Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/68"
(AUTOMATIC EDIT of page 68 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 68 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022095.png ; $H _ { D } ^ { l } ( X , A ( j ) )$ ; confidence 0.312 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/b/b017/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b0170103.png ; $A _ { i k }$ ; confidence 0.312 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021015.png ; $\alpha 3 = 4 , \alpha _ { i } + 3 = \alpha _ { i }$ ; confidence 0.312 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066064.png ; $L _ { 2 } ( R ^ { x } )$ ; confidence 0.312 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180179.png ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { Y + 4 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.312 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150134.png ; $E _ { P _ { R } ^ { m } } ( d ) = E _ { P _ { R } ^ { m } } ( d ^ { * } )$ ; confidence 0.312 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009095.png ; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ; confidence 0.312 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016053.png ; $p _ { k }$ ; confidence 0.312 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005084.png ; $a \equiv ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.312 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012076.png ; $I q , q I \neq 0$ ; confidence 0.312 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023078.png ; $P$ ; confidence 0.312 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620157.png ; $y \sim a \operatorname { cos } \int _ { c } ^ { x } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t + b \operatorname { sin } \int ^ { x _ { c } } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t$ ; confidence 0.312 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520477.png ; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } )$ ; confidence 0.311 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022072.png ; $P _ { K } = P _ { W - 1 }$ ; confidence 0.311 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006077.png ; $R _ { j } \rightarrow IR _ { j }$ ; confidence 0.311 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007012.png ; $m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d ^ { \prime } } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) )$ ; confidence 0.311 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010050.png ; $| e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.311 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002074.png ; $1 , \dots , \alpha _ { q } \in F ( S ^ { d } )$ ; confidence 0.311 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062028.png ; $f \equiv$ ; confidence 0.311 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011032.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i _ { i } } n _ { j } = 0 \text { for all } j \in N$ ; confidence 0.311 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003024.png ; $H _ { j }$ ; confidence 0.311 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010020.png ; $| w ^ { n } ( t ) |$ ; confidence 0.311 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302103.png ; $\alpha \in R ^ { m }$ ; confidence 0.311 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028060.png ; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100132.png ; $K ( \vec { G } )$ ; confidence 0.310 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027074.png ; $\rho _ { i j }$ ; confidence 0.310 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120140.png ; $\sum _ { N } \hat { T } _ { N }$ ; confidence 0.310 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006028.png ; $Bel _ { E _ { 1 } , E _ { 2 } } = Bel _ { E _ { 1 } } \oplus Bel _ { E _ { 2 } }$ ; confidence 0.310 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080101.png ; $\partial d S / \partial T _ { N } = d \omega _ { N }$ ; confidence 0.310 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200132.png ; $6 - i$ ; confidence 0.310 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025054.png ; $S$ ; confidence 0.310 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020159.png ; $\alpha ^ { n } < b$ ; confidence 0.310 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001042.png ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V$ ; confidence 0.310 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c1300608.png ; $J \in V$ ; confidence 0.310 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920309.png ; $U _ { y } \not \ni x$ ; confidence 0.309 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004062.png ; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { N } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140140.png ; $A ^ { n }$ ; confidence 0.309 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016093.png ; $CO C$ ; confidence 0.309 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780047.png ; $H _ { \gamma }$ ; confidence 0.309 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006042.png ; $k ^ { n } ( B _ { N } ( h / k ) - B _ { N } )$ ; confidence 0.309 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200147.png ; $j \neq r | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8$ ; confidence 0.309 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260127.png ; $F ( \mu _ { N } )$ ; confidence 0.309 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $A$ ; confidence 0.309 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005047.png ; $d ^ { d }$ ; confidence 0.308 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b11004042.png ; $X$ ; confidence 0.308 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023027.png ; $\{ f _ { 1 } \} _ { 1 = 1 } ^ { \infty }$ ; confidence 0.308 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011021.png ; $\sigma _ { S _ { i } } w$ ; confidence 0.308 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005013.png ; $2 ^ { m - 1 } - 2 ^ { m / 2 - 1 + r }$ ; confidence 0.308 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008077.png ; $E [ T ( x ) ] ps = \frac { x } { 1 - \rho }$ ; confidence 0.308 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059056.png ; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots$ ; confidence 0.308 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840183.png ; $d _ { 1 } , \dots , d _ { r }$ ; confidence 0.308 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009047.png ; $H ^ { \otimes x }$ ; confidence 0.308 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002010.png ; $I _ { 1 } ( P , Q )$ ; confidence 0.308 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003091.png ; $q \in \varrho$ ; confidence 0.307 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040047.png ; $C$ ; confidence 0.307 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/k/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006012.png ; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { k } - 1 } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { \alpha _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { 1 } } \\ { 1 } \end{array} \right)$ ; confidence 0.307 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014015.png ; $Tr$ ; confidence 0.307 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110235.png ; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220220.png ; $H _ { B } : \operatorname { Ext } _ { M M _ { O } } ^ { 1 } ( Q ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007067.png ; $e > d$ ; confidence 0.307 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180363.png ; $= g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \otimes \ldots \otimes W ( g ) ) \in \in C ^ { \infty } ( M )$ ; confidence 0.307 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004014.png ; $s _ { \lambda } = \frac { a _ { \lambda } + \delta } { a _ { \delta } }$ ; confidence 0.307 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030104.png ; $r _ { i } = y _ { i } - \vec { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010045.png ; $\varphi ( x ) = \varphi ( a x )$ ; confidence 0.307 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180119.png ; $E * x = \operatorname { Hom } _ { R } ( E * , R )$ ; confidence 0.307 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011087.png ; $U \# \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \}$ ; confidence 0.306 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017071.png ; $\delta _ { A } * _ { B } * ( X ) \in I$ ; confidence 0.306 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030103.png ; $s ( r _ { 1 } , \dots , r _ { r } )$ ; confidence 0.306 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501018.png ; $g _ { r } : B _ { r } \rightarrow B _ { r } + 1$ ; confidence 0.306 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150137.png ; $\pi _ { G \times G _ { X } } S$ ; confidence 0.306 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008099.png ; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063016.png ; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024042.png ; $9 + 5$ ; confidence 0.305 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017021.png ; $c 0 \geq 0$ ; confidence 0.305 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011042.png ; $\forall x _ { 1 } , \ldots , x _ { y }$ ; confidence 0.305 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png ; $L _ { 3 } ^ { \prime }$ ; confidence 0.305 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001061.png ; $a ^ { n }$ ; confidence 0.305 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049014.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } } { \nu _ { 1 } } \frac { X _ { 1 } } { X _ { 2 } }$ ; confidence 0.305 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110146.png ; $( a \circ b ) ( x , \xi ) = \sum _ { | \alpha | < N } \frac { 1 } { \alpha ! } D _ { \xi } ^ { \alpha } a \partial _ { x } ^ { \alpha } b + t _ { N } ( a , b )$ ; confidence 0.305 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004047.png ; $e _ { \lambda _ { i } }$ ; confidence 0.305 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018033.png ; $\langle a , x \rangle = 0$ ; confidence 0.305 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007039.png ; $4 , j \in k , i = 1 , \dots , r$ ; confidence 0.305 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013053.png ; $A ^ { + }$ ; confidence 0.305 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004094.png ; $r _ { i } > 0$ ; confidence 0.304 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007040.png ; $\Delta g = g \otimes g _ { s } \epsilon g = 1 , S _ { g } = g ^ { - 1 }$ ; confidence 0.304 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a0132905.png ; $8$ ; confidence 0.304 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027059.png ; $a _ { x } = b _ { x } + \sum _ { 0 } ^ { x } a _ { x } - j p _ { j } , n = 0,1$ ; confidence 0.304 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202408.png ; $H _ { x } ^ { S } ( ; G )$ ; confidence 0.304 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490101.png ; $a _ { 1 } , \dots , a _ { s }$ ; confidence 0.304 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005039.png ; $S _ { \theta _ { 0 } } = \{ z \in C : \operatorname { larg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042230/f0422309.png ; $M ( t )$ ; confidence 0.304 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305904.png ; $c _ { N } = \int _ { 0 } ^ { \infty } t ^ { x } d \psi ( t ) , n = 0 , \pm 1 , \pm 2$ ; confidence 0.304 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035022.png ; $\hat { \theta } _ { N } = \operatorname { arg } \operatorname { min } _ { \theta \in D _ { M } } \sum _ { M } ^ { N _ { t } = 1 } 1 ( y ( t ) - f ( Z ^ { t - 1 } , t , \theta ) )$ ; confidence 0.304 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024080.png ; $t _ { 0 } \in J _ { x }$ ; confidence 0.304 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004025.png ; $K _ { 9 } , 9$ ; confidence 0.304 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006081.png ; $U _ { d }$ ; confidence 0.304 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006013.png ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c ( \frac { m n } { d ^ { 2 } } )$ ; confidence 0.304 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011061.png ; $\Delta _ { \sigma } = \{ x \in R ^ { n } : \sigma _ { j } x _ { j } > 0 \}$ ; confidence 0.304 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017077.png ; $C _ { p }$ ; confidence 0.304 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010026.png ; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022029.png ; $L y = ( \frac { d } { d x } + r _ { x } ) \dots ( \frac { d } { d x } + r _ { 1 } ) y$ ; confidence 0.303 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011025.png ; $( Op ( a ) ) ^ { * } = Op ( J \overline { a } )$ ; confidence 0.303 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014012.png ; $l _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090242.png ; $s [ x ( C )$ ; confidence 0.303 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013018.png ; $\chi ( z ) = ( z ^ { x } ) _ { x \in Z }$ ; confidence 0.303 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090180.png ; $s \in Z _ { p }$ ; confidence 0.303 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702040.png ; $X = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023049.png ; $( ( K _ { X } + B ) , w ^ { \prime } ) \geq 0$ ; confidence 0.303 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034040.png ; $\hat { R K }$ ; confidence 0.303 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015015.png ; $\{ s \in S : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \}$ ; confidence 0.303 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220079.png ; $D _ { i j }$ ; confidence 0.302 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014017.png ; $f = P + \phi f$ ; confidence 0.302 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023034.png ; $( ( K x + B ) \cdot v ) < 0$ ; confidence 0.302 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023049.png ; $\operatorname { grad } \psi = ( \partial \psi / \partial \zeta _ { 1 } , \dots , \partial \psi / \partial \zeta _ { N } )$ ; confidence 0.302 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008013.png ; $V _ { Y }$ ; confidence 0.302 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110174.png ; $a _ { n } = b _ { n }$ ; confidence 0.302 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200505.png ; $D = R 1 \oplus e R$ ; confidence 0.302 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002037.png ; $l _ { p } ( P , Q )$ ; confidence 0.302 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040296.png ; $A / \Theta \in Q$ ; confidence 0.302 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035014.png ; $\phi _ { y } ( x )$ ; confidence 0.302 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001087.png ; $R ^ { * } G _ { \text { in } }$ ; confidence 0.301 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024047.png ; $[ \left( \begin{array} { c c } { Id } & { 0 } \\ { 0 } & { - Id } \end{array} \right) , L _ { \ell } ] = i L _ { i } ( - 2 \leq i \leq 2 )$ ; confidence 0.301 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007096.png ; $Q _ { N }$ ; confidence 0.301 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200235.png ; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } ( \frac { n + k } { 4 e ( m + n + k ) } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho } \\ { \rho ^ { m } 2 ^ { 1 - n } ( \frac { 1 - \rho } { 4 } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho } \end{array} \right.$ ; confidence 0.301 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301309.png ; $M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { Z _ { 2 } } & { \text { if } n \geq 4 } \\ { \{ e \} } & { \text { if } n < 4 } \end{array} \right.$ ; confidence 0.301 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280103.png ; $C ^ { n } \backslash \overline { D }$ ; confidence 0.301 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011073.png ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E } ^ { * } , _ { E } - \langle \eta , x \rangle _ { E } ^ { * } , E ^ { \prime }$ ; confidence 0.301 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001025.png ; $\mathfrak { e } ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014072.png ; $x \in D \subset R ^ { x }$ ; confidence 0.301 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027010.png ; $P _ { m } ( \alpha , \beta )$ ; confidence 0.301 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026018.png ; $\vec { A } = A \oplus C$ ; confidence 0.301 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036020.png ; $\int _ { 0 } ^ { t } l _ { ( 0 ) } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.301 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205106.png ; $x _ { i }$ ; confidence 0.301 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010017.png ; $B _ { d } ( 0 )$ ; confidence 0.300 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377017.png ; $p ( z ) = z ^ { n } + a _ { n } - 1 z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200117.png ; $\geq \frac { n } { 4 N ^ { 2 } / 2 } \operatorname { exp } ( - 30 n ( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } ) ) \times \times \times \operatorname { min } _ { l \leq n } | \sum _ { j = 1 } ^ { l } b _ { j }$ ; confidence 0.300 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020015.png ; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0$ ; confidence 0.300 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150057.png ; $b _ { i }$ ; confidence 0.300 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010040.png ; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { N } )$ ; confidence 0.300 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290155.png ; $p \in \operatorname { Spec } A \backslash \{ m \}$ ; confidence 0.300 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} _ { q u } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.300 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022098.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times R ^ { N } \times \Xi$ ; confidence 0.300 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300908.png ; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026021.png ; $D _ { t } f = ( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) ) _ { n \in N _ { 0 } }$ ; confidence 0.300 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004027.png ; $\int _ { 0 } ^ { 1 } \frac { \operatorname { tag } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003076.png ; $\pi * : H _ { c } ^ { * } ( T _ { \text { yert } } ^ { * } Y ) \rightarrow H ^ { * } - 2 n ( B )$ ; confidence 0.299 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i1300204.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }$ ; confidence 0.299 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029018.png ; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013062.png ; $V ( \hat { Q } _ { p } )$ ; confidence 0.299 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f1300702.png ; $F ( 2 , m ) = \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x _ { i } + 1 = x _ { i } + 2 \}$ ; confidence 0.299 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290162.png ; $M \cong \oplus _ { l = 0 } ^ { d } E _ { l } ^ { h _ { i } }$ ; confidence 0.299 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040109.png ; $h \in N$ ; confidence 0.299 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071044.png ; $t$ ; confidence 0.299 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302803.png ; $a _ { n } + 1 = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n } + 1 = \sqrt { a _ { n } b _ { n } }$ ; confidence 0.299 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011095.png ; $= \frac { ( 1 - \alpha ) } { \dot { k } + c m _ { k } } . [ ( i - 1 + c ) \mu ( i - 1 , m ) - ( i + c ) \mu ( i , m ) ] +$ ; confidence 0.299 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008065.png ; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ]$ ; confidence 0.298 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040056.png ; $S = S ^ { + } \cup S ^ { - } \subset h ^ { * }$ ; confidence 0.298 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050107.png ; $\Delta$ ; confidence 0.298 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005022.png ; $\cup _ { k = 1 } ^ { S } D _ { k }$ ; confidence 0.298 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010013.png ; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004029.png ; $\sigma ( \Gamma ) \operatorname { tg } \sigma ( \varphi )$ ; confidence 0.298 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028020.png ; $x _ { n } \theta$ ; confidence 0.298 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001032.png ; $\{ A _ { X } = z ^ { N } : n \in Z \}$ ; confidence 0.298 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002036.png ; $U ^ { + } \partial M = \{ v \in S N : \langle v , N _ { x } \rangle > 0 \}$ ; confidence 0.298 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002017.png ; $\alpha _ { y }$ ; confidence 0.298 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008099.png ; $y = \left\{ \begin{array} { l l } { ( \frac { c } { \alpha - x } ) ^ { k + 1 } } & { \text { for } x \in ( - \infty , \alpha - c ] } \\ { 1 } & { \text { for } x \in [ \alpha - c , \alpha - c + b ] } \\ { ( \frac { b - c } { x - \alpha } ) ^ { k + 1 } } & { \text { for } x \in [ \alpha - c + b , \infty ] } \end{array} \right.$ ; confidence 0.297 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015031.png ; $[ . . ]$ ; confidence 0.297 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060133.png ; $F ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.297 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028046.png ; $r g ]$ ; confidence 0.297 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004011.png ; $\downarrow x \in X \text { and } \| x \| \leq \| y \|$ ; confidence 0.297 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014021.png ; $X = Y = R ^ { n }$ ; confidence 0.297 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005030.png ; $\| \sum _ { j = 1 } ^ { m } w _ { j } \cdot \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \| \leq w _ { i } , i \neq j$ ; confidence 0.297 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006070.png ; $T _ { S } : T M \rightarrow T Y$ ; confidence 0.297 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041057.png ; $( p _ { x } ^ { \langle \alpha , \beta \rangle } )$ ; confidence 0.296 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005031.png ; $\beta _ { 0 } ( \phi , \rho ) = \int _ { N } \phi \rho$ ; confidence 0.296 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015046.png ; $I _ { k + 1 } / I _ { k }$ ; confidence 0.296 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001037.png ; $R _ { V } ( u \otimes v ) = R ( u \otimes v )$ ; confidence 0.296 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702049.png ; $( H ^ { i } ( X , F _ { n } ) ) _ { n \in N }$ ; confidence 0.296 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010013.png ; $( A F ) _ { n } ( X ) = \int d x _ { n } + 1 F _ { n } + 1 ( X , x _ { n } + 1 )$ ; confidence 0.296 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005084.png ; $\left\{ \begin{array} { l } { x _ { n } + 1 = T x _ { n } + F u _ { n } } \\ { v _ { n } = G x _ { n } + H u _ { n } } \end{array} \right.$ ; confidence 0.296 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026079.png ; $t _ { x } = n \dot { k }$ ; confidence 0.296 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021079.png ; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | } - r ( s )$ ; confidence 0.296 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080126.png ; $s _ { x } = - i T _ { x }$ ; confidence 0.296 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \circlearrowleft } ( f ) , K _ { l } ( f ) \}$ ; confidence 0.296 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300103.png ; $A _ { 1 } ^ { n } , \dots , A _ { 2 } ^ { n }$ ; confidence 0.296 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014040.png ; $Q \lambda Q _ { \mu }$ ; confidence 0.295 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007035.png ; $G = \langle \alpha \rangle \times \langle \dot { b } \rangle$ ; confidence 0.295 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002027.png ; $\underline { f } + \mathfrak { a } \mathfrak { p }$ ; confidence 0.295 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008071.png ; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) \cdot e ( w _ { i } | v ) \cdot f ( w _ { i } | w )$ ; confidence 0.295 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017070.png ; $z ^ { k } Z ^ { l }$ ; confidence 0.295 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030120.png ; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057480/l05748013.png ; $u _ { 1 } N$ ; confidence 0.295 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602032.png ; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right]$ ; confidence 0.295 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011012.png ; $P \times$ ; confidence 0.295 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011054.png ; $HS = \| \alpha \| _ { L } 2 _ { \langle R ^ { 2 n } } \rangle$ ; confidence 0.295 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080162.png ; $( z 0 , z 0 ) \in \gamma$ ; confidence 0.295 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024015.png ; $K ( a , b ) = \{ a , b \} I d$ ; confidence 0.295 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010016.png ; $x \in I$ ; confidence 0.295 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060106.png ; $\lambda \in K _ { , j } ( A )$ ; confidence 0.295 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003034.png ; $\cup _ { N = 1 } ^ { \infty } V ^ { n } = \cup _ { N = 1 } ^ { \infty } U ^ { n }$ ; confidence 0.294 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026023.png ; $\alpha _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015014.png ; $\left\{ \begin{array} { l } { x \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } , t ) , \quad i = 1 , \ldots , n } \\ { \overline { t } = t } \end{array} \right.$ ; confidence 0.294 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002081.png ; $\operatorname { rd } \gamma ( M _ { k } ( f ) ) \leq n - 2 - \dot { k }$ ; confidence 0.294 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006044.png ; $B _ { y } \nmid n$ ; confidence 0.294 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006032.png ; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1,2 ,$ ; confidence 0.294 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040513.png ; $A \nmid \Omega C$ ; confidence 0.294 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021013.png ; $( \alpha ^ { * } b ) | \dot { b } = a$ ; confidence 0.294 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011084.png ; $\frac { n } { \mu _ { n } } = \frac { \sum _ { x = 1 } ^ { n } x \mu _ { n } ( x ) } { \mu _ { n } } \sim \sum _ { x = 1 } ^ { n } \frac { 1 } { x + 1 } \rightarrow \infty$ ; confidence 0.294 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501035.png ; $B G _ { N }$ ; confidence 0.294 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018086.png ; $( g _ { n } ) _ { n } \geq 1$ ; confidence 0.294 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021072.png ; $P _ { N } ^ { \prime }$ ; confidence 0.294 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180381.png ; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024046.png ; $L ( \varepsilon ) = L _ { - 2 } \oplus L _ { - 1 } \oplus L _ { 0 } \oplus L _ { 1 } \oplus L _ { 2 }$ ; confidence 0.293 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150124.png ; $P = \{ P _ { N } ^ { m } : n \in N \}$ ; confidence 0.293 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a0109505.png ; $n = \operatorname { dim } M$ ; confidence 0.293 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089084.png ; $b \in R ^ { x }$ ; confidence 0.293 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006092.png ; $( l + H _ { x } ) \Gamma _ { x } : = \Gamma _ { x } ( t , s ) + \int _ { 0 } ^ { x } H ( t - u ) \Gamma _ { x } ( u , s ) d u = H ( t - s ) , 0 \leq t , s \leq x$ ; confidence 0.293 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008024.png ; $c _ { 3 } = 1$ ; confidence 0.292 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840273.png ; $\sigma ( A | _ { E \langle \Delta \rangle K } ) \subset \overline { \Delta }$ ; confidence 0.292 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011078.png ; $E [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/m/m062/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222089.png ; $C$ ; confidence 0.292 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100104.png ; $R \backslash K$ ; confidence 0.292 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010018.png ; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \tau _ { n } ( x )$ ; confidence 0.292 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = - \frac { 1 } { 4 \pi } \int _ { R ^ { 3 } } e ^ { i k \langle \alpha - \alpha ^ { \prime } \rangle x } q ( x ) d x + O ( \frac { 1 } { k } )$ ; confidence 0.292 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160155.png ; $\psi _ { \mathfrak { A } } ^ { l - \mathfrak { M } } \overline { \mathfrak { a } }$ ; confidence 0.292 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302509.png ; $Vp \frac { 1 } { X }$ ; confidence 0.292 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017026.png ; $P = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024030.png ; $= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right)$ ; confidence 0.292 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180405.png ; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.292 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w1301009.png ; $W ^ { a } ( t ) = \cup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0$ ; confidence 0.291 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200705.png ; $m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t } 1 , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }$ ; confidence 0.291 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010077.png ; $T \in T$ ; confidence 0.291 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004016.png ; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013039.png ; $W _ { N } \supset W _ { N } + 1$ ; confidence 0.291 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050118.png ; $u _ { \gamma } ( 1 ) = D ^ { ( - x - 1 ) } ( u )$ ; confidence 0.291 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230132.png ; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.291 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005068.png ; $v = \sqrt { y ^ { T } H y } ( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } )$ ; confidence 0.291 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008097.png ; $( \varphi ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004014.png ; $\{ L ( x , y ) \} _ { span }$ ; confidence 0.290 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302909.png ; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006047.png ; $\mu ( u , v , w ) = \# \{ ( \alpha ^ { \prime } , \beta ^ { \prime } ) \in A \times B : D \alpha ^ { \prime } \beta ^ { \prime } = D \xi \text { withw } = D \xi D \}$ ; confidence 0.290 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h0472108.png ; $T _ { \delta }$ ; confidence 0.290 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007024.png ; $a \in R [ t ] ^ { j }$ ; confidence 0.290 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/o/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010119.png ; $\Gamma _ { u } = 0$ ; confidence 0.290 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003071.png ; $T _ { E } ( M \otimes _ { F } p ) = T _ { E } M \otimes _ { F } p ^ { T } _ { E } N$ ; confidence 0.290 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010105.png ; $\sigma [ J , V ^ { j }$ ; confidence 0.290 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021025.png ; $r , s \in R _ { W }$ ; confidence 0.290 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011074.png ; $\langle . . \rangle _ { E } ^ { * } , E$ ; confidence 0.290 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007064.png ; $<$ ; confidence 0.290 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029038.png ; $P Y$ ; confidence 0.290 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004063.png ; $f _ { l } ^ { n } = \alpha u _ { l } ^ { n }$ ; confidence 0.290 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004054.png ; $( \Omega _ { + } - 1 ) g _ { D } P _ { + } \psi ( t )$ ; confidence 0.290 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302108.png ; $u ( a ) = u _ { \alpha }$ ; confidence 0.290 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024033.png ; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027061.png ; $x , y \in X _ { n }$ ; confidence 0.290 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202906.png ; $\{ x _ { n } , j \}$ ; confidence 0.290 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/p/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015062.png ; $\tau : G \rightarrow G \nmid H$ ; confidence 0.290 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070102.png ; $d _ { 1 } , \ldots , d _ { k }$ ; confidence 0.289 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020233.png ; $g ( \overline { u } _ { 1 } ) = v _ { N }$ ; confidence 0.289 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004019.png ; $K _ { BM } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z )$ ; confidence 0.289 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062820/m06282022.png ; $x ^ { x }$ ; confidence 0.289 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010095.png ; $E _ { \theta }$ ; confidence 0.289 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021049.png ; $\delta _ { n }$ ; confidence 0.289 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png ; $\dot { k } = 1 , \ldots , r ( P )$ ; confidence 0.289 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020084.png ; $M _ { 2 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 2 , \ldots , n + 1 } | s _ { k } | \leq 2 ( n + 1 ) ^ { 2 } e ^ { - \theta n }$ ; confidence 0.289 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010061.png ; $\mu \in M _ { C } ^ { \dagger } ( G )$ ; confidence 0.289 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014019.png ; $F _ { A } = d A + A / / A$ ; confidence 0.289 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011020.png ; $\sigma _ { Y }$ ; confidence 0.289 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029080.png ; $\hat { f } = id$ ; confidence 0.289 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300109.png ; $p = \operatorname { char } F _ { q }$ ; confidence 0.289 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060119.png ; $Bel _ { Z } | Y$ ; confidence 0.289 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180489.png ; $\lambda _ { \mathscr { B } } \in C ^ { \infty } ( N )$ ; confidence 0.289 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021013.png ; $n$ ; confidence 0.289 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200503.png ; $L _ { F }$ ; confidence 0.288 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027057.png ; $K _ { I } ^ { S } ( X )$ ; confidence 0.288 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001039.png ; $\hat { U } - 1$ ; confidence 0.288 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021019.png ; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m l _ { M }$ ; confidence 0.288 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012045.png ; $R _ { \pm } ^ { 2 m }$ ; confidence 0.288 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030055.png ; $A ( \eta ) \phi = \lambda \phi \operatorname { in } R ^ { N }$ ; confidence 0.288 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059046.png ; $F _ { n } = \frac { 1 } { e _ { x } e _ { x } - 1 } , G _ { x } = \frac { d _ { x } } { e _ { x } } ( e 0 = 1 )$ ; confidence 0.288 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140113.png ; $\| d _ { m } ^ { p } \|$ ; confidence 0.288 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012080.png ; $( a f ) b = \alpha ( g b )$ ; confidence 0.288 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068075.png ; $a + b$ ; confidence 0.288 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002040.png ; $- P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021020.png ; $M \in K ^ { \gamma }$ ; confidence 0.288 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300104.png ; $( - 1 , \lambda )$ ; confidence 0.288 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200239.png ; $\dot { k } \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290167.png ; $h _ { i } = \operatorname { l } _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.287 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140119.png ; $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.287 |
Revision as of 00:10, 13 February 2020
List
1.
; $H _ { D } ^ { l } ( X , A ( j ) )$ ; confidence 0.312
2.
; $A _ { i k }$ ; confidence 0.312
3.
; $\alpha 3 = 4 , \alpha _ { i } + 3 = \alpha _ { i }$ ; confidence 0.312
4.
; $L _ { 2 } ( R ^ { x } )$ ; confidence 0.312
5.
; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { Y + 4 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.312
6.
; $E _ { P _ { R } ^ { m } } ( d ) = E _ { P _ { R } ^ { m } } ( d ^ { * } )$ ; confidence 0.312
7.
; $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ ; confidence 0.312
8.
; $p _ { k }$ ; confidence 0.312
9.
; $a \equiv ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.312
10.
; $I q , q I \neq 0$ ; confidence 0.312
11.
; $P$ ; confidence 0.312
12.
; $y \sim a \operatorname { cos } \int _ { c } ^ { x } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t + b \operatorname { sin } \int ^ { x _ { c } } ( \lambda - V _ { 1 } ( t ) ) ^ { 1 / 2 } d t$ ; confidence 0.312
13.
; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } )$ ; confidence 0.311
14.
; $P _ { K } = P _ { W - 1 }$ ; confidence 0.311
15.
; $R _ { j } \rightarrow IR _ { j }$ ; confidence 0.311
16.
; $m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d ^ { \prime } } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) )$ ; confidence 0.311
17.
; $0$ ; confidence 0.311
18.
; $| e _ { 1 } | ^ { \gamma } \leq L _ { \gamma , n } ^ { 1 } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.311
19.
; $1 , \dots , \alpha _ { q } \in F ( S ^ { d } )$ ; confidence 0.311
20.
; $f \equiv$ ; confidence 0.311
21.
; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i _ { i } } n _ { j } = 0 \text { for all } j \in N$ ; confidence 0.311
22.
; $H _ { j }$ ; confidence 0.311
23.
; $| w ^ { n } ( t ) |$ ; confidence 0.311
24.
; $\alpha \in R ^ { m }$ ; confidence 0.311
25.
; $\square _ { 2 } \pi _ { * } ^ { s }$ ; confidence 0.310
26.
; $K ( \vec { G } )$ ; confidence 0.310
27.
; $\rho _ { i j }$ ; confidence 0.310
28.
; $\sum _ { N } \hat { T } _ { N }$ ; confidence 0.310
29.
; $Bel _ { E _ { 1 } , E _ { 2 } } = Bel _ { E _ { 1 } } \oplus Bel _ { E _ { 2 } }$ ; confidence 0.310
30.
; $\partial d S / \partial T _ { N } = d \omega _ { N }$ ; confidence 0.310
31.
; $6 - i$ ; confidence 0.310
32.
; $S$ ; confidence 0.310
33.
; $\alpha ^ { n } < b$ ; confidence 0.310
34.
; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V$ ; confidence 0.310
35.
; $J \in V$ ; confidence 0.310
36.
; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309
37.
; $U _ { y } \not \ni x$ ; confidence 0.309
38.
; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { N } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309
39.
; $A ^ { n }$ ; confidence 0.309
40.
; $CO C$ ; confidence 0.309
41.
; $H _ { \gamma }$ ; confidence 0.309
42.
; $k ^ { n } ( B _ { N } ( h / k ) - B _ { N } )$ ; confidence 0.309
43.
; $j \neq r | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309
44.
; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8$ ; confidence 0.309
45.
; $F ( \mu _ { N } )$ ; confidence 0.309
46.
; $A$ ; confidence 0.309
47.
; $d ^ { d }$ ; confidence 0.308
48.
; $X$ ; confidence 0.308
49.
; $\{ f _ { 1 } \} _ { 1 = 1 } ^ { \infty }$ ; confidence 0.308
50.
; $\sigma _ { S _ { i } } w$ ; confidence 0.308
51.
; $2 ^ { m - 1 } - 2 ^ { m / 2 - 1 + r }$ ; confidence 0.308
52.
; $E [ T ( x ) ] ps = \frac { x } { 1 - \rho }$ ; confidence 0.308
53.
; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots$ ; confidence 0.308
54.
; $d _ { 1 } , \dots , d _ { r }$ ; confidence 0.308
55.
; $H ^ { \otimes x }$ ; confidence 0.308
56.
; $I _ { 1 } ( P , Q )$ ; confidence 0.308
57.
; $q \in \varrho$ ; confidence 0.307
58.
; $C$ ; confidence 0.307
59.
; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { k } - 1 } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { \alpha _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { 1 } } \\ { 1 } \end{array} \right)$ ; confidence 0.307
60.
; $Tr$ ; confidence 0.307
61.
; $\alpha \in S ( m _ { 1 } , G )$ ; confidence 0.307
62.
; $H _ { B } : \operatorname { Ext } _ { M M _ { O } } ^ { 1 } ( Q ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307
63.
; $h$ ; confidence 0.307
64.
; $e > d$ ; confidence 0.307
65.
; $= g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \otimes \ldots \otimes W ( g ) ) \in \in C ^ { \infty } ( M )$ ; confidence 0.307
66.
; $s _ { \lambda } = \frac { a _ { \lambda } + \delta } { a _ { \delta } }$ ; confidence 0.307
67.
; $r _ { i } = y _ { i } - \vec { x } _ { i } ^ { \star } T _ { n }$ ; confidence 0.307
68.
; $\varphi ( x ) = \varphi ( a x )$ ; confidence 0.307
69.
; $E * x = \operatorname { Hom } _ { R } ( E * , R )$ ; confidence 0.307
70.
; $U \# \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \}$ ; confidence 0.306
71.
; $\delta _ { A } * _ { B } * ( X ) \in I$ ; confidence 0.306
72.
; $s ( r _ { 1 } , \dots , r _ { r } )$ ; confidence 0.306
73.
; $g _ { r } : B _ { r } \rightarrow B _ { r } + 1$ ; confidence 0.306
74.
; $\pi _ { G \times G _ { X } } S$ ; confidence 0.306
75.
; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306
76.
; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306
77.
; $9 + 5$ ; confidence 0.305
78.
; $c 0 \geq 0$ ; confidence 0.305
79.
; $\forall x _ { 1 } , \ldots , x _ { y }$ ; confidence 0.305
80.
; $L _ { 3 } ^ { \prime }$ ; confidence 0.305
81.
; $a ^ { n }$ ; confidence 0.305
82.
; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } } { \nu _ { 1 } } \frac { X _ { 1 } } { X _ { 2 } }$ ; confidence 0.305
83.
; $( a \circ b ) ( x , \xi ) = \sum _ { | \alpha | < N } \frac { 1 } { \alpha ! } D _ { \xi } ^ { \alpha } a \partial _ { x } ^ { \alpha } b + t _ { N } ( a , b )$ ; confidence 0.305
84.
; $e _ { \lambda _ { i } }$ ; confidence 0.305
85.
; $\langle a , x \rangle = 0$ ; confidence 0.305
86.
; $4 , j \in k , i = 1 , \dots , r$ ; confidence 0.305
87.
; $A ^ { + }$ ; confidence 0.305
88.
; $r _ { i } > 0$ ; confidence 0.304
89.
; $\Delta g = g \otimes g _ { s } \epsilon g = 1 , S _ { g } = g ^ { - 1 }$ ; confidence 0.304
90.
; $8$ ; confidence 0.304
91.
; $a _ { x } = b _ { x } + \sum _ { 0 } ^ { x } a _ { x } - j p _ { j } , n = 0,1$ ; confidence 0.304
92.
; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
93.
; $H _ { x } ^ { S } ( ; G )$ ; confidence 0.304
94.
; $a _ { 1 } , \dots , a _ { s }$ ; confidence 0.304
95.
; $S _ { \theta _ { 0 } } = \{ z \in C : \operatorname { larg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304
96.
; $M ( t )$ ; confidence 0.304
97.
; $c _ { N } = \int _ { 0 } ^ { \infty } t ^ { x } d \psi ( t ) , n = 0 , \pm 1 , \pm 2$ ; confidence 0.304
98.
; $\hat { \theta } _ { N } = \operatorname { arg } \operatorname { min } _ { \theta \in D _ { M } } \sum _ { M } ^ { N _ { t } = 1 } 1 ( y ( t ) - f ( Z ^ { t - 1 } , t , \theta ) )$ ; confidence 0.304
99.
; $t _ { 0 } \in J _ { x }$ ; confidence 0.304
100.
; $K _ { 9 } , 9$ ; confidence 0.304
101.
; $U _ { d }$ ; confidence 0.304
102.
; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c ( \frac { m n } { d ^ { 2 } } )$ ; confidence 0.304
103.
; $\Delta _ { \sigma } = \{ x \in R ^ { n } : \sigma _ { j } x _ { j } > 0 \}$ ; confidence 0.304
104.
; $C _ { p }$ ; confidence 0.304
105.
; $L _ { \gamma , n } ^ { c } < \infty$ ; confidence 0.303
106.
; $L y = ( \frac { d } { d x } + r _ { x } ) \dots ( \frac { d } { d x } + r _ { 1 } ) y$ ; confidence 0.303
107.
; $( Op ( a ) ) ^ { * } = Op ( J \overline { a } )$ ; confidence 0.303
108.
; $l _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.303
109.
; $s [ x ( C )$ ; confidence 0.303
110.
; $\chi ( z ) = ( z ^ { x } ) _ { x \in Z }$ ; confidence 0.303
111.
; $s \in Z _ { p }$ ; confidence 0.303
112.
; $X = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303
113.
; $( ( K _ { X } + B ) , w ^ { \prime } ) \geq 0$ ; confidence 0.303
114.
; $\hat { R K }$ ; confidence 0.303
115.
; $\{ s \in S : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \}$ ; confidence 0.303
116.
; $D _ { i j }$ ; confidence 0.302
117.
; $f = P + \phi f$ ; confidence 0.302
118.
; $( ( K x + B ) \cdot v ) < 0$ ; confidence 0.302
119.
; $\operatorname { grad } \psi = ( \partial \psi / \partial \zeta _ { 1 } , \dots , \partial \psi / \partial \zeta _ { N } )$ ; confidence 0.302
120.
; $V _ { Y }$ ; confidence 0.302
121.
; $a _ { n } = b _ { n }$ ; confidence 0.302
122.
; $D = R 1 \oplus e R$ ; confidence 0.302
123.
; $l _ { p } ( P , Q )$ ; confidence 0.302
124.
; $A / \Theta \in Q$ ; confidence 0.302
125.
; $\phi _ { y } ( x )$ ; confidence 0.302
126.
; $R ^ { * } G _ { \text { in } }$ ; confidence 0.301
127.
; $[ \left( \begin{array} { c c } { Id } & { 0 } \\ { 0 } & { - Id } \end{array} \right) , L _ { \ell } ] = i L _ { i } ( - 2 \leq i \leq 2 )$ ; confidence 0.301
128.
; $Q _ { N }$ ; confidence 0.301
129.
; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } ( \frac { n + k } { 4 e ( m + n + k ) } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho } \\ { \rho ^ { m } 2 ^ { 1 - n } ( \frac { 1 - \rho } { 4 } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho } \end{array} \right.$ ; confidence 0.301
130.
; $M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { Z _ { 2 } } & { \text { if } n \geq 4 } \\ { \{ e \} } & { \text { if } n < 4 } \end{array} \right.$ ; confidence 0.301
131.
; $C ^ { n } \backslash \overline { D }$ ; confidence 0.301
132.
; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E } ^ { * } , _ { E } - \langle \eta , x \rangle _ { E } ^ { * } , E ^ { \prime }$ ; confidence 0.301
133.
; $\mathfrak { e } ^ { [ p ] } - e _ { 0 } = 0$ ; confidence 0.301
134.
; $x \in D \subset R ^ { x }$ ; confidence 0.301
135.
; $P _ { m } ( \alpha , \beta )$ ; confidence 0.301
136.
; $\vec { A } = A \oplus C$ ; confidence 0.301
137.
; $\int _ { 0 } ^ { t } l _ { ( 0 ) } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.301
138.
; $x _ { i }$ ; confidence 0.301
139.
; $B _ { d } ( 0 )$ ; confidence 0.300
140.
; $p ( z ) = z ^ { n } + a _ { n } - 1 z ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.300
141.
; $\geq \frac { n } { 4 N ^ { 2 } / 2 } \operatorname { exp } ( - 30 n ( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } ) ) \times \times \times \operatorname { min } _ { l \leq n } | \sum _ { j = 1 } ^ { l } b _ { j }$ ; confidence 0.300
142.
; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0$ ; confidence 0.300
143.
; $b _ { i }$ ; confidence 0.300
144.
; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { N } )$ ; confidence 0.300
145.
; $p \in \operatorname { Spec } A \backslash \{ m \}$ ; confidence 0.300
146.
; $\Pi I _ { \lambda }$ ; confidence 0.300
147.
; $\{ H , \rho \} _ { q u } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300
148.
; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.300
149.
; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times R ^ { N } \times \Xi$ ; confidence 0.300
150.
; $\pi _ { X } : T _ { X } \rightarrow X$ ; confidence 0.300
151.
; $D _ { t } f = ( ( n + 1 ) f ^ { ( n + 1 ) } ( t , . ) ) _ { n \in N _ { 0 } }$ ; confidence 0.300
152.
; $\int _ { 0 } ^ { 1 } \frac { \operatorname { tag } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299
153.
; $\pi * : H _ { c } ^ { * } ( T _ { \text { yert } } ^ { * } Y ) \rightarrow H ^ { * } - 2 n ( B )$ ; confidence 0.299
154.
; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }$ ; confidence 0.299
155.
; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299
156.
; $\overline { U }$ ; confidence 0.299
157.
; $V ( \hat { Q } _ { p } )$ ; confidence 0.299
158.
; $F ( 2 , m ) = \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x _ { i } + 1 = x _ { i } + 2 \}$ ; confidence 0.299
159.
; $M \cong \oplus _ { l = 0 } ^ { d } E _ { l } ^ { h _ { i } }$ ; confidence 0.299
160.
; $h \in N$ ; confidence 0.299
161.
; $t$ ; confidence 0.299
162.
; $a _ { n } + 1 = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n } + 1 = \sqrt { a _ { n } b _ { n } }$ ; confidence 0.299
163.
; $= \frac { ( 1 - \alpha ) } { \dot { k } + c m _ { k } } . [ ( i - 1 + c ) \mu ( i - 1 , m ) - ( i + c ) \mu ( i , m ) ] +$ ; confidence 0.299
164.
; $[ L : K ] = \sum _ { l = 1 } ^ { m } [ L ^ { H _ { i } } : K ^ { H _ { i } } ]$ ; confidence 0.298
165.
; $S = S ^ { + } \cup S ^ { - } \subset h ^ { * }$ ; confidence 0.298
166.
; $\Delta$ ; confidence 0.298
167.
; $\cup _ { k = 1 } ^ { S } D _ { k }$ ; confidence 0.298
168.
; $D T _ { j } ^ { i } = \nabla _ { k } T _ { j } ^ { i } d x ^ { k } =$ ; confidence 0.298
169.
; $\sigma ( \Gamma ) \operatorname { tg } \sigma ( \varphi )$ ; confidence 0.298
170.
; $x _ { n } \theta$ ; confidence 0.298
171.
; $\{ A _ { X } = z ^ { N } : n \in Z \}$ ; confidence 0.298
172.
; $U ^ { + } \partial M = \{ v \in S N : \langle v , N _ { x } \rangle > 0 \}$ ; confidence 0.298
173.
; $\alpha _ { y }$ ; confidence 0.298
174.
; $F \in Fi _ { D }$ ; confidence 0.298
175.
; $y = \left\{ \begin{array} { l l } { ( \frac { c } { \alpha - x } ) ^ { k + 1 } } & { \text { for } x \in ( - \infty , \alpha - c ] } \\ { 1 } & { \text { for } x \in [ \alpha - c , \alpha - c + b ] } \\ { ( \frac { b - c } { x - \alpha } ) ^ { k + 1 } } & { \text { for } x \in [ \alpha - c + b , \infty ] } \end{array} \right.$ ; confidence 0.297
176.
; $[ . . ]$ ; confidence 0.297
177.
; $F ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.297
178.
; $r g ]$ ; confidence 0.297
179.
; $\downarrow x \in X \text { and } \| x \| \leq \| y \|$ ; confidence 0.297
180.
; $X = Y = R ^ { n }$ ; confidence 0.297
181.
; $\| \sum _ { j = 1 } ^ { m } w _ { j } \cdot \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \| \leq w _ { i } , i \neq j$ ; confidence 0.297
182.
; $T _ { S } : T M \rightarrow T Y$ ; confidence 0.297
183.
; $( p _ { x } ^ { \langle \alpha , \beta \rangle } )$ ; confidence 0.296
184.
; $\beta _ { 0 } ( \phi , \rho ) = \int _ { N } \phi \rho$ ; confidence 0.296
185.
; $I _ { k + 1 } / I _ { k }$ ; confidence 0.296
186.
; $R _ { V } ( u \otimes v ) = R ( u \otimes v )$ ; confidence 0.296
187.
; $( H ^ { i } ( X , F _ { n } ) ) _ { n \in N }$ ; confidence 0.296
188.
; $( A F ) _ { n } ( X ) = \int d x _ { n } + 1 F _ { n } + 1 ( X , x _ { n } + 1 )$ ; confidence 0.296
189.
; $\left\{ \begin{array} { l } { x _ { n } + 1 = T x _ { n } + F u _ { n } } \\ { v _ { n } = G x _ { n } + H u _ { n } } \end{array} \right.$ ; confidence 0.296
190.
; $t _ { x } = n \dot { k }$ ; confidence 0.296
191.
; $\times ( x - 1 ) ^ { r ( M ) - r ( S ) } ( y - 1 ) ^ { | S | } - r ( s )$ ; confidence 0.296
192.
; $s _ { x } = - i T _ { x }$ ; confidence 0.296
193.
; $K ( f ) = \operatorname { max } \{ K _ { \circlearrowleft } ( f ) , K _ { l } ( f ) \}$ ; confidence 0.296
194.
; $A _ { 1 } ^ { n } , \dots , A _ { 2 } ^ { n }$ ; confidence 0.296
195.
; $Q \lambda Q _ { \mu }$ ; confidence 0.295
196.
; $G = \langle \alpha \rangle \times \langle \dot { b } \rangle$ ; confidence 0.295
197.
; $\underline { f } + \mathfrak { a } \mathfrak { p }$ ; confidence 0.295
198.
; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) \cdot e ( w _ { i } | v ) \cdot f ( w _ { i } | w )$ ; confidence 0.295
199.
; $z ^ { k } Z ^ { l }$ ; confidence 0.295
200.
; $x ^ { * * } \notin K _ { n }$ ; confidence 0.295
201.
; $u _ { 1 } N$ ; confidence 0.295
202.
; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right]$ ; confidence 0.295
203.
; $P \times$ ; confidence 0.295
204.
; $HS = \| \alpha \| _ { L } 2 _ { \langle R ^ { 2 n } } \rangle$ ; confidence 0.295
205.
; $( z 0 , z 0 ) \in \gamma$ ; confidence 0.295
206.
; $K ( a , b ) = \{ a , b \} I d$ ; confidence 0.295
207.
; $x \in I$ ; confidence 0.295
208.
; $\lambda \in K _ { , j } ( A )$ ; confidence 0.295
209.
; $\cup _ { N = 1 } ^ { \infty } V ^ { n } = \cup _ { N = 1 } ^ { \infty } U ^ { n }$ ; confidence 0.294
210.
; $\alpha _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294
211.
; $\left\{ \begin{array} { l } { x \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } , t ) , \quad i = 1 , \ldots , n } \\ { \overline { t } = t } \end{array} \right.$ ; confidence 0.294
212.
; $\operatorname { rd } \gamma ( M _ { k } ( f ) ) \leq n - 2 - \dot { k }$ ; confidence 0.294
213.
; $B _ { y } \nmid n$ ; confidence 0.294
214.
; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1,2 ,$ ; confidence 0.294
215.
; $A \nmid \Omega C$ ; confidence 0.294
216.
; $( \alpha ^ { * } b ) | \dot { b } = a$ ; confidence 0.294
217.
; $\frac { n } { \mu _ { n } } = \frac { \sum _ { x = 1 } ^ { n } x \mu _ { n } ( x ) } { \mu _ { n } } \sim \sum _ { x = 1 } ^ { n } \frac { 1 } { x + 1 } \rightarrow \infty$ ; confidence 0.294
218.
; $B G _ { N }$ ; confidence 0.294
219.
; $( g _ { n } ) _ { n } \geq 1$ ; confidence 0.294
220.
; $P _ { N } ^ { \prime }$ ; confidence 0.294
221.
; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294
222.
; $n = 0,1 , \ldots$ ; confidence 0.294
223.
; $L ( \varepsilon ) = L _ { - 2 } \oplus L _ { - 1 } \oplus L _ { 0 } \oplus L _ { 1 } \oplus L _ { 2 }$ ; confidence 0.293
224.
; $P = \{ P _ { N } ^ { m } : n \in N \}$ ; confidence 0.293
225.
; $n = \operatorname { dim } M$ ; confidence 0.293
226.
; $b \in R ^ { x }$ ; confidence 0.293
227.
; $( l + H _ { x } ) \Gamma _ { x } : = \Gamma _ { x } ( t , s ) + \int _ { 0 } ^ { x } H ( t - u ) \Gamma _ { x } ( u , s ) d u = H ( t - s ) , 0 \leq t , s \leq x$ ; confidence 0.293
228.
; $c _ { 3 } = 1$ ; confidence 0.292
229.
; $\sigma ( A | _ { E \langle \Delta \rangle K } ) \subset \overline { \Delta }$ ; confidence 0.292
230.
; $E [ \mu _ { n + 1 } ( x ) | \mu _ { n } ( . ) ] - \mu _ { n } ( x ) =$ ; confidence 0.292
231.
; $C$ ; confidence 0.292
232.
; $R \backslash K$ ; confidence 0.292
233.
; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \tau _ { n } ( x )$ ; confidence 0.292
234.
; $A ( \alpha ^ { \prime } , \alpha , k ) = - \frac { 1 } { 4 \pi } \int _ { R ^ { 3 } } e ^ { i k \langle \alpha - \alpha ^ { \prime } \rangle x } q ( x ) d x + O ( \frac { 1 } { k } )$ ; confidence 0.292
235.
; $\psi _ { \mathfrak { A } } ^ { l - \mathfrak { M } } \overline { \mathfrak { a } }$ ; confidence 0.292
236.
; $Vp \frac { 1 } { X }$ ; confidence 0.292
237.
; $P = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292
238.
; $= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right)$ ; confidence 0.292
239.
; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.292
240.
; $W ^ { a } ( t ) = \cup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0$ ; confidence 0.291
241.
; $m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t } 1 , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }$ ; confidence 0.291
242.
; $T \in T$ ; confidence 0.291
243.
; $\Delta t ^ { n } = t ^ { n + 1 } - t ^ { n }$ ; confidence 0.291
244.
; $W _ { N } \supset W _ { N } + 1$ ; confidence 0.291
245.
; $u _ { \gamma } ( 1 ) = D ^ { ( - x - 1 ) } ( u )$ ; confidence 0.291
246.
; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.291
247.
; $v = \sqrt { y ^ { T } H y } ( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } )$ ; confidence 0.291
248.
; $( \varphi ; \varphi _ { m } ) _ { 0 } = \delta _ { j m }$ ; confidence 0.290
249.
; $\{ L ( x , y ) \} _ { span }$ ; confidence 0.290
250.
; $\mathfrak { q } = ( a _ { 1 } , \ldots , a _ { s } )$ ; confidence 0.290
251.
; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290
252.
; $\mu ( u , v , w ) = \# \{ ( \alpha ^ { \prime } , \beta ^ { \prime } ) \in A \times B : D \alpha ^ { \prime } \beta ^ { \prime } = D \xi \text { withw } = D \xi D \}$ ; confidence 0.290
253.
; $T _ { \delta }$ ; confidence 0.290
254.
; $a \in R [ t ] ^ { j }$ ; confidence 0.290
255.
; $\Gamma _ { u } = 0$ ; confidence 0.290
256.
; $T _ { E } ( M \otimes _ { F } p ) = T _ { E } M \otimes _ { F } p ^ { T } _ { E } N$ ; confidence 0.290
257.
; $\sigma [ J , V ^ { j }$ ; confidence 0.290
258.
; $r , s \in R _ { W }$ ; confidence 0.290
259.
; $\langle . . \rangle _ { E } ^ { * } , E$ ; confidence 0.290
260.
; $<$ ; confidence 0.290
261.
; $P Y$ ; confidence 0.290
262.
; $f _ { l } ^ { n } = \alpha u _ { l } ^ { n }$ ; confidence 0.290
263.
; $( \Omega _ { + } - 1 ) g _ { D } P _ { + } \psi ( t )$ ; confidence 0.290
264.
; $u ( a ) = u _ { \alpha }$ ; confidence 0.290
265.
; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290
266.
; $x , y \in X _ { n }$ ; confidence 0.290
267.
; $\{ x _ { n } , j \}$ ; confidence 0.290
268.
; $\tau : G \rightarrow G \nmid H$ ; confidence 0.290
269.
; $d _ { 1 } , \ldots , d _ { k }$ ; confidence 0.289
270.
; $g ( \overline { u } _ { 1 } ) = v _ { N }$ ; confidence 0.289
271.
; $K _ { BM } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z )$ ; confidence 0.289
272.
; $x ^ { x }$ ; confidence 0.289
273.
; $E _ { \theta }$ ; confidence 0.289
274.
; $\delta _ { n }$ ; confidence 0.289
275.
; $\dot { k } = 1 , \ldots , r ( P )$ ; confidence 0.289
276.
; $M _ { 2 } = \operatorname { min } _ { z _ { j } } \operatorname { max } _ { k = 2 , \ldots , n + 1 } | s _ { k } | \leq 2 ( n + 1 ) ^ { 2 } e ^ { - \theta n }$ ; confidence 0.289
277.
; $\mu \in M _ { C } ^ { \dagger } ( G )$ ; confidence 0.289
278.
; $F _ { A } = d A + A / / A$ ; confidence 0.289
279.
; $\sigma _ { Y }$ ; confidence 0.289
280.
; $\hat { f } = id$ ; confidence 0.289
281.
; $p = \operatorname { char } F _ { q }$ ; confidence 0.289
282.
; $Bel _ { Z } | Y$ ; confidence 0.289
283.
; $\lambda _ { \mathscr { B } } \in C ^ { \infty } ( N )$ ; confidence 0.289
284.
; $n$ ; confidence 0.289
285.
; $L _ { F }$ ; confidence 0.288
286.
; $K _ { I } ^ { S } ( X )$ ; confidence 0.288
287.
; $\hat { U } - 1$ ; confidence 0.288
288.
; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m l _ { M }$ ; confidence 0.288
289.
; $R _ { \pm } ^ { 2 m }$ ; confidence 0.288
290.
; $A ( \eta ) \phi = \lambda \phi \operatorname { in } R ^ { N }$ ; confidence 0.288
291.
; $F _ { n } = \frac { 1 } { e _ { x } e _ { x } - 1 } , G _ { x } = \frac { d _ { x } } { e _ { x } } ( e 0 = 1 )$ ; confidence 0.288
292.
; $\| d _ { m } ^ { p } \|$ ; confidence 0.288
293.
; $( a f ) b = \alpha ( g b )$ ; confidence 0.288
294.
; $a + b$ ; confidence 0.288
295.
; $- P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288
296.
; $M \in K ^ { \gamma }$ ; confidence 0.288
297.
; $( - 1 , \lambda )$ ; confidence 0.288
298.
; $\dot { k } \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287
299.
; $h _ { i } = \operatorname { l } _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.287
300.
; $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.287
Maximilian Janisch/latexlist/latex/NoNroff/68. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/68&oldid=44556