } ) N _ { p } , ( l _ { n } ) : \quad \text { with } u = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * r _ { n }$ ; confidence 0.134
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201603.png ; $Z =$ ; confidence 0.983
+
197. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001040.png ; $1 \subset C ^ { 2 }$ ; confidence 0.134
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016039.png ; $b A$ ; confidence 0.979
+
198. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020121.png ; $\vec { \mathfrak { c } } _ { t } ^ { 2 } < 0$ ; confidence 0.134
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016061.png ; $C D$ ; confidence 0.377
+
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080123.png ; $\hat { \alpha } _ { i } = \alpha _ { i } ( u _ { k } , T _ { 1 } , T _ { n > 1 } = 0 ) = T _ { 1 } a _ { i } ( u _ { k } , \Lambda = 1 ) = a _ { i } ( \hat { u } _ { k } , \Lambda = T _ { 1 } )$ ; confidence 0.134
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160150.png ; $q i$ ; confidence 0.408
+
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010094.png ; $f ( Z ) = \sum _ { 0 < T = \square ^ { t } T } c ( T ) e ^ { 2 \pi i \operatorname { Tr } ( T T ) }$ ; confidence 0.134
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160100.png ; $Z ;$ ; confidence 0.244
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011048.png ; $w \in S _ { n }$ ; confidence 0.134
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017033.png ; $= 0$ ; confidence 1.000
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036036.png ; $w ( a , b , c , d ) = w ( \square _ { \alpha } ^ { d } \square \square _ { b } ^ { c } ) = \operatorname { exp } ( - \frac { \epsilon ( a , b , c , d ) } { k _ { B } T } )$ ; confidence 0.134
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017032.png ; $< 0$ ; confidence 0.976
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022096.png ; $\| u - q _ { l } \| _ { p , \Omega } \leq C \rho ^ { 2 } | u | _ { p , 2 , \Omega }$ ; confidence 0.133
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017035.png ; $< 1$ ; confidence 0.977
+
204. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n1201207.png ; $t , - , x _ { 2 }$ ; confidence 0.133
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017036.png ; $= 1$ ; confidence 1.000
+
205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200706.png ; $C ^ { 0 } ( C , M ) = \prod _ { C \in Q C } M ( C )$ ; confidence 0.133
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018091.png ; $23$ ; confidence 1.000
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008073.png ; $\left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i } ^ { k } + 1 , j } \\ { x _ { i , j + 1 } ^ { v } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { k } } \\ { x _ { i j } ^ { y } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { j }$ ; confidence 0.133
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180152.png ; $I d$ ; confidence 0.319
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011046.png ; $\Xi M = \kappa x + \hat { \xi } \cdot D x$ ; confidence 0.133
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180188.png ; $3 C$ ; confidence 0.260
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051091.png ; $\alpha = s _ { x } ^ { T } - 1 d / y _ { x } ^ { T } - 1$ ; confidence 0.133
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $13$ ; confidence 0.787
+
209. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007097.png ; $f ) = \sum R ( h \otimes f _ { ( 1 ) } ) R ( g \otimes f ( 2 ) ) , R ( h \otimes g f ) = \sum R$ ; confidence 0.133
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180190.png ; $C A$ ; confidence 0.499
+
210. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170115.png ; $K ^ { 2 } \stackrel { 3 } { N } L ^ { 2 }$ ; confidence 0.132
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018056.png ; $3 A$ ; confidence 0.480
+
211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090101.png ; $e \lambda$ ; confidence 0.132
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180140.png ; $< 2$ ; confidence 0.623
+
212. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059120/l0591203.png ; $GL _ { n } ( K )$ ; confidence 0.132
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023066.png ; $73$ ; confidence 0.389
+
213. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010062.png ; $L _ { \gamma , n } > L _ { \gamma , \kappa } ^ { E }$ ; confidence 0.132
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023087.png ; $C R$ ; confidence 0.950
+
214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202005.png ; $( \alpha _ { 1 } , \dots , \alpha _ { N } ) \in C ^ { \gamma }$ ; confidence 0.132
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023064.png ; $d v$ ; confidence 0.995
+
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027078.png ; $\sum _ { i } \overline { m } _ { n } ( h ) h$ ; confidence 0.132
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026029.png ; $11$ ; confidence 0.342
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490129.png ; $X _ { 1 } , \ldots , X _ { m }$ ; confidence 0.132
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $31$ ; confidence 0.712
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220166.png ; $= \operatorname { dim } H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.131
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450150.png ; $+ 1$ ; confidence 0.996
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a0109306.png ; $v$ ; confidence 0.131
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160016.png ; $- 1$ ; confidence 1.000
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017026.png ; $p ^ { * } ( \alpha , t ) = \omega e ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) = e ^ { \lambda ^ { * } t _ { w } ^ { * } ( \alpha ) }$ ; confidence 0.131
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029038.png ; $P Y$ ; confidence 0.290
+
220. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005014.png ; $A = A _ { 1 } \oplus \ldots \oplus A _ { i k }$ ; confidence 0.131
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029017.png ; $10$ ; confidence 0.521
+
221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080103.png ; $E x _ { i + 1 , j + 1 } = A _ { 0 x _ { j } } + A _ { 1 } x _ { i + 1 , j } + A _ { 2 } x _ { i , j + 1 } + B u _ { i j }$ ; confidence 0.131
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028062.png ; $N P$ ; confidence 0.809
+
222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016019.png ; $h _ { \gamma } = M _ { s } f _ { 2 }$ ; confidence 0.131
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031041.png ; $22$ ; confidence 0.496
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031018.png ; $22 ^ { x }$ ; confidence 0.131
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031086.png ; $A P$ ; confidence 0.978
+
224. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010063.png ; $a _ { e } ( x , \alpha , p ) : = \frac { a ( x , \alpha , p ) + a ( x _ { s } - \alpha , - p ) } { 2 }$ ; confidence 0.131
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010011.png ; $= 3$ ; confidence 0.057
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110155.png ; $= 2 ^ { 2 n k } \int _ { \Phi ^ { 2 k } } ^ { \alpha _ { 1 } ( Y _ { 1 } ) \ldots \alpha _ { 2 k } ( Y _ { 2 k } ) \cdot \alpha _ { 2 k + 1 } } ( X + \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } ( Y _ { j } - Y _ { l } ) )$ ; confidence 0.131
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066068.png ; $12$ ; confidence 0.597
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002033.png ; $J J W$ ; confidence 0.131
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010120.png ; $12$ ; confidence 0.603
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040199.png ; $I _ { Y }$ ; confidence 0.131
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003033.png ; $m b$ ; confidence 0.356
+
228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049056.png ; $\{ \vec { p } : p \in N _ { l } \}$ ; confidence 0.131
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003038.png ; $\$ ; confidence 0.224
+
229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080195.png ; $\kappa \partial _ { S } H _ { \gamma } - \kappa \partial _ { \gamma } H _ { S } + \{ H _ { S } , H _ { \gamma } \} _ { 0 } = 0$ ; confidence 0.131
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002067.png ; $J B$ ; confidence 0.727
+
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201606.png ; $ker T$ ; confidence 0.131
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002031.png ; $JC$ ; confidence 0.674
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018060.png ; $+ F ( d x \bigotimes d y + d y \otimes d x ) + G d y Q d y$ ; confidence 0.130
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680231.png ; $> 3$ ; confidence 0.829
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025036.png ; $g _ { y }$ ; confidence 0.130
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004010.png ; $I [$ ; confidence 0.095
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080111.png ; $= \sum _ { l = 0 } ^ { r _ { 1 } } \sum _ { l = 0 } ^ { r _ { 2 } } \alpha _ { l j } z _ { 12 } ^ { i j }$ ; confidence 0.130
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206017.png ; $12$ ; confidence 0.844
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200302.png ; $\{ e ^ { 2 \pi i m b x } g ( x - n a ) : n , m \in Z \} = \{ g _ { x } , m : n , m \in Z \}$ ; confidence 0.130
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004014.png ; $13$ ; confidence 0.890
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032032.png ; $u _ { M } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h \lambda ) u _ { m }$ ; confidence 0.130
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004045.png ; $1 f$ ; confidence 0.899
+
236. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007096.png ; $\sum g ( 1 ) h _ { ( 1 ) } R ( h _ { ( 2 ) } \otimes g _ { ( 2 ) } ) = \sum R ( h _ { ( 1 ) } \otimes g _ { ( 1 ) } ) h _ { ( 2 ) } g ( 2 )$ ; confidence 0.130
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004050.png ; $9 X$ ; confidence 0.455
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007031.png ; $2.0$ ; confidence 0.129
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004049.png ; $p x$ ; confidence 0.179
+
238. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021017.png ; $78$ ; confidence 0.129
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200502.png ; $B E$ ; confidence 0.345
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027039.png ; $A \hookrightarrow Q ( H )$ ; confidence 0.129
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018021.png ; $20$ ; confidence 0.935
+
240. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008037.png ; $[ - 1,1 )$ ; confidence 0.129
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006043.png ; $| E$ ; confidence 0.386
+
241. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007049.png ; $X _ { N } ^ { k }$ ; confidence 0.129
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010032.png ; $d A$ ; confidence 0.997
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k1201008.png ; $\sum _ { m = 0 } ^ { \infty } \frac { 1 } { ( 2 \pi i ) ^ { m / 3 } } \int _ { T } \sum _ { P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \} } ( - 1 ) ^ { \perp } D _ { P } \bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.129
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040180.png ; $12$ ; confidence 1.000
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180406.png ; $\tilde { \nabla } ^ { \mathscr { Y } } W ( \mathfrak { g } )$ ; confidence 0.129
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013067.png ; $B D$ ; confidence 0.536
+
244. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200201.png ; $( P ) v ^ { * } = \left\{ \begin{array} { c c } { \operatorname { min } } & { c ^ { T } x } \\ { \text { s.t. } } & { A _ { 1 } x \leq b _ { 1 } } \\ { } & { A _ { 2 } x \leq b _ { 2 } } \\ { x \geq 0 } \end{array} \right.$ ; confidence 0.129
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014057.png ; $2 t$ ; confidence 0.864
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016029.png ; $a =$ ; confidence 0.129
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015077.png ; $23$ ; confidence 0.116
+
246. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028067.png ; $w _ { j } = \frac { \Phi ^ { \prime z _ { j } } } { \langle \operatorname { grad } _ { z } \Phi , z \} } , j = 1 , \ldots , n$ ; confidence 0.129
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329074.png ; $< n$ ; confidence 0.526
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703032.png ; $90$ ; confidence 0.129
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093017.png ; $< 1$ ; confidence 0.518
+
248. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050110.png ; $\epsilon _ { \mathscr { Y } } \rightarrow 0$ ; confidence 0.129
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016038.png ; $A a$ ; confidence 0.653
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001065.png ; $0$ ; confidence 0.129
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149053.png ; $X ]$ ; confidence 0.605
+
250. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021035.png ; $L _ { m , n } = ( \phi _ { m } , L _ { \phi , n } )$ ; confidence 0.128
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178026.png ; $50$ ; confidence 0.154
+
251. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010019.png ; $\operatorname { Var } | W ^ { \alpha } ( t ) | \asymp \left\{ \begin{array} { l l } { t , } & { d = 1 } \\ { \frac { t ^ { 2 } } { \operatorname { log } ^ { 4 } t } , } & { d = 2 } \\ { \operatorname { tlog } t , } & { d = 3 } \\ { t , } & { d \geq 4 } \end{array} \right.$ ; confidence 0.128
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016019.png ; $A A$ ; confidence 0.996
+
252. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030081.png ; $A = \{ a _ { 1 } ^ { \pm 1 } , \ldots , a _ { \infty } ^ { \pm 1 } \}$ ; confidence 0.128
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022053.png ; $21$ ; confidence 0.583
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023089.png ; $| y | \rightarrow \infty ^ { k _ { q } | d _ { q } ( \Omega ) } \sqrt { | q | } \leq 1$ ; confidence 0.127
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013990/a0139904.png ; $= X$ ; confidence 0.502
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005023.png ; $2 ^ { x ^ { \prime } ( x ) - 1 } ) + m - 1$ ; confidence 0.127
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015570/b01557039.png ; $00$ ; confidence 0.249
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027048.png ; $\{ x _ { x } , : x _ { x } , \in X _ { x } , \}$ ; confidence 0.127
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032051.png ; $1 !$ ; confidence 0.253
+
256. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007084.png ; $p _ { M } = p | _ { - k } ^ { V } M - p , M \in \Gamma$ ; confidence 0.127
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036022.png ; $P z$ ; confidence 0.338
+
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036020.png ; $P y$ ; confidence 0.630
+
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202004.png ; $M _ { 0 } ( \dot { k } ) = \sum _ { j = 1 } ^ { x } | b _ { j } \| z _ { j } | ^ { k }$ ; confidence 0.127
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036018.png ; $P x$ ; confidence 0.378
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022048.png ; $23 ^ { n + 5 }$ ; confidence 0.127
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020012.png ; $31$ ; confidence 0.833
+
260. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663093.png ; $f \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } , \ldots , M _ { n } ; R ^ { n } )$ ; confidence 0.127
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020010.png ; $D A$ ; confidence 0.341
+
261. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009041.png ; $8 ^ { - n }$ ; confidence 0.127
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420144.png ; $12$ ; confidence 0.323
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003024.png ; $0 \lfloor J b _ { 1 }$ ; confidence 0.127
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040227.png ; $16$ ; confidence 1.000
+
263. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080100.png ; $S + 1 \rightarrow \langle m \rangle$ ; confidence 0.127
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430104.png ; $B G$ ; confidence 0.839
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s1202709.png ; $x _ { y , y }$ ; confidence 0.126
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106407.png ; $> r$ ; confidence 0.340
+
265. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005017.png ; $\square ^ { 1 } R _ { g } + 1$ ; confidence 0.126
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630108.png ; $R G$ ; confidence 1.000
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040068.png ; $i h _ { R }$ ; confidence 0.126
  
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044099.png ; $R H$ ; confidence 0.998
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130086.png ; $I _ { v }$ ; confidence 0.126
  
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044044.png ; $k G$ ; confidence 0.970
+
268. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004028.png ; $\gamma _ { t } ^ { 1 }$ ; confidence 0.126
  
269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b110670111.png ; $A C$ ; confidence 1.000
+
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009044.png ; $H \otimes x$ ; confidence 0.126
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a010290104.png ; $A B$ ; confidence 0.999
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003032.png ; $12.52$ ; confidence 0.126
  
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049055.png ; $m v$ ; confidence 0.510
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m065140140.png ; $\theta _ { i }$ ; confidence 0.126
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102206.png ; $2 p$ ; confidence 0.999
+
272. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018087.png ; $J ^ { O } \underline { E }$ ; confidence 0.126
  
273. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050045.png ; $7 x$ ; confidence 0.869
+
273. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007075.png ; $\phi h = \sum h ( 2 ) \phi ( 2 ) \langle S h _ { ( 1 ) } , \phi _ { ( 1 ) } \rangle \langle h _ { ( 3 ) } , \phi _ { ( 3 ) } \rangle$ ; confidence 0.126
  
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051048.png ; $x +$ ; confidence 0.518
+
274. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013065.png ; $\delta _ { ( 2 ) } < K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.126
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079032.png ; $11$ ; confidence 0.724
+
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012026.png ; $Y _ { \operatorname { allg } }$ ; confidence 0.125
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410123.png ; $2 d$ ; confidence 0.818
+
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f1201108.png ; $\| \varphi \| = \operatorname { sup } _ { | \operatorname { maz } } | \varphi ( z ) | e ^ { \delta | \operatorname { Re } z | }$ ; confidence 0.125
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093015.png ; $> 1$ ; confidence 0.740
+
277. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009026.png ; $\langle G \cup \{ t \} : ( \operatorname { ker } ( \tau _ { G } ) ) \cup \{ t ^ { - 1 } \alpha ^ { - 1 } t \mu ( \alpha ) : \forall \alpha \in A \} \}$ ; confidence 0.125
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300144.png ; $2 k$ ; confidence 0.995
+
278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002031.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \geq S _ { 1 } - S _ { 2 } + \ldots + S _ { m - 1 } - S _ { m }$ ; confidence 0.125
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010143.png ; $n 1$ ; confidence 0.274
+
279. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011048.png ; $\exists x = ( x _ { 1 } , \dots , x _ { N } ) \in R ^ { x }$ ; confidence 0.125
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310185.png ; $C A$ ; confidence 0.938
+
280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028023.png ; $\mu _ { A x } ( z ) = \operatorname { sup } _ { z = A x } \mu _ { A } ( A )$ ; confidence 0.125
  
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002011.png ; $53$ ; confidence 0.514
+
281. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005021.png ; $A ( 2 , m )$ ; confidence 0.125
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004053.png ; $CF$ ; confidence 0.571
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067040.png ; $\dot { y } _ { 0 } ^ { k } ( \phi ) \dot { y } ^ { k } ( u ) = j _ { x } ^ { k } ( \phi \circ u ) , \quad j _ { 0 } ^ { k } ( \phi ) \in GL ^ { k } ( n ) , \quad j _ { X } ^ { k } ( u ) \in M _ { k }$ ; confidence 0.124
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007077.png ; $20$ ; confidence 0.652
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042095.png ; $v e ^ { i }$ ; confidence 0.124
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087029.png ; $Ab$ ; confidence 0.760
+
284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013031.png ; $\times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - w - 1 } d z$ ; confidence 0.124
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007078.png ; $c M$ ; confidence 0.873
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220194.png ; $CH ^ { p } ( X ) ^ { 0 } = \operatorname { Ker } ( CH ^ { p } ( X ) \rightarrow H ^ { 2 p } B ( X _ { C } , Q ( p ) ) )$ ; confidence 0.124
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005014.png ; $15$ ; confidence 0.873
+
286. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101507.png ; $\overline { a }$ ; confidence 0.124
  
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006045.png ; $27$ ; confidence 0.508
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150108.png ; $B _ { y }$ ; confidence 0.124
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007092.png ; $< d$ ; confidence 0.937
+
288. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
  
289. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070103.png ; $< d$ ; confidence 0.564
+
289. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012042.png ; $\alpha = ( \alpha _ { 1 } , \dots , a _ { n } )$ ; confidence 0.124
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119907.png ; $< x$ ; confidence 0.813
+
290. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024018.png ; $H * ( X , x _ { 0 } ; G ) \approx \prod _ { 1 } ^ { \infty } H * ( X _ { i } , x _ { i 0 } ; G )$ ; confidence 0.124
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014016.png ; $CS$ ; confidence 0.792
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066011.png ; $\phi _ { N } ^ { * } ( z ) = z ^ { \sqrt { \gamma } } \overline { \phi _ { N } ( 1 / z ) }$ ; confidence 0.124
  
292. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014015.png ; $Tr$ ; confidence 0.307
+
292. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663067.png ; $\| \Delta _ { h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k | k | } ) } \leq M | h | ^ { r - s }$ ; confidence 0.123
  
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201703.png ; $> 0$ ; confidence 1.000
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042025.png ; $r V : V \rightarrow V \otimes \underline { 1 }$ ; confidence 0.123
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800102.png ; $NE$ ; confidence 0.251
+
294. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752022.png ; $A \in M _ { \operatorname { max } _ { n } } ( K )$ ; confidence 0.123
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800100.png ; $NP$ ; confidence 0.793
+
295. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016081.png ; $( \mathfrak { B } \mathfrak { b } ) \sim _ { l } ( \mathfrak { A } \alpha )$ ; confidence 0.123
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160111.png ; $NL$ ; confidence 0.678
+
296. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006031.png ; $\overline { V g , x }$ ; confidence 0.123
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160149.png ; $P H$ ; confidence 0.340
+
297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050104.png ; $\hat { Q }$ ; confidence 0.123
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566023.png ; $T I$ ; confidence 0.350
+
298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120142.png ; $\overline { \sigma } = ( \sigma _ { 1 } , \ldots , \sigma _ { e } ) \in G ( K ) ^ { e }$ ; confidence 0.123
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566024.png ; $72$ ; confidence 0.986
+
299. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023082.png ; $R ^ { - H }$ ; confidence 0.123
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104705.png ; $T M$ ; confidence 0.992
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070126.png ; $L = \oplus _ { R \in Z } L _ { R }$ ; confidence 0.122

Revision as of 00:10, 13 February 2020

List

1. b13023036.png ; $f ( u ) = \{ g \in G : g a c t s \text { trivially on } T \backslash T _ { d } \}$ ; confidence 0.155

2. d11022028.png ; $L y \equiv \rho _ { N } \frac { d } { d x } ( \rho _ { x } - 1 \cdots \frac { d } { d x } ( \rho _ { 1 } \frac { d } { d x } ( \rho _ { 0 } y ) ) \ldots ) , \rho _ { i } > 0$ ; confidence 0.155

3. z13003041.png ; $Z [ e ^ { 2 \pi i m t } f ] ( t , w ) = e ^ { 2 \pi i m t } ( Z f ) ( t , w )$ ; confidence 0.155

4. e12010018.png ; $w ^ { em } = J . E + \frac { \partial P } { \partial t } E - M \cdot \frac { \partial B } { \partial t } + \nabla \cdot ( v ( P . E ) )$ ; confidence 0.154

5. a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154

6. a01220076.png ; $\alpha \in C ^ { \prime \prime }$ ; confidence 0.154

7. f11016010.png ; $c x + 1$ ; confidence 0.154

8. a01178026.png ; $50$ ; confidence 0.154

9. p130100173.png ; $f _ { j } : \Delta \rightarrow C ^ { * }$ ; confidence 0.154

10. a130180147.png ; $5$ ; confidence 0.154

11. a01153014.png ; $\alpha 1 , \ldots , \alpha _ { x }$ ; confidence 0.154

12. m12021037.png ; $\psi : K ^ { n } \rightarrow K ^ { n }$ ; confidence 0.154

13. c12019049.png ; $\phi * ( \operatorname { ind } ( D ) ) = c _ { q } ( \operatorname { Ch } ( D ) T ( M ) f ^ { * } ( \phi ) ) [ T M ]$ ; confidence 0.154

14. m13011062.png ; $v _ { i } = - \frac { D _ { x _ { i } } } { D t } = ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }$ ; confidence 0.154

15. l06004014.png ; $g _ { k + 1 } ( z ) = z g _ { k } ( z ) - \phi _ { k } f ( z ) , \quad k = 0,1 , \ldots ; \quad g _ { 0 } ( z ) = 1$ ; confidence 0.153

16. i13001071.png ; $b j = - 1$ ; confidence 0.153

17. s13011028.png ; $\mathfrak { S } _ { w } \in Z [ x _ { 1 } , x _ { 2 } , \ldots ]$ ; confidence 0.153

18. t12005077.png ; $\sum ^ { i _ { 1 } } , \dots , i _ { r }$ ; confidence 0.153

19. f13028036.png ; $\operatorname { sin } ( \hat { G } )$ ; confidence 0.153

20. v12002030.png ; $f \times : H _ { q } ( X , X _ { 0 } ) \rightarrow H _ { q } ( Y , Y _ { 0 } )$ ; confidence 0.153

21. d12014081.png ; $E _ { n } ( x , a ) = \sum _ { i = 0 } ^ { | n / 2 | } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i }$ ; confidence 0.153

22. m12012050.png ; $h - r y d$ ; confidence 0.152

23. l12017063.png ; $P = \langle \alpha _ { 1 } , \dots , a _ { g } | R _ { 1 } , \dots , R _ { N } \rangle$ ; confidence 0.152

24. z13001065.png ; $n ^ { k } a ^ { n }$ ; confidence 0.152

25. a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152

26. w12011034.png ; $S ( R ^ { 2 x } )$ ; confidence 0.152

27. a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152

28. m12021031.png ; $E ^ { x }$ ; confidence 0.152

29. c12008022.png ; $\operatorname { det } [ I _ { N } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.152

30. k1300709.png ; $48$ ; confidence 0.152

31. d13011015.png ; $\left\{ \begin{array} { l l } { \alpha _ { i } \alpha _ { j } + \alpha _ { j } \alpha _ { i } = 0 } & { \text { fori, } j \in \{ x , y , z \} , i \neq j } \\ { \alpha _ { i } \beta + \beta \alpha _ { i } = 0 } & { \text { for } i , j \in \{ x , y , z \} } \end{array} \right.$ ; confidence 0.152

32. a130180137.png ; $Id = \{ \langle \alpha , \ldots , \alpha \rangle : \alpha \in U \}$ ; confidence 0.152

33. d120020229.png ; $\overline { x } = \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \overline { x } ^ { ( k ) }$ ; confidence 0.152

34. c12030073.png ; $K _ { 0 } ( O _ { N } ) = Z _ { X } - 1$ ; confidence 0.151

35. b1203207.png ; $| x | | _ { p } = | | u | | _ { p }$ ; confidence 0.151

36. o1300807.png ; $x \in R _ { + } , f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \operatorname { as } x \rightarrow + \infty$ ; confidence 0.151

37. k12008048.png ; $K _ { p } ( f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 } \cdots D _ { x } - p _ { r - 1 } f }$ ; confidence 0.151

38. b110220170.png ; $( r _ { D } \oplus z _ { D } ) \otimes R : ( H _ { M } ^ { i + 1 } ( X , Q ( m + 1 ) ) z ^ { \otimes R } ) \oplus ( B ^ { m } ( X ) \otimes R ) \rightleftarrows H _ { D } ^ { i + 1 } ( X _ { / R } , R ( m + 1 ) )$ ; confidence 0.151

39. g12007027.png ; $Z _ { W }$ ; confidence 0.151

40. p07548032.png ; $5 y \{ 2$ ; confidence 0.151

41. b12021073.png ; $( B , \delta ) : 0 \rightarrow B _ { r } \stackrel { \delta _ { r } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } B _ { 1 } \stackrel { \delta _ { 0 } } { \rightarrow } L ( \lambda ) \rightarrow 0$ ; confidence 0.151

42. w120110148.png ; $a _ { 1 } , \dots , a _ { 2 } , x$ ; confidence 0.151

43. i13008027.png ; $L _ { 3 } ^ { 11 }$ ; confidence 0.151

44. b11022096.png ; $\operatorname { ch } _ { D } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { D } } ( X , A ( j ) )$ ; confidence 0.151

45. k05560069.png ; $\dot { \imath } \uparrow$ ; confidence 0.151

46. l12004074.png ; $u _ { + 1 / 2 } ^ { n + 1 / 2 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + u _ { i + 1 } ^ { n } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } )$ ; confidence 0.151

47. w120110138.png ; $\sum _ { 0 \leq k < N } 2 ^ { - k } \sum _ { | \alpha | + | \beta | = k } \frac { ( - 1 ) ^ { \beta | } } { \alpha ! \beta ! } D _ { \xi } ^ { \alpha } \partial _ { x } ^ { \beta } a D _ { \xi } ^ { \beta } \partial _ { x } ^ { \alpha } b$ ; confidence 0.150

48. w13008051.png ; $\vec { \theta } = \sum t _ { \gamma } \vec { V } _ { N }$ ; confidence 0.150

49. t12021056.png ; $\phi : E \rightarrow GF ( q ) ^ { x }$ ; confidence 0.150

50. b13019063.png ; $\overline { a _ { 1 } } / q _ { 1 }$ ; confidence 0.150

51. f13024048.png ; $n _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )$ ; confidence 0.150

52. b12032087.png ; $( a ; ) _ { j = 1 } ^ { \infty } 1$ ; confidence 0.150

53. m12027016.png ; $\frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { \frac { N } { N } } } \int _ { \partial D } \varphi \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d f } { \{ w , f \} ^ { N } } =$ ; confidence 0.149

54. f120230115.png ; $\omega \wedge L _ { K } = L ( \omega \wedge K ) + ( - 1 ) ^ { q + k - 1 } i ( d \omega \wedge K ) , [ \omega \wedge L _ { 1 } , L _ { 2 } ] ^ { \wedge } = \omega \wedge [ L _ { 1 } , L _ { 2 } ] +$ ; confidence 0.149

55. d120230170.png ; $g \Theta _ { i } = \left( \begin{array} { l l l } { \delta _ { i } } & { 0 } & { \ldots } & { 0 } \end{array} \right)$ ; confidence 0.149

56. c120170168.png ; $\langle M _ { p } ( n ) \hat { f } , g \rangle = \tau ( p f g )$ ; confidence 0.149

57. c13009018.png ; $\vec { c } ; = 1$ ; confidence 0.149

58. g130060128.png ; $\sigma ( \Omega ( A ) ) = \left\{ \begin{array} { c c } { \text { boundary of } K _ { 1,2 } ( A ) } & { n = 2 } \\ { \cup _ { i , j = 1 , i \neq j } ^ { n } K _ { i , j } ( A ) } & { n \geq 3 } \end{array} \right.$ ; confidence 0.149

59. s120040127.png ; $\pi = w _ { 1 } \dots w _ { x }$ ; confidence 0.149

60. t13014050.png ; $\mathscr { Q } ( \underline { \operatorname { dim } } X ) = \chi _ { Q } ( [ X ] )$ ; confidence 0.149

61. b13006018.png ; $A , \| A \| _ { \infty } = \operatorname { max } _ { j } \sum _ { i } | \alpha _ { i } j |$ ; confidence 0.149

62. z13004018.png ; $\operatorname { cr } ( K _ { a } , m )$ ; confidence 0.149

63. a11032026.png ; $R _ { + 1 } ^ { ( i ) } ( z ) = \frac { l R _ { j } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.149

64. c12021014.png ; $\{ P _ { N } ^ { / / } \}$ ; confidence 0.149

65. l12016034.png ; $111$ ; confidence 0.149

66. c12007018.png ; $\operatorname { pr } ( \alpha _ { 1 } , \dots , \alpha _ { R } )$ ; confidence 0.149

67. g130040189.png ; $\alpha \in R ^ { \gamma }$ ; confidence 0.149

68. f120230135.png ; $\frac { ( - 1 ) ^ { ( k - 1 ) l } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma K ( L ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( 1 + 2 ) , \ldots } )$ ; confidence 0.149

69. n067520159.png ; $e _ { i } ^ { N _ { i j } }$ ; confidence 0.149

70. n12011044.png ; $\xi _ { g } * ( \ldots , \ldots , )$ ; confidence 0.149

71. t12013021.png ; $= ( \frac { e ^ { \sum _ { 1 } y _ { i } z ^ { - i } } \tau _ { n + 1 } ( x , y - [ z ] ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , ( L _ { 1 } , L _ { 2 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ) = ( z , z ^ { - 1 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) )$ ; confidence 0.149

72. a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148

73. q12001090.png ; $\sim _ { 0 }$ ; confidence 0.148

74. s09067089.png ; $S ( \theta ) _ { 1 , \cdots , j _ { q } } ^ { i _ { 1 } \ldots i _ { p } }$ ; confidence 0.148

75. c12008080.png ; $E _ { 11 }$ ; confidence 0.148

76. r08232011.png ; $E _ { 2 } ( | x - y | ) = \operatorname { ln } \frac { 1 } { | x - y | } , \quad E _ { n } ( | x - y | ) = \frac { 1 } { | x - y | ^ { n - 2 } }$ ; confidence 0.148

77. e12015021.png ; $\frac { D \dot { x } ^ { 2 } } { d t } = \varepsilon ^ { i } = \frac { 1 } { 2 } g ^ { i } \cdot r \dot { x } \square ^ { r } - g ^ { i }$ ; confidence 0.148

78. s12017064.png ; $x \sim i y \Leftrightarrow x = y$ ; confidence 0.148

79. a13018061.png ; $Alg _ { 1 - } ( L _ { n } )$ ; confidence 0.148

80. m12017011.png ; $\operatorname { det } \left( \begin{array} { c c c } { 1 } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right)$ ; confidence 0.148

81. b1204202.png ; $\otimes \rightarrow \otimes ^ { 0 p }$ ; confidence 0.147

82. o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147

83. d12015042.png ; $Z [ \zeta _ { e } ]$ ; confidence 0.147

84. l12012027.png ; $\alpha \in \hat { K } _ { p }$ ; confidence 0.147

85. c1202105.png ; $P _ { N } ^ { \prime } ( A _ { N } ) \rightarrow 0$ ; confidence 0.146

86. h12007020.png ; $a \circ k b$ ; confidence 0.146

87. f13029014.png ; $T _ { \text { prod } } ( \alpha , b ) = a . b$ ; confidence 0.146

88. c120180170.png ; $8 ^ { r + 2 } E$ ; confidence 0.146

89. r1300109.png ; $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ ; confidence 0.145

90. l120120151.png ; $M = ( K _ { s } ( \overline { \sigma } ) \cap K _ { tot } S ) _ { 1 }$ ; confidence 0.145

91. e03693078.png ; $c X P$ ; confidence 0.145

92. t120140164.png ; $\Lambda = \left( \begin{array} { c c c c } { z ^ { k _ { 1 } } } & { 0 } & { \ldots } & { 0 } \\ { 0 } & { z ^ { k } 2 } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 0 } & { 0 } & { \ldots } & { z ^ { k _ { R } } } \end{array} \right) , k _ { 1 } , \ldots , k _ { N } \in Z$ ; confidence 0.145

93. l12012062.png ; $O _ { p } = \{ x \in L : | x | _ { p } \leq 1 \}$ ; confidence 0.145

94. m130230142.png ; $K _ { X _ { n } } + B _ { n }$ ; confidence 0.145

95. a120260124.png ; $A = C \{ Z _ { 1 } , \dots , Z _ { Y } \}$ ; confidence 0.145

96. a01405027.png ; $\hat { p } _ { 2 }$ ; confidence 0.145

97. s09067094.png ; $S _ { j _ { 1 } } ^ { i _ { 1 } \cdots j _ { p } }$ ; confidence 0.145

98. d12019012.png ; $\hat { r }$ ; confidence 0.144

99. a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144

100. a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144

101. g12005032.png ; $\mu _ { 0 } ( \dot { k } _ { C } , R _ { C } ) = i \mu _ { C }$ ; confidence 0.144

102. h1301308.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { N } x _ { N }$ ; confidence 0.144

103. a01020084.png ; $r$ ; confidence 0.144

104. b13004012.png ; $b \subset I _ { 1 }$ ; confidence 0.144

105. u13002044.png ; $\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } | f ( x ) \| \hat { f } ( y ) | e ^ { 2 \pi | y | } < \infty$ ; confidence 0.144

106. s13048018.png ; $C _ { k } = \Lambda ^ { k } T ^ { * } M \otimes R _ { m } / \delta ( \Lambda ^ { k - 1 } T ^ { * } M \otimes g _ { m + 1 } )$ ; confidence 0.144

107. l12004038.png ; $u _ { i } ^ { n + 1 } = b _ { - 1 } u _ { t - 1 } ^ { n } + b _ { 0 } u _ { i } ^ { n } + b _ { 1 } u _ { + 1 } ^ { n }$ ; confidence 0.144

108. m1200906.png ; $J = ( j _ { 1 } , \ldots , j _ { n } ) \in N ^ { X }$ ; confidence 0.144

109. n12010048.png ; $\sum _ { i = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h \sum _ { i = 0 } ^ { k } \beta _ { i } f ( x _ { m } + i , y _ { m + i } )$ ; confidence 0.143

110. b13026025.png ; $f : \overline { \Omega } \subset R ^ { N } \rightarrow R ^ { X }$ ; confidence 0.143

111. l11002058.png ; $e \preceq \mathfrak { c } _ { i } \preceq \mathfrak { b } _ { i }$ ; confidence 0.143

112. w12005039.png ; $D _ { n } ^ { * } = R [ x _ { 1 } , \ldots , x _ { n } ] / \langle x _ { 1 } , \ldots , x _ { n } \rangle ^ { r + 1 }$ ; confidence 0.143

113. s12004056.png ; $s ( l ) = h _ { l } \text { and } s _ { \langle 1 ^ { l } } \rangle = e l$ ; confidence 0.143

114. t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143

115. s13053075.png ; $1 \frac { G } { P }$ ; confidence 0.143

116. x12003019.png ; $F _ { X } ( q ) = \frac { 1 } { 2 \pi } \int _ { c ^ { 1 } } X f ( \theta , x , \theta + q ) d \theta$ ; confidence 0.143

117. b130290204.png ; $[ H _ { m } ^ { i } ( R ) ] _ { n } = ( 0 )$ ; confidence 0.143

118. h12005013.png ; $4,74$ ; confidence 0.143

119. f120230124.png ; $= \frac { 1 } { k ! ! ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( K _ { \sigma 1 } , \ldots , X _ { \sigma k } ) ) ( \omega ( X _ { \sigma ( k + 1 ) } , \ldots , X _ { \sigma ( k + 1 ) } ) ) +$ ; confidence 0.142

120. b12027045.png ; $\operatorname { lim } _ { A } u _ { n } = \frac { 1 } { E X _ { 1 } }$ ; confidence 0.142

121. l11002088.png ; $r 0$ ; confidence 0.142

122. d12011033.png ; $\operatorname { lim } _ { i \rightarrow \infty } \sum _ { j = 1 } ^ { \infty } x _ { i j } x _ { j } = 0$ ; confidence 0.142

123. c13010029.png ; $\int a \cdot f d m = a \cdot ( C ) \int f d m$ ; confidence 0.142

124. a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142

125. q12008062.png ; $\sum _ { p \in E , S } \rho _ { p } E [ W _ { p } ] + \sum _ { p \in L } \rho _ { p } ( 1 - \frac { \lambda _ { p } R } { 1 - \rho } ) E [ W _ { p } ] =$ ; confidence 0.142

126. f1301706.png ; $\| u \| A _ { 2 } ( G ) = \operatorname { inf } \{ N _ { 2 } ( k ) N _ { 2 } ( l ) : k , l \in L _ { C } ^ { 2 } ( G ) , u = \overline { k } ^ { * } t \}$ ; confidence 0.142

127. h120020119.png ; $\{ \rho _ { N } ( \phi ) \} _ { R } \geq 0 \in I ^ { p }$ ; confidence 0.142

128. c13009020.png ; $a _ { n } = \frac { 2 } { N } \frac { 1 } { \vec { c } _ { n } } \sum _ { j = 0 } ^ { N } u ( x _ { j } ) \frac { T _ { n } ( x _ { j } ) } { c _ { j } }$ ; confidence 0.142

129. h04691037.png ; $\{ f _ { N } \} _ { N }$ ; confidence 0.142

130. e12015031.png ; $\frac { d ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } + g _ { i } ^ { i } \frac { d \xi ^ { r } } { d t } + g _ { r } ^ { i } \xi ^ { r } = 0$ ; confidence 0.142

131. n12011033.png ; $y \in K _ { j } ^ { c }$ ; confidence 0.141

132. a013010127.png ; $n > 0$ ; confidence 0.141

133. a130240331.png ; $p _ { 1 }$ ; confidence 0.141

134. b11022064.png ; $H _ { M } ^ { \bullet } ( M _ { \Sigma } , Q ( * ) )$ ; confidence 0.141

135. z1200107.png ; $[ e _ { i } , e _ { j } ] = ( \left( \begin{array} { c } { i + j + 1 } \\ { j } \end{array} \right) - \left( \begin{array} { c } { i + j + 1 } \\ { i } \end{array} \right) ) e _ { i + j }$ ; confidence 0.141

136. c12007094.png ; $c ^ { * } \otimes k C$ ; confidence 0.141

137. f13002018.png ; $.0$ ; confidence 0.141

138. o12005050.png ; $\psi ( v ) = \operatorname { sup } _ { x > 0 } \{ u v - \varphi ( u ) \}$ ; confidence 0.141

139. b13029058.png ; $( \alpha _ { 1 } , \dots , a _ { i - 1 } ) : \alpha _ { i } = ( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) : m$ ; confidence 0.141

140. q12005099.png ; $( . . ) _ { D } 2 f ( x ^ { * } )$ ; confidence 0.140

141. a13018018.png ; $L ( \tau ) = \langle Fm _ { \tau } , Mod _ { \tau } , F _ { \tau } , mng _ { \tau } , t _ { \tau } \rangle$ ; confidence 0.140

142. a13027076.png ; $x \in X _ { y }$ ; confidence 0.140

143. b13012036.png ; $( f ^ { * } d \mu ) _ { N } ( x ) = \sum _ { k } \lambda ( \frac { k } { N } ) \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.140

144. c12004063.png ; $- \frac { 1 } { \langle \rho ^ { \prime } , \zeta \} ^ { N } } \sum _ { | \alpha | = 0 } ^ { m } \frac { ( | \alpha | + n - 1 ) ! } { \alpha _ { 1 } ! \ldots \alpha _ { N } ! } ( \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } , \zeta \rangle } ) ^ { \alpha } z ^ { \alpha } \sigma$ ; confidence 0.140

145. c12026062.png ; $\| U ^ { n } \| _ { \infty } \leq C \| U ^ { 0 } \| _ { \infty } , 1 \leq n$ ; confidence 0.140

146. l11001022.png ; $i$ ; confidence 0.140

147. a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140

148. a01084019.png ; $e _ { 1 } , \ldots , e _ { x }$ ; confidence 0.140

149. a120070107.png ; $\{ B _ { j } ( t , x , D _ { x } ) \} _ { j = 1 } ^ { \infty }$ ; confidence 0.140

150. o12002010.png ; $\times \int _ { - \infty } ^ { \infty } \tau | \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) | ^ { 2 } \times \times \square _ { 2 } F _ { 1 } ( \alpha + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } ) f ( \tau ) d \tau$ ; confidence 0.140

151. i05303010.png ; $+ \sigma ^ { 2 } ( t ) f _ { \chi x } ^ { \prime \prime } ( t , X _ { t } ) / 2 ] d t + \sigma ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) d W _ { t }$ ; confidence 0.139

152. a12026041.png ; $f ( \not g ) \cong 0$ ; confidence 0.139

153. b110220243.png ; $\phi _ { i } : CH ^ { i } ( X ) ^ { 0 } \rightarrow \operatorname { Ext } _ { H } ^ { 1 } ( Z ( 0 ) , h ^ { 2 i - 1 } ( X ) ( i ) )$ ; confidence 0.139

154. f120110230.png ; $\vec { R } ^ { x } +$ ; confidence 0.139

155. i13008025.png ; $L _ { 1 } ^ { 11 }$ ; confidence 0.139

156. a13018055.png ; $Alg _ { + } ( L ) = Alg _ { \operatorname { mod } e l s } ( L )$ ; confidence 0.139

157. l13006049.png ; $+ \frac { \{ U _ { i } = ( u _ { t } + 1 , \ldots , u _ { t } + k ) : s _ { j } < u + j \leq t _ { j } , 1 \leq j \leq k \} } { \# \{ U _ { i } = ( u _ { t } + 1 , \ldots , u + k ) \} }$ ; confidence 0.139

158. s13053016.png ; $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ ; confidence 0.138

159. c13025052.png ; $\hat { A } ( t | \beta ) = \int _ { 0 , t } \frac { 1 } { \sum _ { k = 1 } ^ { n } l _ { k } ( s - ) e ^ { Z _ { k } ^ { T } ( s - ) \beta } } d \overline { N } ( s )$ ; confidence 0.138

160. b110220206.png ; $L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m } \equiv \operatorname { det } ( \Pi ) \cdot \operatorname { det } \langle . . \rangle$ ; confidence 0.138

161. e12010052.png ; $c ^ { EM }$ ; confidence 0.137

162. m120100140.png ; $\operatorname { Aut } ( \hat { G } , \tau )$ ; confidence 0.137

163. r1300902.png ; $f ( x _ { 1 } , \dots , x _ { n } ) = g ( a _ { 1 } x _ { 1 } + \ldots + a _ { n } x _ { n } ) = g ( a x )$ ; confidence 0.137

164. a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137

165. t130050133.png ; $\sigma _ { H } : = \sigma _ { I } \cup \sigma _ { r }$ ; confidence 0.137

166. l05702043.png ; $\overline { k } _ { S }$ ; confidence 0.137

167. c1302107.png ; $a _ { N } | a _ { x } + 1 = a _ { x }$ ; confidence 0.137

168. f1201407.png ; $72 +$ ; confidence 0.137

169. v13011085.png ; $Cd$ ; confidence 0.137

170. a13008049.png ; $\operatorname { ln } 1 d s$ ; confidence 0.137

171. w130080183.png ; $( \kappa \partial _ { \vec { \alpha } } + M _ { \dot { \alpha } } ) \psi = 0$ ; confidence 0.136

172. r13007059.png ; $| u ( y ) | \leq \sum _ { j = 1 } ^ { \infty } | u _ { j } , \varphi _ { j } ( y ) | \leq c \Lambda \| _ { V } \| = c \Lambda \| u \| _ { + }$ ; confidence 0.136

173. s12020073.png ; $\sigma e _ { t } = e _ { \sigma } t$ ; confidence 0.136

174. a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136

175. a13001017.png ; $3 + 5$ ; confidence 0.136

176. l12009013.png ; $Q _ { A }$ ; confidence 0.136

177. f13009036.png ; $\left. \begin{array}{l}{ U _ { 0 } ^ { ( k ) } ( x ) = 0 }\\{ U _ { 1 } ^ { ( k ) } ( x ) = 1 }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { n } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) , \quad n = 2 , \ldots , k }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { k } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) }\\{ n = k + 1 , k + 2 , \ldots }\end{array} \right.$ ; confidence 0.136

178. e120230157.png ; $L _ { Z ^ { k } } ( L , \Delta ) = Z ^ { k } _ { \perp } d L \Delta + d ( Z ^ { k } , L , \Delta )$ ; confidence 0.136

179. f130290161.png ; $( X , T ) \in | L \cap F T O$ ; confidence 0.136

180. a130040595.png ; $\mathfrak { D } \mathfrak { N } \in$ ; confidence 0.136

181. s13011029.png ; $w \in S _ { \infty } = \cup S _ { X }$ ; confidence 0.136

182. c120180479.png ; $s ^ { 2 } \mathfrak { g } \in S ^ { 2 } \not$ ; confidence 0.135

183. b12003035.png ; $e ^ { 2 \pi i m n a k b } e ^ { 2 \pi i m b x } g ( \gamma - m b )$ ; confidence 0.135

184. a012200105.png ; $C ^ { \prime \prime }$ ; confidence 0.135

185. e12012030.png ; $L ( \theta | Y _ { 0 b s } ) = \int _ { M ( Y _ { \text { aug } } ) = Y _ { \text { obs } } } L ( \theta | Y _ { \text { aug } } ) d Y _ { \text { aug } }$ ; confidence 0.135

186. d12002088.png ; $14$ ; confidence 0.135

187. w120030129.png ; $\Sigma ( \Gamma ) : = \{ f \in [ 0,1 ] ^ { \Gamma } : \begin{array} { c c } { f ( \gamma ) \neq 0 } \\ { \text { for at most countabl } } \end{array}$ ; confidence 0.135

188. g130060121.png ; $\sigma ( B ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.135

189. y12001087.png ; $\rho ( v ) = v ^ { \{ 1 \} } \otimes _ { V } v ^ { ( 2 ) } \in V \otimes _ { k } A$ ; confidence 0.135

190. k13002081.png ; $- P [ ( X - \hat { X } ) ( Y - \hat { Y } ) < 0 ] =$ ; confidence 0.134

191. j1200101.png ; $F = ( F _ { 1 } , \dots , F _ { N } ) : C ^ { * } \rightarrow C ^ { * }$ ; confidence 0.134

192. b1301205.png ; $A ^ { * } = \{ f : \| f \| _ { A } ^ { * } = \sum _ { k = 0 } ^ { \infty } \operatorname { sup } _ { k \leq p | < \infty } | \hat { f } ( m ) | < \infty \}$ ; confidence 0.134

193. y120010111.png ; $A I$ ; confidence 0.134

194. a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134

195. w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134

196. f13010025.png ; $\{ \sum _ { n = 1 } ^ { \infty } N _ { p } ( k _ { n } ) N _ { p } , ( l _ { n } ) : \quad \text { with } u = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * r _ { n }$ ; confidence 0.134

197. j12001040.png ; $1 \subset C ^ { 2 }$ ; confidence 0.134

198. d120020121.png ; $\vec { \mathfrak { c } } _ { t } ^ { 2 } < 0$ ; confidence 0.134

199. w130080123.png ; $\hat { \alpha } _ { i } = \alpha _ { i } ( u _ { k } , T _ { 1 } , T _ { n > 1 } = 0 ) = T _ { 1 } a _ { i } ( u _ { k } , \Lambda = 1 ) = a _ { i } ( \hat { u } _ { k } , \Lambda = T _ { 1 } )$ ; confidence 0.134

200. f12010094.png ; $f ( Z ) = \sum _ { 0 < T = \square ^ { t } T } c ( T ) e ^ { 2 \pi i \operatorname { Tr } ( T T ) }$ ; confidence 0.134

201. s13011048.png ; $w \in S _ { n }$ ; confidence 0.134

202. b12036036.png ; $w ( a , b , c , d ) = w ( \square _ { \alpha } ^ { d } \square \square _ { b } ^ { c } ) = \operatorname { exp } ( - \frac { \epsilon ( a , b , c , d ) } { k _ { B } T } )$ ; confidence 0.134

203. b13022096.png ; $\| u - q _ { l } \| _ { p , \Omega } \leq C \rho ^ { 2 } | u | _ { p , 2 , \Omega }$ ; confidence 0.133

204. n1201207.png ; $t , - , x _ { 2 }$ ; confidence 0.133

205. c1200706.png ; $C ^ { 0 } ( C , M ) = \prod _ { C \in Q C } M ( C )$ ; confidence 0.133

206. c12008073.png ; $\left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i } ^ { k } + 1 , j } \\ { x _ { i , j + 1 } ^ { v } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { k } } \\ { x _ { i j } ^ { y } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { j }$ ; confidence 0.133

207. w12011046.png ; $\Xi M = \kappa x + \hat { \xi } \cdot D x$ ; confidence 0.133

208. b12051091.png ; $\alpha = s _ { x } ^ { T } - 1 d / y _ { x } ^ { T } - 1$ ; confidence 0.133

209. q12007097.png ; $f ) = \sum R ( h \otimes f _ { ( 1 ) } ) R ( g \otimes f ( 2 ) ) , R ( h \otimes g f ) = \sum R$ ; confidence 0.133

210. l120170115.png ; $K ^ { 2 } \stackrel { 3 } { N } L ^ { 2 }$ ; confidence 0.132

211. w120090101.png ; $e \lambda$ ; confidence 0.132

212. l0591203.png ; $GL _ { n } ( K )$ ; confidence 0.132

213. l12010062.png ; $L _ { \gamma , n } > L _ { \gamma , \kappa } ^ { E }$ ; confidence 0.132

214. w1202005.png ; $( \alpha _ { 1 } , \dots , \alpha _ { N } ) \in C ^ { \gamma }$ ; confidence 0.132

215. b12027078.png ; $\sum _ { i } \overline { m } _ { n } ( h ) h$ ; confidence 0.132

216. a011490129.png ; $X _ { 1 } , \ldots , X _ { m }$ ; confidence 0.132

217. b110220166.png ; $= \operatorname { dim } H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.131

218. a0109306.png ; $v$ ; confidence 0.131

219. a12017026.png ; $p ^ { * } ( \alpha , t ) = \omega e ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) = e ^ { \lambda ^ { * } t _ { w } ^ { * } ( \alpha ) }$ ; confidence 0.131

220. w12005014.png ; $A = A _ { 1 } \oplus \ldots \oplus A _ { i k }$ ; confidence 0.131

221. c120080103.png ; $E x _ { i + 1 , j + 1 } = A _ { 0 x _ { j } } + A _ { 1 } x _ { i + 1 , j } + A _ { 2 } x _ { i , j + 1 } + B u _ { i j }$ ; confidence 0.131

222. d12016019.png ; $h _ { \gamma } = M _ { s } f _ { 2 }$ ; confidence 0.131

223. a12031018.png ; $22 ^ { x }$ ; confidence 0.131

224. l13010063.png ; $a _ { e } ( x , \alpha , p ) : = \frac { a ( x , \alpha , p ) + a ( x _ { s } - \alpha , - p ) } { 2 }$ ; confidence 0.131

225. w120110155.png ; $= 2 ^ { 2 n k } \int _ { \Phi ^ { 2 k } } ^ { \alpha _ { 1 } ( Y _ { 1 } ) \ldots \alpha _ { 2 k } ( Y _ { 2 k } ) \cdot \alpha _ { 2 k + 1 } } ( X + \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } ( Y _ { j } - Y _ { l } ) )$ ; confidence 0.131

226. b13002033.png ; $J J W$ ; confidence 0.131

227. b120040199.png ; $I _ { Y }$ ; confidence 0.131

228. s13049056.png ; $\{ \vec { p } : p \in N _ { l } \}$ ; confidence 0.131

229. w130080195.png ; $\kappa \partial _ { S } H _ { \gamma } - \kappa \partial _ { \gamma } H _ { S } + \{ H _ { S } , H _ { \gamma } \} _ { 0 } = 0$ ; confidence 0.131

230. f1201606.png ; $ker T$ ; confidence 0.131

231. c12018060.png ; $+ F ( d x \bigotimes d y + d y \otimes d x ) + G d y Q d y$ ; confidence 0.130

232. b11025036.png ; $g _ { y }$ ; confidence 0.130

233. c120080111.png ; $= \sum _ { l = 0 } ^ { r _ { 1 } } \sum _ { l = 0 } ^ { r _ { 2 } } \alpha _ { l j } z _ { 12 } ^ { i j }$ ; confidence 0.130

234. b1200302.png ; $\{ e ^ { 2 \pi i m b x } g ( x - n a ) : n , m \in Z \} = \{ g _ { x } , m : n , m \in Z \}$ ; confidence 0.130

235. a11032032.png ; $u _ { M } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h \lambda ) u _ { m }$ ; confidence 0.130

236. q12007096.png ; $\sum g ( 1 ) h _ { ( 1 ) } R ( h _ { ( 2 ) } \otimes g _ { ( 2 ) } ) = \sum R ( h _ { ( 1 ) } \otimes g _ { ( 1 ) } ) h _ { ( 2 ) } g ( 2 )$ ; confidence 0.130

237. a13007031.png ; $2.0$ ; confidence 0.129

238. c13021017.png ; $78$ ; confidence 0.129

239. b13027039.png ; $A \hookrightarrow Q ( H )$ ; confidence 0.129

240. l12008037.png ; $[ - 1,1 )$ ; confidence 0.129

241. h13007049.png ; $X _ { N } ^ { k }$ ; confidence 0.129

242. k1201008.png ; $\sum _ { m = 0 } ^ { \infty } \frac { 1 } { ( 2 \pi i ) ^ { m / 3 } } \int _ { T } \sum _ { P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \} } ( - 1 ) ^ { \perp } D _ { P } \bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.129

243. c120180406.png ; $\tilde { \nabla } ^ { \mathscr { Y } } W ( \mathfrak { g } )$ ; confidence 0.129

244. d1200201.png ; $( P ) v ^ { * } = \left\{ \begin{array} { c c } { \operatorname { min } } & { c ^ { T } x } \\ { \text { s.t. } } & { A _ { 1 } x \leq b _ { 1 } } \\ { } & { A _ { 2 } x \leq b _ { 2 } } \\ { x \geq 0 } \end{array} \right.$ ; confidence 0.129

245. a12016029.png ; $a =$ ; confidence 0.129

246. d12028067.png ; $w _ { j } = \frac { \Phi ^ { \prime z _ { j } } } { \langle \operatorname { grad } _ { z } \Phi , z \} } , j = 1 , \ldots , n$ ; confidence 0.129

247. b01703032.png ; $90$ ; confidence 0.129

248. i120050110.png ; $\epsilon _ { \mathscr { Y } } \rightarrow 0$ ; confidence 0.129

249. a11001065.png ; $0$ ; confidence 0.129

250. t13021035.png ; $L _ { m , n } = ( \phi _ { m } , L _ { \phi , n } )$ ; confidence 0.128

251. w13010019.png ; $\operatorname { Var } | W ^ { \alpha } ( t ) | \asymp \left\{ \begin{array} { l l } { t , } & { d = 1 } \\ { \frac { t ^ { 2 } } { \operatorname { log } ^ { 4 } t } , } & { d = 2 } \\ { \operatorname { tlog } t , } & { d = 3 } \\ { t , } & { d \geq 4 } \end{array} \right.$ ; confidence 0.128

252. b13030081.png ; $A = \{ a _ { 1 } ^ { \pm 1 } , \ldots , a _ { \infty } ^ { \pm 1 } \}$ ; confidence 0.128

253. a12023089.png ; $| y | \rightarrow \infty ^ { k _ { q } | d _ { q } ( \Omega ) } \sqrt { | q | } \leq 1$ ; confidence 0.127

254. d13005023.png ; $2 ^ { x ^ { \prime } ( x ) - 1 } ) + m - 1$ ; confidence 0.127

255. a13027048.png ; $\{ x _ { x } , : x _ { x } , \in X _ { x } , \}$ ; confidence 0.127

256. e12007084.png ; $p _ { M } = p | _ { - k } ^ { V } M - p , M \in \Gamma$ ; confidence 0.127

257. t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127

258. t1202004.png ; $M _ { 0 } ( \dot { k } ) = \sum _ { j = 1 } ^ { x } | b _ { j } \| z _ { j } | ^ { k }$ ; confidence 0.127

259. b11022048.png ; $23 ^ { n + 5 }$ ; confidence 0.127

260. n06663093.png ; $f \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } , \ldots , M _ { n } ; R ^ { n } )$ ; confidence 0.127

261. w13009041.png ; $8 ^ { - n }$ ; confidence 0.127

262. d12003024.png ; $0 \lfloor J b _ { 1 }$ ; confidence 0.127

263. i120080100.png ; $S + 1 \rightarrow \langle m \rangle$ ; confidence 0.127

264. s1202709.png ; $x _ { y , y }$ ; confidence 0.126

265. l06005017.png ; $\square ^ { 1 } R _ { g } + 1$ ; confidence 0.126

266. b12040068.png ; $i h _ { R }$ ; confidence 0.126

267. a01130086.png ; $I _ { v }$ ; confidence 0.126

268. g13004028.png ; $\gamma _ { t } ^ { 1 }$ ; confidence 0.126

269. w13009044.png ; $H \otimes x$ ; confidence 0.126

270. b12003032.png ; $12.52$ ; confidence 0.126

271. m065140140.png ; $\theta _ { i }$ ; confidence 0.126

272. d13018087.png ; $J ^ { O } \underline { E }$ ; confidence 0.126

273. q12007075.png ; $\phi h = \sum h ( 2 ) \phi ( 2 ) \langle S h _ { ( 1 ) } , \phi _ { ( 1 ) } \rangle \langle h _ { ( 3 ) } , \phi _ { ( 3 ) } \rangle$ ; confidence 0.126

274. m12013065.png ; $\delta _ { ( 2 ) } < K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.126

275. e12012026.png ; $Y _ { \operatorname { allg } }$ ; confidence 0.125

276. f1201108.png ; $\| \varphi \| = \operatorname { sup } _ { | \operatorname { maz } } | \varphi ( z ) | e ^ { \delta | \operatorname { Re } z | }$ ; confidence 0.125

277. h13009026.png ; $\langle G \cup \{ t \} : ( \operatorname { ker } ( \tau _ { G } ) ) \cup \{ t ^ { - 1 } \alpha ^ { - 1 } t \mu ( \alpha ) : \forall \alpha \in A \} \}$ ; confidence 0.125

278. i13002031.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \geq S _ { 1 } - S _ { 2 } + \ldots + S _ { m - 1 } - S _ { m }$ ; confidence 0.125

279. n12011048.png ; $\exists x = ( x _ { 1 } , \dots , x _ { N } ) \in R ^ { x }$ ; confidence 0.125

280. f13028023.png ; $\mu _ { A x } ( z ) = \operatorname { sup } _ { z = A x } \mu _ { A } ( A )$ ; confidence 0.125

281. d13005021.png ; $A ( 2 , m )$ ; confidence 0.125

282. s09067040.png ; $\dot { y } _ { 0 } ^ { k } ( \phi ) \dot { y } ^ { k } ( u ) = j _ { x } ^ { k } ( \phi \circ u ) , \quad j _ { 0 } ^ { k } ( \phi ) \in GL ^ { k } ( n ) , \quad j _ { X } ^ { k } ( u ) \in M _ { k }$ ; confidence 0.124

283. b12042095.png ; $v e ^ { i }$ ; confidence 0.124

284. t12013031.png ; $\times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - w - 1 } d z$ ; confidence 0.124

285. b110220194.png ; $CH ^ { p } ( X ) ^ { 0 } = \operatorname { Ker } ( CH ^ { p } ( X ) \rightarrow H ^ { 2 p } B ( X _ { C } , Q ( p ) ) )$ ; confidence 0.124

286. f1101507.png ; $\overline { a }$ ; confidence 0.124

287. b0150108.png ; $B _ { y }$ ; confidence 0.124

288. g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124

289. d12012042.png ; $\alpha = ( \alpha _ { 1 } , \dots , a _ { n } )$ ; confidence 0.124

290. s12024018.png ; $H * ( X , x _ { 0 } ; G ) \approx \prod _ { 1 } ^ { \infty } H * ( X _ { i } , x _ { i 0 } ; G )$ ; confidence 0.124

291. s13066011.png ; $\phi _ { N } ^ { * } ( z ) = z ^ { \sqrt { \gamma } } \overline { \phi _ { N } ( 1 / z ) }$ ; confidence 0.124

292. n06663067.png ; $\| \Delta _ { h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k | k | } ) } \leq M | h | ^ { r - s }$ ; confidence 0.123

293. b12042025.png ; $r V : V \rightarrow V \otimes \underline { 1 }$ ; confidence 0.123

294. n06752022.png ; $A \in M _ { \operatorname { max } _ { n } } ( K )$ ; confidence 0.123

295. f11016081.png ; $( \mathfrak { B } \mathfrak { b } ) \sim _ { l } ( \mathfrak { A } \alpha )$ ; confidence 0.123

296. w13006031.png ; $\overline { V g , x }$ ; confidence 0.123

297. t130050104.png ; $\hat { Q }$ ; confidence 0.123

298. l120120142.png ; $\overline { \sigma } = ( \sigma _ { 1 } , \ldots , \sigma _ { e } ) \in G ( K ) ^ { e }$ ; confidence 0.123

299. d12023082.png ; $R ^ { - H }$ ; confidence 0.123

300. t120070126.png ; $L = \oplus _ { R \in Z } L _ { R }$ ; confidence 0.122

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/74. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/74&oldid=44562