Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/59"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 59 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 59 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002064.png ; $F = F ( \mu )$ ; confidence 0.997
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
  
2. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003073.png ; $- h \Delta$ ; confidence 0.814
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160160.png ; $\sum _ { i = 1 } ^ { S } \sum _ { t = 1 } ^ { T } n _ { t } q _ { i t } f ( y _ { i t } )$ ; confidence 0.492
  
3. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003040.png ; $w ( x , y ) = 0$ ; confidence 0.999
+
3. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g04328066.png ; $\succ$ ; confidence 0.492
  
4. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130040/n1300409.png ; $O ( n ^ { 4 } )$ ; confidence 0.980
+
4. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024025.png ; $( \text { End } U ( \varepsilon ) ) ^ { + }$ ; confidence 0.492
  
5. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200408.png ; $A _ { M } ( s )$ ; confidence 0.830
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015036.png ; $f _ { X | Y } ( X | Y ) = \frac { f _ { X , Y } ( X , Y ) } { f _ { Y } ( Y ) } , f _ { Y } ( Y ) > 0$ ; confidence 0.492
  
6. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630125.png ; $\rho > 1 / 2$ ; confidence 1.000
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697030.png ; $M \geq 1$ ; confidence 0.492
  
7. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007025.png ; $m ( B ) = 0$ ; confidence 1.000
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025073.png ; $z _ { n }$ ; confidence 0.492
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050720/i0507208.png ; $f ^ { * } ( x )$ ; confidence 0.997
+
8. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036019.png ; $l _ { 0 } = 0$ ; confidence 0.492
  
9. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011070.png ; $f ^ { * } ( . )$ ; confidence 0.931
+
9. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006026.png ; $C _ { g , n }$ ; confidence 0.492
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014020/a01402029.png ; $\psi _ { i }$ ; confidence 0.075
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492
  
11. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520189.png ; $A ^ { T } = - A$ ; confidence 1.000
+
11. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008026.png ; $\sqrt { \lambda } d \lambda + \text { (holomorphic), as } \lambda \rightarrow \infty$ ; confidence 0.492
  
12. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752076.png ; $n _ { i j } > 0$ ; confidence 0.924
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020044.png ; $\frac { | g _ { 1 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } , \frac { | g _ { 2 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } \quad ( k \in S )$ ; confidence 0.491
  
13. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520490.png ; $\Omega = c$ ; confidence 0.397
+
13. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840333.png ; $s , t \in [ \alpha , b ]$ ; confidence 0.491
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255063.png ; $a ^ { * } ( f )$ ; confidence 0.863
+
14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023051.png ; $( i _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.491
  
15. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520288.png ; $K _ { \rho }$ ; confidence 0.684
+
15. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696025.png ; $\lambda + 2$ ; confidence 0.491
  
16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009017.png ; $F ( \tau ) =$ ; confidence 1.000
+
16. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005065.png ; $- 1$ ; confidence 0.491
  
17. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059020/l05902047.png ; $0 < x \leq 1$ ; confidence 0.988
+
17. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019024.png ; $( \frac { d } { d x } ) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }$ ; confidence 0.491
  
18. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681709.png ; $F _ { n } ( . )$ ; confidence 0.671
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028059.png ; $\operatorname { grad } \Phi ^ { m } | _ { \partial D _ { m } } \neq 0$ ; confidence 0.491
  
19. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008055.png ; $q _ { 1 } ( x )$ ; confidence 0.391
+
19. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006048.png ; $( P ) = \operatorname { dim } ( \operatorname { Prsu } ( P ) )$ ; confidence 0.491
  
20. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300804.png ; $q _ { n } ( x )$ ; confidence 0.111
+
20. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c0228507.png ; $N _ { 1 }$ ; confidence 0.491
  
21. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058860/l05886011.png ; $b = \infty$ ; confidence 0.981
+
21. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024081.png ; $H ^ { 1 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.491
  
22. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110030/d11003021.png ; $\Phi _ { Q }$ ; confidence 0.875
+
22. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002027.png ; $B P P$ ; confidence 0.491
  
23. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034100/d03410010.png ; $L _ { \Phi }$ ; confidence 0.665
+
23. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002023.png ; $F _ { m - 1 }$ ; confidence 0.491
  
24. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012043.png ; $\{ ( 21 ) \}$ ; confidence 1.000
+
24. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004066.png ; $P _ { \varphi } ( D _ { 1 } * D _ { 2 } ) ( v ) = P _ { \varphi } ( D _ { 1 } ) ( v ) P _ { \varphi } ( D _ { 2 } ) ( v )$ ; confidence 0.491
  
25. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012036.png ; $C _ { 1234 }$ ; confidence 0.652
+
25. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001013.png ; $\langle D \rangle$ ; confidence 0.491
  
26. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201308.png ; $\theta$ ; confidence 1.000
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150114.png ; $k \in N \cup \{ 0 \}$ ; confidence 0.490
  
27. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013024.png ; $\theta > 1$ ; confidence 0.999
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110340/b11034013.png ; $e$ ; confidence 0.490
  
28. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014015.png ; $\theta > 2$ ; confidence 0.995
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016028.png ; $X ^ { i } = \{ x _ { 1 } ^ { i } , \ldots , x ^ { i m _ { i } } \} \subset [ 0,1 ]$ ; confidence 0.490
  
29. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014041.png ; $E = S \cup T$ ; confidence 0.971
+
29. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840171.png ; $A | _ { R } ( E _ { \overline { \lambda } } )$ ; confidence 0.490
  
30. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010018.png ; $P ( K ) ^ { * }$ ; confidence 0.756
+
30. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003041.png ; $L ^ { \prime } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : | \mu | \leq \sum _ { i = 1 } ^ { n } \alpha _ { i } P _ { i }$ ; confidence 0.490
  
31. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015019.png ; $\chi _ { K }$ ; confidence 0.974
+
31. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024078.png ; $c _ { L } \in H ^ { 1 } ( Q ( \mu _ { L } ) ; Z / M ( n ) )$ ; confidence 0.490
  
32. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015065.png ; $X = B ( 0,1 )$ ; confidence 1.000
+
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110196.png ; $\tilde { o }$ ; confidence 0.490
  
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015046.png ; $\alpha > 0$ ; confidence 0.983
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280118.png ; $B ^ { x , x - 1 }$ ; confidence 0.490
  
34. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015071.png ; $f \in C ( X )$ ; confidence 0.993
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490
  
35. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015058.png ; $\sqrt { 2 }$ ; confidence 0.201
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201704.png ; $\gamma _ { i j } = \overline { \gamma } _ { i }$ ; confidence 0.490
  
36. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013055.png ; $S \lambda$ ; confidence 0.489
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
  
37. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046980/h04698022.png ; $Q \lambda$ ; confidence 0.615
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160138.png ; $[ ( t ( n ) ) ^ { Q ( 1 ) } ] = \operatorname { DSPACE } [ ( t ( n ) ) ^ { Q ( 1 ) } ]$ ; confidence 0.490
  
38. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014063.png ; $U _ { \rho }$ ; confidence 0.976
+
38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016035.png ; $X _ { 1 } \sim E _ { Y , n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$ ; confidence 0.490
  
39. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014068.png ; $f _ { \rho }$ ; confidence 0.728
+
39. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005054.png ; $x \in \mathfrak { H } +$ ; confidence 0.490
  
40. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017098.png ; $A x = a x - x c$ ; confidence 0.285
+
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b1106709.png ; $5$ ; confidence 0.489
  
41. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170106.png ; $x \in B ( H )$ ; confidence 0.847
+
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008076.png ; $x _ { i j } ^ { k } \in R ^ { n _ { 1 } }$ ; confidence 0.489
  
42. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017047.png ; $0 < p \leq 1$ ; confidence 0.999
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489
  
43. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017099.png ; $B x = b x - x d$ ; confidence 0.765
+
43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031016.png ; $f ( \lambda ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \lambda ^ { n }$ ; confidence 0.489
  
44. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017072.png ; $X \in B ( H )$ ; confidence 0.994
+
44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014068.png ; $T _ { \phi / | \phi | }$ ; confidence 0.489
  
45. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001093.png ; $\pi ^ { - i }$ ; confidence 0.246
+
45. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100608.png ; $E ( B ( t ) ) \equiv 0 , \quad E ( B ( t ) . B ( s ) ) = \operatorname { min } ( t , s )$ ; confidence 0.489
  
46. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001065.png ; $J ^ { 2 } = id$ ; confidence 0.712
+
46. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070138.png ; $= ( F ( . ) , h ( . , y ) ) _ { H } = f ( y )$ ; confidence 0.489
  
47. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001090.png ; $\sim _ { 0 }$ ; confidence 0.148
+
47. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011018.png ; $v ( x ) = v ( - x )$ ; confidence 0.489
  
48. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005082.png ; $\theta = 1$ ; confidence 0.999
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
  
49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005012.png ; $F = D ^ { T } f$ ; confidence 0.999
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $G ( u )$ ; confidence 0.489
  
50. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005074.png ; $B = H ^ { - 1 }$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489
  
51. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004017.png ; $J _ { f } ( x )$ ; confidence 0.961
+
51. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
  
52. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004024.png ; $K _ { I } ( f )$ ; confidence 0.804
+
52. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008055.png ; $T < T _ { c }$ ; confidence 0.489
  
53. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013076.png ; $| \alpha |$ ; confidence 0.548
+
53. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006091.png ; $( u _ { i } , u _ { t } + 1 , u _ { t } + 2 )$ ; confidence 0.489
  
54. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010417.png ; $\rho < 1$ ; confidence 0.998
+
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040059.png ; $n ^ { + } = \oplus _ { \alpha \in S } + \mathfrak { g } _ { \alpha }$ ; confidence 0.489
  
55. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008020.png ; $E [ W _ { p } ]$ ; confidence 0.907
+
55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002025.png ; $S _ { k } = E [ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) ]$ ; confidence 0.489
  
56. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008016.png ; $E [ T _ { p } ]$ ; confidence 0.952
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014051.png ; $t \geq \operatorname { deg } s _ { i } > \operatorname { deg } r _ { i }$ ; confidence 0.489
  
57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005027.png ; $\Omega = G$ ; confidence 0.999
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150158.png ; $i , j \in \{ 1 , \ldots , n \}$ ; confidence 0.489
  
58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080127.png ; $u \in R ( A )$ ; confidence 0.988
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016022.png ; $NP = NTIME [ n ^ { Q ( 1 ) } ]$ ; confidence 0.489
  
59. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008068.png ; $\xi \neq 0$ ; confidence 0.998
+
59. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013055.png ; $S \lambda$ ; confidence 0.489
  
60. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010017.png ; $\tau _ { A }$ ; confidence 0.881
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205306.png ; $( f \mapsto \int K ( t , . ) f ( t ) d \mu ( t ) = T f ) \in L ^ { p } ( \nu )$ ; confidence 0.489
  
61. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232019.png ; $g ( x , y ; H )$ ; confidence 0.997
+
61. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f1300406.png ; $d _ { k }$ ; confidence 0.489
  
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001020.png ; $\rho ^ { v }$ ; confidence 0.274
+
62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007098.png ; $i \overline { \xi A }$ ; confidence 0.489
  
63. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004012.png ; $P ^ { 1 } ( Q )$ ; confidence 0.961
+
63. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450388.png ; $1 \in V$ ; confidence 0.489
  
64. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s08336010.png ; $J _ { x } ( z )$ ; confidence 0.276
+
64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055045.png ; $\iota : M \rightarrow C * ( M )$ ; confidence 0.488
  
65. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011036.png ; $v = w ( r , s )$ ; confidence 0.956
+
65. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017084.png ; $A = \alpha + i b$ ; confidence 0.488
  
66. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301407.png ; $r , s \geq 0$ ; confidence 0.995
+
66. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \alpha _ { n } = 0 = \operatorname { lim } _ { n \rightarrow \infty } n ^ { - 1 } \operatorname { log } \alpha _ { n }$ ; confidence 0.488
  
67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004060.png ; $s \lambda$ ; confidence 0.487
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203004.png ; $[ 0,2 \pi [ ^ { N } ] ^ { N }$ ; confidence 0.488
  
68. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m06262078.png ; $2 \times 2$ ; confidence 0.269
+
68. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003023.png ; $\operatorname { ca } ( \Omega , F )$ ; confidence 0.488
  
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050110.png ; $S _ { 0 } ( z )$ ; confidence 0.949
+
69. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028042.png ; $K \subset C ^ { x }$ ; confidence 0.488
  
70. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005077.png ; $V V ^ { * } = 1$ ; confidence 0.986
+
70. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300809.png ; $x \in R _ { + } , \varphi _ { m } ( 0 , k ) = 0 , \varphi _ { m } ^ { \prime } ( 0 , k ) = 1$ ; confidence 0.488
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005010.png ; $S _ { k } ( z )$ ; confidence 0.777
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s1304008.png ; $X ^ { P } = \{ x \in X : g x = x , \forall g \in P \}$ ; confidence 0.488
  
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013023.png ; $e = e ( L | F )$ ; confidence 0.778
+
72. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005047.png ; $f ( x , i k j ) \in L ^ { 2 } ( R )$ ; confidence 0.488
  
73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034019.png ; $S _ { S } ( M )$ ; confidence 0.184
+
73. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630105.png ; $\| f - q \| _ { L _ { p } ( R ^ { n } ) } \leq c \sum _ { i = 1 } ^ { n } M _ { i }$ ; confidence 0.488
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034040.png ; $\hat { R K }$ ; confidence 0.303
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019013.png ; $S ( \alpha / q )$ ; confidence 0.488
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303701.png ; $D = D [ 0,1 ]$ ; confidence 0.998
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
  
76. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017079.png ; $= \dot { k }$ ; confidence 0.452
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040112.png ; $\{ x _ { n } \}$ ; confidence 0.488
  
77. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017065.png ; $\succsim$ ; confidence 0.256
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027085.png ; $W ( \rho ) . W ( \overline { \rho } ) = 1$ ; confidence 0.488
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b01737053.png ; $\alpha < 1$ ; confidence 0.952
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022037.png ; $i = 0 , \dots , r _ { j } - 1$ ; confidence 0.488
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296045.png ; $\alpha = 1$ ; confidence 0.993
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240246.png ; $F = MS _ { H } / MS$ ; confidence 0.488
  
80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304404.png ; $W \wedge X$ ; confidence 0.886
+
80. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016010.png ; $[ a , b ]$ ; confidence 0.488
  
81. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044019.png ; $E _ { k } ( X )$ ; confidence 0.481
+
81. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327033.png ; $s p ( A )$ ; confidence 0.488
  
82. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044026.png ; $H _ { k } ( X )$ ; confidence 0.844
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028051.png ; $H * \Omega ^ { \infty } X$ ; confidence 0.488
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790
+
83. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029069.png ; $f ^ { t }$ ; confidence 0.488
  
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045026.png ; $F _ { Y } ( Y )$ ; confidence 0.779
+
84. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040145.png ; $t < s$ ; confidence 0.487
  
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s1202207.png ; $L ^ { 2 } ( E )$ ; confidence 0.998
+
85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001036.png ; $k \in N _ { 0 }$ ; confidence 0.487
  
86. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022065.png ; $\Delta + z$ ; confidence 0.994
+
86. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020244.png ; $\overline { u } 1 , \overline { q }$ ; confidence 0.487
  
87. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251032.png ; $\mu \neq 0$ ; confidence 1.000
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044092.png ; $a \in R G$ ; confidence 0.487
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049062.png ; $P \times Q$ ; confidence 0.912
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032021.png ; $B _ { j }$ ; confidence 0.487
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050018.png ; $A : = F _ { l }$ ; confidence 0.985
+
89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012021.png ; $d _ { H } ( A , B ) = \operatorname { sup } \{ | d ( x , A ) - d ( x , B ) | : x \in X \}$ ; confidence 0.487
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230100.png ; $G \in O ( p )$ ; confidence 0.999
+
90. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190149.png ; $X ( t _ { 2 } )$ ; confidence 0.487
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023069.png ; $X K = X _ { 2 }$ ; confidence 0.994
+
91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004080.png ; $X \in G L$ ; confidence 0.487
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510128.png ; $v \in F ( u )$ ; confidence 0.514
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004060.png ; $s \lambda$ ; confidence 0.487
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510130.png ; $w \in F ( v )$ ; confidence 0.972
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031027.png ; $\alpha \in N _ { 0 } ^ { \phi }$ ; confidence 0.487
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510159.png ; $d _ { i n } < 2$ ; confidence 0.507
+
94. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058044.png ; $4 \times 4$ ; confidence 1.000
+
95. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602019.png ; $\Phi ^ { + } ( t _ { 0 } ) - \Phi ^ { - } ( t _ { 0 } ) = \phi ( t _ { 0 } )$ ; confidence 0.487
  
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305807.png ; $r \times l$ ; confidence 0.798
+
96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012017.png ; $[ A , f ] + [ B , g ] = [ A \cap B , f + g ]$ ; confidence 0.487
  
97. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027015.png ; $R _ { x } [ f ]$ ; confidence 0.208
+
97. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110203.png ; $f ( x ) \in \tilde { Q } ( D ^ { n } )$ ; confidence 0.487
  
98. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620191.png ; $\sqrt { x }$ ; confidence 1.000
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023053.png ; $B _ { \delta } ( . )$ ; confidence 0.487
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062065.png ; $B \lambda$ ; confidence 0.998
+
99. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003034.png ; $\operatorname { Fun } ( M )$ ; confidence 0.487
  
100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202901.png ; $( G , \tau )$ ; confidence 0.995
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028022.png ; $c _ { k } = a _ { k } ^ { 2 } - b _ { k } ^ { 2 } , s _ { k } = s _ { k - 1 } - 2 ^ { k } c _ { k } , p _ { k } = 2 s _ { k } ^ { - 1 } a _ { k } ^ { 2 }$ ; confidence 0.487
  
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320121.png ; $a \in O ( U )$ ; confidence 0.388
+
101. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008065.png ; $F$ ; confidence 0.487
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329044.png ; $\sum _ { y }$ ; confidence 0.256
+
102. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045061.png ; $= 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } [ C _ { X , Y } ( u , v ) - u v ] d u d v$ ; confidence 0.487
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034045.png ; $u , v \in T M$ ; confidence 0.871
+
103. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200102.png ; $\hat { f } ( \omega )$ ; confidence 0.486
  
104. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034061.png ; $N \geq n - 2$ ; confidence 0.996
+
104. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011049.png ; $\{ p _ { i x } \} \frac { N } { 1 }$ ; confidence 0.486
  
105. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034085.png ; $u ( D ^ { 2 } )$ ; confidence 1.000
+
105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306509.png ; $\Phi _ { N } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$ ; confidence 0.486
  
106. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064018.png ; $T _ { N } ( a )$ ; confidence 0.855
+
106. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026073.png ; $\lambda / x \swarrow b _ { \mu }$ ; confidence 0.486
  
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065064.png ; $I = [ - 1,1 ]$ ; confidence 0.980
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138077.png ; $R$ ; confidence 0.486
  
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065055.png ; $S _ { T } ( 0 )$ ; confidence 0.155
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011025.png ; $p \in \Pi _ { x }$ ; confidence 0.486
  
109. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066010.png ; $\tau \in T$ ; confidence 0.990
+
109. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020096.png ; $1 / P _ { m , n }$ ; confidence 0.486
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002019.png ; $\tau ^ { + }$ ; confidence 0.800
+
110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160110.png ; $8.5$ ; confidence 0.486
  
111. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021940/c02194023.png ; $Q _ { n } ( x )$ ; confidence 0.621
+
111. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m120110100.png ; $z [ \pi _ { 1 } ( M ) ]$ ; confidence 0.486
  
112. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005020.png ; $\xi ^ { 11 }$ ; confidence 0.694
+
112. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012042.png ; $h _ { i } = ( h _ { i 1 } , \dots , h _ { i N } )$ ; confidence 0.486
  
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005039.png ; $i ( p - n + i )$ ; confidence 1.000
+
113. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222084.png ; $( x x _ { t } x _ { \lambda } x _ { v } ) = 0$ ; confidence 0.486
  
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005071.png ; $j ^ { r } ( f )$ ; confidence 0.827
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059030.png ; $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ ; confidence 0.486
  
115. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060103.png ; $z ^ { - 1 / 3 }$ ; confidence 0.927
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046051.png ; $h \in X$ ; confidence 0.486
  
116. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372094.png ; $\mu \geq 0$ ; confidence 1.000
+
116. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026049.png ; $\| \Delta V ^ { n } \| ^ { 2 } \leq \| \Delta V ^ { 0 } \| ^ { 2 } + \sum _ { m = 1 } ^ { n } k \| ( L _ { h k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.486
  
117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006051.png ; $\mu ( Z ) = 0$ ; confidence 0.998
+
117. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015034.png ; $x _ { j }$ ; confidence 0.485
  
118. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $N \geq Z$ ; confidence 0.919
+
118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180346.png ; $\{ M , g \} \in S ^ { 1 }$ ; confidence 0.485
  
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070159.png ; $a _ { 2 } ( g )$ ; confidence 0.433
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220050.png ; $z \in M$ ; confidence 0.485
  
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070153.png ; $a _ { 3 } ( g )$ ; confidence 0.860
+
120. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041510/f04151073.png ; $k \neq 1$ ; confidence 0.485
  
121. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007088.png ; $u _ { n } v = 0$ ; confidence 0.728
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023027.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } = 1$ ; confidence 0.485
  
122. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007073.png ; $\leq 1200$ ; confidence 0.998
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
  
123. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007034.png ; $196883 + 1$ ; confidence 1.000
+
123. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009012.png ; $R _ { \mu \nu } - \frac { 1 } { 2 } R g _ { \mu \nu } - \Lambda g _ { \mu \nu } = \chi T _ { \mu \nu }$ ; confidence 0.485
  
124. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070100.png ; $v _ { N } 1 = 0$ ; confidence 0.395
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037066.png ; $L \cap \{ 0,1 \} ^ { x }$ ; confidence 0.485
  
125. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013038.png ; $1 \Lambda$ ; confidence 0.328
+
125. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010013.png ; $W ^ { x } ( t )$ ; confidence 0.485
  
126. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015026.png ; $f \in C ( T )$ ; confidence 0.993
+
126. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010029.png ; $z \vec { \Delta } / G$ ; confidence 0.485
  
127. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015034.png ; $H ^ { 2 } ( S )$ ; confidence 0.998
+
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031014.png ; $L ^ { p } ( R ^ { n } )$ ; confidence 0.485
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301506.png ; $H ^ { 2 } ( T )$ ; confidence 0.994
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029044.png ; $HF _ { * } ^ { symp } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.485
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015059.png ; $C ^ { * } ( S )$ ; confidence 0.960
+
129. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001015.png ; $[ z ^ { n } f ( D ) , z ^ { m } g ( D ) ] =$ ; confidence 0.485
  
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140158.png ; $T _ { \Phi }$ ; confidence 0.846
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026037.png ; $\| V ^ { n } \| ^ { 2 } \leq \| V ^ { 0 } \| ^ { 2 } + C \sum _ { m = 1 } ^ { n } k \| ( L _ { k k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.484
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b015400101.png ; $\Psi _ { 2 }$ ; confidence 0.972
+
131. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240129.png ; $l \notin S$ ; confidence 0.484
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b015400100.png ; $\Psi _ { 1 }$ ; confidence 0.984
+
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016014.png ; $\chi T$ ; confidence 0.484
  
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015020.png ; $\eta \in A$ ; confidence 0.996
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484
  
134. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015017.png ; $\pi ( \xi )$ ; confidence 0.999
+
134. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
  
135. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940805.png ; $A \cup B = X$ ; confidence 0.985
+
135. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006033.png ; $k ^ { n } B _ { N } ( h / k )$ ; confidence 0.484
  
136. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021051.png ; $4 / ( 3 N / 2 )$ ; confidence 0.887
+
136. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001039.png ; $v \in \{ p _ { 1 } , \dots , p _ { x } , \infty \}$ ; confidence 0.484
  
137. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021045.png ; $O ( h ^ { k } )$ ; confidence 0.922
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583041.png ; $T ^ { * n } \rightarrow 0$ ; confidence 0.484
  
138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019010.png ; $C ( n , k , r )$ ; confidence 0.991
+
138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042087.png ; $V = \oplus _ { i = 0 } ^ { n - 1 } V _ { i }$ ; confidence 0.484
  
139. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t1201909.png ; $T ( n , k , r )$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024034.png ; $\mathfrak { g } ( f )$ ; confidence 0.484
  
140. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820144.png ; $P _ { j } ( x )$ ; confidence 0.899
+
140. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050130.png ; $\sigma _ { T } ( A , X ) = \hat { A } ( M _ { \sigma _ { T } } ( B , X ) )$ ; confidence 0.484
  
141. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065560/m065560229.png ; $| z | < \rho$ ; confidence 0.990
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010266.png ; $2$ ; confidence 0.484
  
142. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058970/l05897018.png ; $0 < \rho < 1$ ; confidence 0.999
+
142. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001043.png ; $V ^ { 2 x }$ ; confidence 0.484
  
143. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200185.png ; $G _ { 2 } ( r )$ ; confidence 0.957
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050050.png ; $( t , x ) \mapsto l ( t , x )$ ; confidence 0.484
  
144. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200209.png ; $k = \rho = 0$ ; confidence 0.890
+
144. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020196.png ; $E [ | Y _ { \infty } - Y _ { T } | ^ { 2 } | F _ { T } ] = w ( B _ { \operatorname { min } } ( T , \tau ) )$ ; confidence 0.484
  
145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020037.png ; $g _ { 1 } ( k )$ ; confidence 0.951
+
145. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002017.png ; $F _ { x _ { 2 } }$ ; confidence 0.484
  
146. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021080.png ; $t ( M ; 1,2 )$ ; confidence 0.986
+
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004012.png ; $\delta = ( l - 1 , l - 2 , \ldots , 0 )$ ; confidence 0.484
  
147. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021020.png ; $t ( M ; 1,1 )$ ; confidence 0.995
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050237.png ; $v < 1$ ; confidence 0.483
  
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t1202104.png ; $t ( M ; x , y )$ ; confidence 0.962
+
148. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120113.png ; $V ( O _ { M } )$ ; confidence 0.483
  
149. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021030.png ; $t ( M _ { i } )$ ; confidence 0.930
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220148.png ; $H _ { D } ^ { 2 } ( X / R , R ( 2 ) )$ ; confidence 0.483
  
150. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021022.png ; $t ( M ; 2,1 )$ ; confidence 0.989
+
150. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003098.png ; $P = \{ \delta _ { X } : x \in [ 0,1 ] \}$ ; confidence 0.483
  
151. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603018.png ; $1.614 \mu$ ; confidence 0.993
+
151. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006029.png ; $s _ { j } : = \| f ( x , i k _ { j } ) \| ^ { - 2 } L ^ { 2 } ( R _ { + } )$ ; confidence 0.483
  
152. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006022.png ; $\hat { E S }$ ; confidence 0.201
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483
  
153. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005046.png ; $Y ( 1 , x ) = 1$ ; confidence 0.517
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020016.png ; $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$ ; confidence 0.483
  
154. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397072.png ; $V \times V$ ; confidence 0.942
+
154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007075.png ; $83$ ; confidence 0.483
  
155. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005090.png ; $L ( 0 ) v = n v$ ; confidence 0.933
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004044.png ; $( R , + , \leq )$ ; confidence 0.483
  
156. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005092.png ; $v \in V ( n )$ ; confidence 0.227
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( b ) ^ { n } n ^ { \Omega } } = E$ ; confidence 0.483
  
157. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020111.png ; $q ( x , y ) = y$ ; confidence 0.998
+
157. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120040/e1200404.png ; $l : R \rightarrow R$ ; confidence 0.483
  
158. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068070/o068070125.png ; $p ( x , y ) = x$ ; confidence 0.999
+
158. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201304.png ; $P ( x ) = x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n }$ ; confidence 0.483
  
159. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007021.png ; $\lambda V$ ; confidence 0.533
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202004.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.483
  
160. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007052.png ; $n ( d w / d Z )$ ; confidence 0.330
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110840/b1108405.png ; $b \in R ^ { m }$ ; confidence 0.483
  
161. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007050.png ; $d \phi / d S$ ; confidence 0.732
+
161. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008094.png ; $d \omega j \sim$ ; confidence 0.483
  
162. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011035.png ; $z = m l + b / 2$ ; confidence 0.842
+
162. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290128.png ; $R ( q ^ { N } )$ ; confidence 0.483
  
163. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011036.png ; $z = m l - b / 2$ ; confidence 0.995
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483
  
164. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900121.png ; $P = U ^ { * } U$ ; confidence 0.988
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483
  
165. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900185.png ; $A ( \zeta )$ ; confidence 0.994
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010050.png ; $\tilde { \varphi } = \varphi$ ; confidence 0.483
  
166. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v0969006.png ; $T \in B ( H )$ ; confidence 0.997
+
166. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017033.png ; $\{ y _ { s } ^ { ( i ) } : s < t , i = 1 , \dots , n \}$ ; confidence 0.483
  
167. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900161.png ; $H ( \zeta )$ ; confidence 0.992
+
167. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d13005010.png ; $K ( m ) \subseteq DG ( m , r ) \subseteq RM ( 2 , m )$ ; confidence 0.483
  
168. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900160.png ; $T ( \zeta )$ ; confidence 0.962
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042082.png ; $k ^ { * }$ ; confidence 0.482
  
169. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774048.png ; $0 \leq k < n$ ; confidence 0.964
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016042.png ; $= \operatorname { DSPACE } [ n ^ { O ( 1 ) } ]$ ; confidence 0.482
  
170. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691026.png ; $\hbar ( x )$ ; confidence 0.823
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021170/c02117010.png ; $\pm \infty$ ; confidence 0.482
  
171. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006048.png ; $v _ { p } ( n )$ ; confidence 0.445
+
171. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230107.png ; $D _ { i } = \frac { \partial } { \partial x _ { i } } + \sum _ { | \alpha | = 0 } ^ { 2 k } y _ { \alpha + e _ { i } } ^ { b } \frac { \partial } { \partial y _ { \alpha } ^ { b } }$ ; confidence 0.482
  
172. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006058.png ; $F _ { q } ( T )$ ; confidence 0.968
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008084.png ; $8$ ; confidence 0.482
  
173. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004041.png ; $( g , \eta )$ ; confidence 0.991
+
173. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002043.png ; $\operatorname { Fun } _ { q } ( M ) \rightarrow \operatorname { Fun } _ { q } ( M ) \otimes \operatorname { Fun } _ { q } ( SU ( n ) )$ ; confidence 0.482
  
174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005020.png ; $1 \geq k + 1$ ; confidence 0.976
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020028.png ; $a _ { i j } \in Z$ ; confidence 0.482
  
175. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006085.png ; $T _ { A } \xi$ ; confidence 0.755
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028093.png ; $X$ ; confidence 0.482
  
176. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110100/g1101002.png ; $S ( R ^ { x } )$ ; confidence 0.530
+
176. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029079.png ; $f | _ { \sigma } ^ { \leftarrow } : \tau \leftarrow \sigma$ ; confidence 0.482
  
177. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031790/d031790143.png ; $R ^ { 2 x + 1 }$ ; confidence 0.716
+
177. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002049.png ; $\mu = \sum _ { x = 1 } ^ { \infty } n ^ { - 3 } \delta _ { n }$ ; confidence 0.482
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008037.png ; $\mu ( q , p )$ ; confidence 0.997
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017041.png ; $s ^ { x }$ ; confidence 0.482
  
179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090118.png ; $Z \lambda$ ; confidence 0.688
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018031.png ; $\langle x , y \rangle \in K$ ; confidence 0.482
  
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090399.png ; $L ( \mu )$ ; confidence 0.993
+
180. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100135.png ; $\operatorname { supp } T = \{ x _ { 1 } , \dots , x _ { N } \}$ ; confidence 0.482
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085035.png ; $\chi _ { V }$ ; confidence 0.686
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482
  
182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090449.png ; $G ( m , 1 , n )$ ; confidence 0.996
+
182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009023.png ; $\dot { k } _ { \infty }$ ; confidence 0.482
  
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090101.png ; $e \lambda$ ; confidence 0.132
+
183. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200307.png ; $X \backslash P$ ; confidence 0.482
  
184. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090357.png ; $G _ { K } ( V )$ ; confidence 0.990
+
184. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010029.png ; $\alpha \in \Delta _ { \gamma }$ ; confidence 0.482
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011063.png ; $( u , \psi )$ ; confidence 0.994
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200609.png ; $\Omega$ ; confidence 0.482
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061200/l06120017.png ; $\delta < 1$ ; confidence 0.997
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027056.png ; $\{ p ; \} _ { 0 } ^ { \infty }$ ; confidence 0.482
  
187. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011049.png ; $L ( L ^ { 2 } )$ ; confidence 0.997
+
187. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002043.png ; $f ^ { * } : \overline { H } \square ^ { q } ( Y , G ) \rightarrow \overline { H } \square ^ { q } ( X , G )$ ; confidence 0.481
  
188. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080208.png ; $b _ { 2 } + = 1$ ; confidence 0.916
+
188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019034.png ; $\dot { x } = A x$ ; confidence 0.481
  
189. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080180.png ; $\vec { F B }$ ; confidence 0.643
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044019.png ; $E _ { k } ( X )$ ; confidence 0.481
  
190. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080197.png ; $f ( u , v , t )$ ; confidence 0.999
+
190. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004025.png ; $D y _ { N } ^ { * } ( x ) = \tau T _ { N } ^ { * } ( x )$ ; confidence 0.481
  
191. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017011.png ; $Z _ { 2 } ( G )$ ; confidence 0.993
+
191. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005036.png ; $5$ ; confidence 0.481
  
192. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970204.png ; $X ( t _ { 1 } )$ ; confidence 0.438
+
192. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005078.png ; $R _ { + } ( x ) : = \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.481
  
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018064.png ; $H ( A ^ { c } )$ ; confidence 0.943
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200223.png ; $1 / P _ { m } , K$ ; confidence 0.481
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190149.png ; $X ( t _ { 2 } )$ ; confidence 0.487
+
194. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203208.png ; $x \in V _ { I }$ ; confidence 0.481
  
195. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010013.png ; $W ^ { x } ( t )$ ; confidence 0.485
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
  
196. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110170/g1101706.png ; $\sqrt { t }$ ; confidence 1.000
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011050.png ; $q f = 0$ ; confidence 0.481
  
197. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l057540111.png ; $\beta ( t )$ ; confidence 0.942
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240501.png ; $9$ ; confidence 0.481
  
198. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010010.png ; $B _ { d } ( x )$ ; confidence 0.334
+
198. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009044.png ; $U _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x ^ { k ( x _ { 1 } + \ldots + n _ { k } ) - n }$ ; confidence 0.481
  
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w1301004.png ; $\Delta + 2$ ; confidence 0.596
+
199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013080.png ; $\sum _ { j } b _ { j } = 0$ ; confidence 0.481
  
200. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010017.png ; $B _ { d } ( 0 )$ ; confidence 0.300
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025021.png ; $E _ { 1 }$ ; confidence 0.481
  
201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021076.png ; $\pm x _ { i }$ ; confidence 0.974
+
201. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e1200903.png ; $\nabla \times E = - \frac { 1 } { c ^ { 2 } } \frac { \partial H } { \partial t }$ ; confidence 0.481
  
202. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021033.png ; $( p + 1 ) q / 2$ ; confidence 0.987
+
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021038.png ; $00 ( G ; C )$ ; confidence 0.481
  
203. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014020.png ; $H ( 0 ) = 1 / 2$ ; confidence 1.000
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290146.png ; $( f , \phi ) \rightarrow \dashv ( f , \phi )$ ; confidence 0.481
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017068.png ; $\Sigma > 0$ ; confidence 0.968
+
204. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002035.png ; $f ^ { * } : \overline { H } \square ^ { * } ( Y , G ) \rightarrow \overline { H } \square ^ { * } ( X , G )$ ; confidence 0.481
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017039.png ; $H _ { X } ( t )$ ; confidence 0.986
+
205. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014056.png ; $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ; confidence 0.481
  
206. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560
+
206. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011057.png ; $\frac { \mu _ { n } ( x ) } { n } \stackrel { P } { \rightarrow } - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } G ( d \lambda )$ ; confidence 0.480
  
207. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017041.png ; $H _ { Z } ( t )$ ; confidence 0.638
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000144.png ; $( x : \sigma ) \in \Gamma \vdash x : \sigma$ ; confidence 0.480
  
208. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001082.png ; $S = Q ^ { * } G$ ; confidence 0.821
+
208. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005046.png ; $( S , r )$ ; confidence 0.480
  
209. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003020.png ; $x , \theta$ ; confidence 0.685
+
209. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110202.png ; $\Gamma ^ { 0 }$ ; confidence 0.480
  
210. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003014.png ; $F _ { X } ( q )$ ; confidence 0.987
+
210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030115.png ; $K _ { 1 } , K _ { 2 } , \ldots$ ; confidence 0.480
  
211. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010125.png ; $V \neq ( 0 )$ ; confidence 0.999
+
211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100121.png ; $\operatorname { Aut } ( G , c )$ ; confidence 0.480
  
212. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010083.png ; $f ( y ) \in y$ ; confidence 0.998
+
212. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003083.png ; $x \in \Omega \backslash \Gamma$ ; confidence 0.480
  
213. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010073.png ; $\forall x$ ; confidence 0.995
+
213. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300108.png ; $G = S _ { y }$ ; confidence 0.480
  
214. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002029.png ; $( P , \rho )$ ; confidence 0.999
+
214. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005046.png ; $\frac { \partial A } { \partial \tau } = \frac { \partial \mu _ { 0 } } { \partial R } ( k _ { c } , R _ { c } ) A +$ ; confidence 0.480
  
215. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002042.png ; $G _ { \tau }$ ; confidence 0.838
+
215. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140136.png ; $\pi$ ; confidence 0.480
  
216. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003064.png ; $L ^ { 2 } ( Q )$ ; confidence 0.981
+
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001049.png ; $10 p$ ; confidence 0.480
  
217. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003018.png ; $f ( a t + a k )$ ; confidence 0.927
+
217. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001021.png ; $\sigma ( t ) = \int _ { t ^ { - n } g \Phi } ^ { \infty } ( s ) d s$ ; confidence 0.480
  
218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003063.png ; $L ^ { 2 } ( R )$ ; confidence 0.993
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018056.png ; $3 A$ ; confidence 0.480
  
219. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004024.png ; $K _ { 7 } , 11$ ; confidence 0.391
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480
  
220. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004029.png ; $c \leq 1 / 4$ ; confidence 0.998
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480
  
221. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001091.png ; $W _ { 1 } ( m )$ ; confidence 0.995
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026047.png ; $U _ { \lambda } = \{ x \in R ^ { n } : ( x , \lambda ) \in U \}$ ; confidence 0.480
  
222. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001052.png ; $t \in Z / p Z$ ; confidence 0.826
+
222. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200233.png ; $c _ { m , n } = 2 ^ { - n } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { n + k }$ ; confidence 0.480
  
223. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001044.png ; $t \neq 0,1$ ; confidence 1.000
+
223. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680808.png ; $B _ { i \alpha } \beta$ ; confidence 0.480
  
224. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001071.png ; $O _ { 1 } ( m )$ ; confidence 0.984
+
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004083.png ; $g \in X$ ; confidence 0.480
  
225. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001063.png ; $W _ { 1 } ( 1 )$ ; confidence 0.999
+
225. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010094.png ; $L _ { C } ^ { 1 } ( \hat { G } )$ ; confidence 0.479
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160069.png ; $Q ( \zeta )$ ; confidence 0.715
+
226. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160118.png ; $B \in C$ ; confidence 0.479
  
227. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008018.png ; $r ^ { 2 } = z z$ ; confidence 0.973
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203408.png ; $U _ { 1 } = \{ z : | z _ { j } | < 1 , j = 1 , \ldots , n \}$ ; confidence 0.479
  
228. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011053.png ; $G _ { N } ( . )$ ; confidence 0.645
+
228. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001024.png ; $C ( T ^ { x } )$ ; confidence 0.479
  
229. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793
+
229. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006073.png ; $( 20 , \dots , z _ { r } - 1 ) \neq ( 0 , \dots , 0 )$ ; confidence 0.479
  
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011061.png ; $1 / x ( x + 1 )$ ; confidence 0.979
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201207.png ; $( M ) \geq \alpha ( n ) ( \frac { \operatorname { inj } M } { \pi } ) ^ { n }$ ; confidence 0.479
  
231. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012011.png ; $\eta \in R$ ; confidence 0.996
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044016.png ; $[ X , Y ] * \simeq [ D Y , D X ] \times$ ; confidence 0.479
  
232. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013013.png ; $L ^ { 2 } [ D ]$ ; confidence 0.980
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s0857908.png ; $\omega _ { j }$ ; confidence 0.479
  
233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png ; $F _ { 3 }$ ; confidence 0.996
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003027.png ; $( \Omega , F ) +$ ; confidence 0.479
  
234. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562
+
234. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180132.png ; $\otimes ^ { r } E$ ; confidence 0.479
  
235. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $SO ( 3 )$ ; confidence 0.940
+
235. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006040.png ; $^ { + } ( S ^ { 1 } ) / \operatorname { Mob } ( S ^ { 1 } )$ ; confidence 0.479
  
236. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
+
236. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015057.png ; $A _ { 0 } \equiv \{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in C } D ( \Delta ^ { \alpha } ) \}$ ; confidence 0.479
  
237. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700073.png ; $X \equiv ( \lambda x . F ( x x ) ) W = F ( W W ) \equiv F X$ ; confidence 0.479
  
238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png ; $T ^ { n }$ ; confidence 0.616
+
238. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210104.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } \sum _ { n = 0 } ^ { N } a _ { i } ^ { n } z ^ { n } ( \frac { \partial } { \partial z } ) ^ { n } z ^ { \lambda + k } =$ ; confidence 0.479
  
239. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378
+
239. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230144.png ; $J = ( I _ { p } \oplus - l _ { q } )$ ; confidence 0.479
  
240. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
+
240. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127016.png ; $T _ { X }$ ; confidence 0.479
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png ; $t _ { n }$ ; confidence 0.933
+
241. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015053.png ; $\xi \rightarrow \xi ^ { \# } \equiv S \xi$ ; confidence 0.478
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674
+
242. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847013.png ; $W ( )$ ; confidence 0.478
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026019.png ; $( x ; ( n + 1 / 2 ) k )$ ; confidence 0.478
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022032.png ; $M _ { f } ( v ) = \frac { \rho f } { ( 2 \pi T _ { f } ) ^ { N / 2 } } e ^ { - p - u } f | ^ { 2 } / 2 T _ { f }$ ; confidence 0.478
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
+
245. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170237.png ; $K _ { P }$ ; confidence 0.478
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240399.png ; $X _ { 3 }$ ; confidence 0.593
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004074.png ; $5$ ; confidence 0.478
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055054.png ; $x ^ { G }$ ; confidence 0.478
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240373.png ; $z _ { 1 }$ ; confidence 0.669
+
248. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005052.png ; $u ^ { 1 } , \ldots , u ^ { n }$ ; confidence 0.478
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240396.png ; $M _ { H }$ ; confidence 0.989
+
249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110214.png ; $151$ ; confidence 0.478
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240169.png ; $\beta = 0$ ; confidence 0.582
+
250. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003014.png ; $z f$ ; confidence 0.478
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041067.png ; $K _ { X }$ ; confidence 0.478
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024079.png ; $( i , j , k )$ ; confidence 0.998
+
252. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d03399068.png ; $\alpha _ { 1 } = 0$ ; confidence 0.478
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240482.png ; $n = \sum n$ ; confidence 0.537
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240503.png ; $j = 1,2,3$ ; confidence 0.997
+
254. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301109.png ; $x = \frac { \Gamma } { l \sqrt { 8 } }$ ; confidence 0.478
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203105.png ; $F _ { d }$ ; confidence 0.478
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040701.png ; $( X , x , v )$ ; confidence 0.683
+
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002025.png ; $\int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { t } } { t } d t \equiv \operatorname { lim } _ { \epsilon \rightarrow 0 , \rho \rightarrow \infty } \int _ { \epsilon } ^ { \rho } \frac { f ^ { * } \mu _ { t } } { t } d t = c _ { \mu } f$ ; confidence 0.478
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; $P _ { SD } K$ ; confidence 0.693
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016010.png ; $a ^ { i } \in R$ ; confidence 0.478
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214
+
258. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680804.png ; $q _ { i } ( z , t )$ ; confidence 0.478
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007027.png ; $q ( \xi ) : = \int _ { R ^ { 3 } } e ^ { - i \xi x } q ( x ) d x$ ; confidence 0.478
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040786.png ; $A , B \in K$ ; confidence 0.882
+
260. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000190.png ; $d \cdot e = \{ b \in B : \exists \beta \subseteq e ( b , \beta ) \in d \}$ ; confidence 0.477
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040506.png ; $\Delta C$ ; confidence 0.542
+
261. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050840/i050840280.png ; $C ^ { 3 }$ ; confidence 0.477
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040360.png ; $\Omega F$ ; confidence 1.000
+
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011014.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ; ) = 0$ ; confidence 0.477
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
263. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900141.png ; $p = 1 , \ldots , N _ { 0 }$ ; confidence 0.477
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040463.png ; $Fi _ { D } A$ ; confidence 0.809
+
264. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014040.png ; $B _ { R }$ ; confidence 0.477
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040176.png ; $\{ a , b \}$ ; confidence 0.977
+
265. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026034.png ; $P ( \theta , \mu ) ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) p ^ { k } q ^ { n - k } \delta _ { k } ( d x )$ ; confidence 0.477
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $d ^ { * } L D$ ; confidence 0.112
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583035.png ; $u ( \lambda ) \not \equiv 0$ ; confidence 0.477
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040742.png ; $\square$ ; confidence 0.958
+
267. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060149.png ; $S : \mathfrak { E } \rightarrow \hat { \mathfrak { C } }$ ; confidence 0.477
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413
+
268. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300101.png ; $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.477
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050235.png ; $A _ { G } > 0$ ; confidence 0.994
+
269. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002038.png ; $T _ { i } ( S )$ ; confidence 0.477
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050296.png ; $G _ { k , q }$ ; confidence 0.954
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290158.png ; $A \backslash \{ m \}$ ; confidence 0.477
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005073.png ; $D ( A ( t ) )$ ; confidence 1.000
+
271. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005086.png ; $\{ \theta _ { n } \}$ ; confidence 0.477
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023099.png ; $K _ { X } + + B ^ { + }$ ; confidence 0.477
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007070.png ; $K _ { 1 } > 0$ ; confidence 0.987
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201707.png ; $\underline { C } ( \overline { R } )$ ; confidence 0.477
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941
+
275. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005034.png ; $H = \{ \sigma \in \operatorname { Aut } \Gamma : v ^ { \sigma } = v \}$ ; confidence 0.477
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006092.png ; $G _ { q , k }$ ; confidence 0.510
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883
+
277. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050172.png ; $\sigma _ { T } ( N , K ) \subseteq \sigma _ { T } ( S , H ) \subseteq \hat { \sigma } ( N , K )$ ; confidence 0.477
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008041.png ; $v = d u f d t$ ; confidence 0.516
+
278. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584044.png ; $( K , ( . . ) )$ ; confidence 0.477
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008035.png ; $s , t \in R$ ; confidence 0.936
+
279. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006035.png ; $\sum c _ { \alpha } D \alpha D$ ; confidence 0.477
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070130.png ; $> 10 ^ { 5 }$ ; confidence 1.000
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a11064014.png ; $\Omega$ ; confidence 0.477
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010066.png ; $- \Delta$ ; confidence 0.997
+
281. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013086.png ; $\vec { i j }$ ; confidence 0.477
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012068.png ; $p ^ { * } > 0$ ; confidence 0.998
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106405.png ; $k$ ; confidence 0.477
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030022.png ; $\Omega X$ ; confidence 0.984
+
283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260161.png ; $b _ { 1 } \ldots b _ { n } = 0$ ; confidence 0.476
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030016.png ; $X _ { n } + 1$ ; confidence 0.249
+
284. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006060.png ; $h ^ { I I } ( z ) = h ( z ) + 2 \pi i W ( z )$ ; confidence 0.476
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920
+
285. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140130.png ; $r j , 2$ ; confidence 0.476
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013045.png ; $( X _ { n } )$ ; confidence 0.994
+
286. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752073.png ; $d _ { i } = e _ { 1 } ^ { n _ { i 1 } } \ldots e _ { s } ^ { n _ { i s } } , \quad i = 1 , \dots , r$ ; confidence 0.476
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013061.png ; $v ^ { 2 / 3 }$ ; confidence 0.963
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071045.png ; $x \in M$ ; confidence 0.476
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016081.png ; $A V i / P = x$ ; confidence 0.977
+
288. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001069.png ; $f ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.476
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016065.png ; $\mu _ { k }$ ; confidence 0.712
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160124.png ; $\mu _ { i }$ ; confidence 0.449
+
290. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012045.png ; $A G ( d , q )$ ; confidence 0.992
+
291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023046.png ; $v ^ { \prime } \in \overline { N E } ( X / S )$ ; confidence 0.476
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a1301201.png ; $D = ( V , B )$ ; confidence 0.999
+
292. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110164.png ; $\Gamma j$ ; confidence 0.476
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012030.png ; $( s , \mu )$ ; confidence 0.999
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026079.png ; $B [ R ] \subset R ^ { n }$ ; confidence 0.476
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040518.png ; $\Omega$ ; confidence 0.476
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017050.png ; $\Psi ( x )$ ; confidence 0.998
+
295. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002090.png ; $E [ | Y _ { \infty } - Y _ { T } | | F _ { T } ] \leq c$ ; confidence 0.475
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017021.png ; $c 0 \geq 0$ ; confidence 0.305
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240305.png ; $4$ ; confidence 0.475
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017047.png ; $\Phi ( x )$ ; confidence 0.986
+
297. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840329.png ; $x ( . ) \rightarrow \int _ { a } ^ { b } K ( , s ) x ( s ) d \sigma ( s )$ ; confidence 0.475
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018054.png ; $( S _ { n } )$ ; confidence 0.882
+
298. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160160.png ; $\dot { x } = A x + B u$ ; confidence 0.475
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201806.png ; $( T _ { n } )$ ; confidence 0.998
+
299. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013089.png ; $[ \delta _ { i j } \alpha _ { i } - k j ] _ { \nu \times \nu }$ ; confidence 0.475
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018027.png ; $T _ { n } = S$ ; confidence 0.597
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011024.png ; $p = \sum _ { j = 0 } ^ { n } a _ { j } b _ { j } ^ { n }$ ; confidence 0.475

Revision as of 00:10, 13 February 2020

List

1. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

2. a120160160.png ; $\sum _ { i = 1 } ^ { S } \sum _ { t = 1 } ^ { T } n _ { t } q _ { i t } f ( y _ { i t } )$ ; confidence 0.492

3. g04328066.png ; $\succ$ ; confidence 0.492

4. f13024025.png ; $( \text { End } U ( \varepsilon ) ) ^ { + }$ ; confidence 0.492

5. m12015036.png ; $f _ { X | Y } ( X | Y ) = \frac { f _ { X , Y } ( X , Y ) } { f _ { Y } ( Y ) } , f _ { Y } ( Y ) > 0$ ; confidence 0.492

6. c02697030.png ; $M \geq 1$ ; confidence 0.492

7. c13025073.png ; $z _ { n }$ ; confidence 0.492

8. s13036019.png ; $l _ { 0 } = 0$ ; confidence 0.492

9. w13006026.png ; $C _ { g , n }$ ; confidence 0.492

10. a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492

11. w13008026.png ; $\sqrt { \lambda } d \lambda + \text { (holomorphic), as } \lambda \rightarrow \infty$ ; confidence 0.492

12. t12020044.png ; $\frac { | g _ { 1 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } , \frac { | g _ { 2 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } \quad ( k \in S )$ ; confidence 0.491

13. k055840333.png ; $s , t \in [ \alpha , b ]$ ; confidence 0.491

14. f12023051.png ; $( i _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.491

15. n06696025.png ; $\lambda + 2$ ; confidence 0.491

16. d12005065.png ; $- 1$ ; confidence 0.491

17. f13019024.png ; $( \frac { d } { d x } ) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }$ ; confidence 0.491

18. d12028059.png ; $\operatorname { grad } \Phi ^ { m } | _ { \partial D _ { m } } \neq 0$ ; confidence 0.491

19. i12006048.png ; $( P ) = \operatorname { dim } ( \operatorname { Prsu } ( P ) )$ ; confidence 0.491

20. c0228507.png ; $N _ { 1 }$ ; confidence 0.491

21. e12024081.png ; $H ^ { 1 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.491

22. q13002027.png ; $B P P$ ; confidence 0.491

23. z12002023.png ; $F _ { m - 1 }$ ; confidence 0.491

24. j13004066.png ; $P _ { \varphi } ( D _ { 1 } * D _ { 2 } ) ( v ) = P _ { \varphi } ( D _ { 1 } ) ( v ) P _ { \varphi } ( D _ { 2 } ) ( v )$ ; confidence 0.491

25. k13001013.png ; $\langle D \rangle$ ; confidence 0.491

26. b120150114.png ; $k \in N \cup \{ 0 \}$ ; confidence 0.490

27. b11034013.png ; $e$ ; confidence 0.490

28. s12016028.png ; $X ^ { i } = \{ x _ { 1 } ^ { i } , \ldots , x ^ { i m _ { i } } \} \subset [ 0,1 ]$ ; confidence 0.490

29. k055840171.png ; $A | _ { R } ( E _ { \overline { \lambda } } )$ ; confidence 0.490

30. l11003041.png ; $L ^ { \prime } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : | \mu | \leq \sum _ { i = 1 } ^ { n } \alpha _ { i } P _ { i }$ ; confidence 0.490

31. e12024078.png ; $c _ { L } \in H ^ { 1 } ( Q ( \mu _ { L } ) ; Z / M ( n ) )$ ; confidence 0.490

32. f120110196.png ; $\tilde { o }$ ; confidence 0.490

33. d120280118.png ; $B ^ { x , x - 1 }$ ; confidence 0.490

34. t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490

35. c1201704.png ; $\gamma _ { i j } = \overline { \gamma } _ { i }$ ; confidence 0.490

36. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

37. c130160138.png ; $[ ( t ( n ) ) ^ { Q ( 1 ) } ] = \operatorname { DSPACE } [ ( t ( n ) ) ^ { Q ( 1 ) } ]$ ; confidence 0.490

38. m12016035.png ; $X _ { 1 } \sim E _ { Y , n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$ ; confidence 0.490

39. o13005054.png ; $x \in \mathfrak { H } +$ ; confidence 0.490

40. b1106709.png ; $5$ ; confidence 0.489

41. c12008076.png ; $x _ { i j } ^ { k } \in R ^ { n _ { 1 } }$ ; confidence 0.489

42. a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489

43. d12031016.png ; $f ( \lambda ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \lambda ^ { n }$ ; confidence 0.489

44. t12014068.png ; $T _ { \phi / | \phi | }$ ; confidence 0.489

45. w1100608.png ; $E ( B ( t ) ) \equiv 0 , \quad E ( B ( t ) . B ( s ) ) = \operatorname { min } ( t , s )$ ; confidence 0.489

46. r130070138.png ; $= ( F ( . ) , h ( . , y ) ) _ { H } = f ( y )$ ; confidence 0.489

47. w12011018.png ; $v ( x ) = v ( - x )$ ; confidence 0.489

48. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

49. b13023050.png ; $G ( u )$ ; confidence 0.489

50. e120020102.png ; $V \not \equiv W$ ; confidence 0.489

51. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

52. i12008055.png ; $T < T _ { c }$ ; confidence 0.489

53. l13006091.png ; $( u _ { i } , u _ { t } + 1 , u _ { t } + 2 )$ ; confidence 0.489

54. b12040059.png ; $n ^ { + } = \oplus _ { \alpha \in S } + \mathfrak { g } _ { \alpha }$ ; confidence 0.489

55. i13002025.png ; $S _ { k } = E [ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) ]$ ; confidence 0.489

56. b12014051.png ; $t \geq \operatorname { deg } s _ { i } > \operatorname { deg } r _ { i }$ ; confidence 0.489

57. b120150158.png ; $i , j \in \{ 1 , \ldots , n \}$ ; confidence 0.489

58. c13016022.png ; $NP = NTIME [ n ^ { Q ( 1 ) } ]$ ; confidence 0.489

59. p13013055.png ; $S \lambda$ ; confidence 0.489

60. b1205306.png ; $( f \mapsto \int K ( t , . ) f ( t ) d \mu ( t ) = T f ) \in L ^ { p } ( \nu )$ ; confidence 0.489

61. f1300406.png ; $d _ { k }$ ; confidence 0.489

62. w12007098.png ; $i \overline { \xi A }$ ; confidence 0.489

63. d032450388.png ; $1 \in V$ ; confidence 0.489

64. b12055045.png ; $\iota : M \rightarrow C * ( M )$ ; confidence 0.488

65. p12017084.png ; $A = \alpha + i b$ ; confidence 0.488

66. i12005053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \alpha _ { n } = 0 = \operatorname { lim } _ { n \rightarrow \infty } n ^ { - 1 } \operatorname { log } \alpha _ { n }$ ; confidence 0.488

67. b1203004.png ; $[ 0,2 \pi [ ^ { N } ] ^ { N }$ ; confidence 0.488

68. l11003023.png ; $\operatorname { ca } ( \Omega , F )$ ; confidence 0.488

69. d12028042.png ; $K \subset C ^ { x }$ ; confidence 0.488

70. o1300809.png ; $x \in R _ { + } , \varphi _ { m } ( 0 , k ) = 0 , \varphi _ { m } ^ { \prime } ( 0 , k ) = 1$ ; confidence 0.488

71. s1304008.png ; $X ^ { P } = \{ x \in X : g x = x , \forall g \in P \}$ ; confidence 0.488

72. i13005047.png ; $f ( x , i k j ) \in L ^ { 2 } ( R )$ ; confidence 0.488

73. n066630105.png ; $\| f - q \| _ { L _ { p } ( R ^ { n } ) } \leq c \sum _ { i = 1 } ^ { n } M _ { i }$ ; confidence 0.488

74. b13019013.png ; $S ( \alpha / q )$ ; confidence 0.488

75. d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488

76. b120040112.png ; $\{ x _ { n } \}$ ; confidence 0.488

77. a12027085.png ; $W ( \rho ) . W ( \overline { \rho } ) = 1$ ; confidence 0.488

78. d11022037.png ; $i = 0 , \dots , r _ { j } - 1$ ; confidence 0.488

79. a130240246.png ; $F = MS _ { H } / MS$ ; confidence 0.488

80. c11016010.png ; $[ a , b ]$ ; confidence 0.488

81. c02327033.png ; $s p ( A )$ ; confidence 0.488

82. b13028051.png ; $H * \Omega ^ { \infty } X$ ; confidence 0.488

83. f13029069.png ; $f ^ { t }$ ; confidence 0.488

84. g120040145.png ; $t < s$ ; confidence 0.487

85. w12001036.png ; $k \in N _ { 0 }$ ; confidence 0.487

86. d120020244.png ; $\overline { u } 1 , \overline { q }$ ; confidence 0.487

87. b12044092.png ; $a \in R G$ ; confidence 0.487

88. a11032021.png ; $B _ { j }$ ; confidence 0.487

89. w13012021.png ; $d _ { H } ( A , B ) = \operatorname { sup } \{ | d ( x , A ) - d ( x , B ) | : x \in X \}$ ; confidence 0.487

90. s090190149.png ; $X ( t _ { 2 } )$ ; confidence 0.487

91. s12004080.png ; $X \in G L$ ; confidence 0.487

92. s12004060.png ; $s \lambda$ ; confidence 0.487

93. c12031027.png ; $\alpha \in N _ { 0 } ^ { \phi }$ ; confidence 0.487

94. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

95. s08602019.png ; $\Phi ^ { + } ( t _ { 0 } ) - \Phi ^ { - } ( t _ { 0 } ) = \phi ( t _ { 0 } )$ ; confidence 0.487

96. m12012017.png ; $[ A , f ] + [ B , g ] = [ A \cap B , f + g ]$ ; confidence 0.487

97. f120110203.png ; $f ( x ) \in \tilde { Q } ( D ^ { n } )$ ; confidence 0.487

98. s12023053.png ; $B _ { \delta } ( . )$ ; confidence 0.487

99. q12003034.png ; $\operatorname { Fun } ( M )$ ; confidence 0.487

100. a13028022.png ; $c _ { k } = a _ { k } ^ { 2 } - b _ { k } ^ { 2 } , s _ { k } = s _ { k - 1 } - 2 ^ { k } c _ { k } , p _ { k } = 2 s _ { k } ^ { - 1 } a _ { k } ^ { 2 }$ ; confidence 0.487

101. q12008065.png ; $F$ ; confidence 0.487

102. s13045061.png ; $= 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } [ C _ { X , Y } ( u , v ) - u v ] d u d v$ ; confidence 0.487

103. g1200102.png ; $\hat { f } ( \omega )$ ; confidence 0.486

104. z13011049.png ; $\{ p _ { i x } \} \frac { N } { 1 }$ ; confidence 0.486

105. s1306509.png ; $\Phi _ { N } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$ ; confidence 0.486

106. m13026073.png ; $\lambda / x \swarrow b _ { \mu }$ ; confidence 0.486

107. a01138077.png ; $R$ ; confidence 0.486

108. b13011025.png ; $p \in \Pi _ { x }$ ; confidence 0.486

109. t12020096.png ; $1 / P _ { m , n }$ ; confidence 0.486

110. f110160110.png ; $8.5$ ; confidence 0.486

111. m120110100.png ; $z [ \pi _ { 1 } ( M ) ]$ ; confidence 0.486

112. e12012042.png ; $h _ { i } = ( h _ { i 1 } , \dots , h _ { i N } )$ ; confidence 0.486

113. m06222084.png ; $( x x _ { t } x _ { \lambda } x _ { v } ) = 0$ ; confidence 0.486

114. s13059030.png ; $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ ; confidence 0.486

115. a01046051.png ; $h \in X$ ; confidence 0.486

116. c12026049.png ; $\| \Delta V ^ { n } \| ^ { 2 } \leq \| \Delta V ^ { 0 } \| ^ { 2 } + \sum _ { m = 1 } ^ { n } k \| ( L _ { h k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.486

117. l12015034.png ; $x _ { j }$ ; confidence 0.485

118. c120180346.png ; $\{ M , g \} \in S ^ { 1 }$ ; confidence 0.485

119. a01220050.png ; $z \in M$ ; confidence 0.485

120. f04151073.png ; $k \neq 1$ ; confidence 0.485

121. a12023027.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } = 1$ ; confidence 0.485

122. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

123. e12009012.png ; $R _ { \mu \nu } - \frac { 1 } { 2 } R g _ { \mu \nu } - \Lambda g _ { \mu \nu } = \chi T _ { \mu \nu }$ ; confidence 0.485

124. b12037066.png ; $L \cap \{ 0,1 \} ^ { x }$ ; confidence 0.485

125. w13010013.png ; $W ^ { x } ( t )$ ; confidence 0.485

126. r13010029.png ; $z \vec { \Delta } / G$ ; confidence 0.485

127. b12031014.png ; $L ^ { p } ( R ^ { n } )$ ; confidence 0.485

128. a13029044.png ; $HF _ { * } ^ { symp } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.485

129. w12001015.png ; $[ z ^ { n } f ( D ) , z ^ { m } g ( D ) ] =$ ; confidence 0.485

130. c12026037.png ; $\| V ^ { n } \| ^ { 2 } \leq \| V ^ { 0 } \| ^ { 2 } + C \sum _ { m = 1 } ^ { n } k \| ( L _ { k k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.484

131. e120240129.png ; $l \notin S$ ; confidence 0.484

132. f12016014.png ; $\chi T$ ; confidence 0.484

133. a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484

134. d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484

135. v12006033.png ; $k ^ { n } B _ { N } ( h / k )$ ; confidence 0.484

136. s13001039.png ; $v \in \{ p _ { 1 } , \dots , p _ { x } , \infty \}$ ; confidence 0.484

137. c02583041.png ; $T ^ { * n } \rightarrow 0$ ; confidence 0.484

138. b12042087.png ; $V = \oplus _ { i = 0 } ^ { n - 1 } V _ { i }$ ; confidence 0.484

139. d12024034.png ; $\mathfrak { g } ( f )$ ; confidence 0.484

140. t130050130.png ; $\sigma _ { T } ( A , X ) = \hat { A } ( M _ { \sigma _ { T } } ( B , X ) )$ ; confidence 0.484

141. a110010266.png ; $2$ ; confidence 0.484

142. h12001043.png ; $V ^ { 2 x }$ ; confidence 0.484

143. b12050050.png ; $( t , x ) \mapsto l ( t , x )$ ; confidence 0.484

144. j120020196.png ; $E [ | Y _ { \infty } - Y _ { T } | ^ { 2 } | F _ { T } ] = w ( B _ { \operatorname { min } } ( T , \tau ) )$ ; confidence 0.484

145. z12002017.png ; $F _ { x _ { 2 } }$ ; confidence 0.484

146. s12004012.png ; $\delta = ( l - 1 , l - 2 , \ldots , 0 )$ ; confidence 0.484

147. a130050237.png ; $v < 1$ ; confidence 0.483

148. l120120113.png ; $V ( O _ { M } )$ ; confidence 0.483

149. b110220148.png ; $H _ { D } ^ { 2 } ( X / R , R ( 2 ) )$ ; confidence 0.483

150. l11003098.png ; $P = \{ \delta _ { X } : x \in [ 0,1 ] \}$ ; confidence 0.483

151. i13006029.png ; $s _ { j } : = \| f ( x , i k _ { j } ) \| ^ { - 2 } L ^ { 2 } ( R _ { + } )$ ; confidence 0.483

152. a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483

153. a13020016.png ; $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$ ; confidence 0.483

154. i13007075.png ; $83$ ; confidence 0.483

155. f12004044.png ; $( R , + , \leq )$ ; confidence 0.483

156. s13064053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( b ) ^ { n } n ^ { \Omega } } = E$ ; confidence 0.483

157. e1200404.png ; $l : R \rightarrow R$ ; confidence 0.483

158. p1201304.png ; $P ( x ) = x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n }$ ; confidence 0.483

159. b1202004.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.483

160. b1108405.png ; $b \in R ^ { m }$ ; confidence 0.483

161. w13008094.png ; $d \omega j \sim$ ; confidence 0.483

162. b130290128.png ; $R ( q ^ { N } )$ ; confidence 0.483

163. a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483

164. a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483

165. b13010050.png ; $\tilde { \varphi } = \varphi$ ; confidence 0.483

166. w13017033.png ; $\{ y _ { s } ^ { ( i ) } : s < t , i = 1 , \dots , n \}$ ; confidence 0.483

167. d13005010.png ; $K ( m ) \subseteq DG ( m , r ) \subseteq RM ( 2 , m )$ ; confidence 0.483

168. b12042082.png ; $k ^ { * }$ ; confidence 0.482

169. c13016042.png ; $= \operatorname { DSPACE } [ n ^ { O ( 1 ) } ]$ ; confidence 0.482

170. c02117010.png ; $\pm \infty$ ; confidence 0.482

171. e120230107.png ; $D _ { i } = \frac { \partial } { \partial x _ { i } } + \sum _ { | \alpha | = 0 } ^ { 2 k } y _ { \alpha + e _ { i } } ^ { b } \frac { \partial } { \partial y _ { \alpha } ^ { b } }$ ; confidence 0.482

172. a13008084.png ; $8$ ; confidence 0.482

173. q12002043.png ; $\operatorname { Fun } _ { q } ( M ) \rightarrow \operatorname { Fun } _ { q } ( M ) \otimes \operatorname { Fun } _ { q } ( SU ( n ) )$ ; confidence 0.482

174. b13020028.png ; $a _ { i j } \in Z$ ; confidence 0.482

175. a12028093.png ; $X$ ; confidence 0.482

176. f13029079.png ; $f | _ { \sigma } ^ { \leftarrow } : \tau \leftarrow \sigma$ ; confidence 0.482

177. n12002049.png ; $\mu = \sum _ { x = 1 } ^ { \infty } n ^ { - 3 } \delta _ { n }$ ; confidence 0.482

178. a12017041.png ; $s ^ { x }$ ; confidence 0.482

179. s12018031.png ; $\langle x , y \rangle \in K$ ; confidence 0.482

180. f130100135.png ; $\operatorname { supp } T = \{ x _ { 1 } , \dots , x _ { N } \}$ ; confidence 0.482

181. a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482

182. i13009023.png ; $\dot { k } _ { \infty }$ ; confidence 0.482

183. c0200307.png ; $X \backslash P$ ; confidence 0.482

184. m12010029.png ; $\alpha \in \Delta _ { \gamma }$ ; confidence 0.482

185. a1200609.png ; $\Omega$ ; confidence 0.482

186. b12027056.png ; $\{ p ; \} _ { 0 } ^ { \infty }$ ; confidence 0.482

187. v12002043.png ; $f ^ { * } : \overline { H } \square ^ { q } ( Y , G ) \rightarrow \overline { H } \square ^ { q } ( X , G )$ ; confidence 0.481

188. l12019034.png ; $\dot { x } = A x$ ; confidence 0.481

189. s13044019.png ; $E _ { k } ( X )$ ; confidence 0.481

190. t13004025.png ; $D y _ { N } ^ { * } ( x ) = \tau T _ { N } ^ { * } ( x )$ ; confidence 0.481

191. o13005036.png ; $5$ ; confidence 0.481

192. i13005078.png ; $R _ { + } ( x ) : = \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.481

193. t120200223.png ; $1 / P _ { m } , K$ ; confidence 0.481

194. s1203208.png ; $x \in V _ { I }$ ; confidence 0.481

195. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

196. e12011050.png ; $q f = 0$ ; confidence 0.481

197. a130240501.png ; $9$ ; confidence 0.481

198. f13009044.png ; $U _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x ^ { k ( x _ { 1 } + \ldots + n _ { k } ) - n }$ ; confidence 0.481

199. m13013080.png ; $\sum _ { j } b _ { j } = 0$ ; confidence 0.481

200. a11025021.png ; $E _ { 1 }$ ; confidence 0.481

201. e1200903.png ; $\nabla \times E = - \frac { 1 } { c ^ { 2 } } \frac { \partial H } { \partial t }$ ; confidence 0.481

202. f13021038.png ; $00 ( G ; C )$ ; confidence 0.481

203. f130290146.png ; $( f , \phi ) \rightarrow \dashv ( f , \phi )$ ; confidence 0.481

204. v12002035.png ; $f ^ { * } : \overline { H } \square ^ { * } ( Y , G ) \rightarrow \overline { H } \square ^ { * } ( X , G )$ ; confidence 0.481

205. t13014056.png ; $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ; confidence 0.481

206. z13011057.png ; $\frac { \mu _ { n } ( x ) } { n } \stackrel { P } { \rightarrow } - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } G ( d \lambda )$ ; confidence 0.480

207. l057000144.png ; $( x : \sigma ) \in \Gamma \vdash x : \sigma$ ; confidence 0.480

208. n13005046.png ; $( S , r )$ ; confidence 0.480

209. f120110202.png ; $\Gamma ^ { 0 }$ ; confidence 0.480

210. w120030115.png ; $K _ { 1 } , K _ { 2 } , \ldots$ ; confidence 0.480

211. m120100121.png ; $\operatorname { Aut } ( G , c )$ ; confidence 0.480

212. g13003083.png ; $x \in \Omega \backslash \Gamma$ ; confidence 0.480

213. i1300108.png ; $G = S _ { y }$ ; confidence 0.480

214. g12005046.png ; $\frac { \partial A } { \partial \tau } = \frac { \partial \mu _ { 0 } } { \partial R } ( k _ { c } , R _ { c } ) A +$ ; confidence 0.480

215. t130140136.png ; $\pi$ ; confidence 0.480

216. e12001049.png ; $10 p$ ; confidence 0.480

217. i12001021.png ; $\sigma ( t ) = \int _ { t ^ { - n } g \Phi } ^ { \infty } ( s ) d s$ ; confidence 0.480

218. a13018056.png ; $3 A$ ; confidence 0.480

219. a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480

220. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

221. b13026047.png ; $U _ { \lambda } = \{ x \in R ^ { n } : ( x , \lambda ) \in U \}$ ; confidence 0.480

222. t120200233.png ; $c _ { m , n } = 2 ^ { - n } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { n + k }$ ; confidence 0.480

223. o0680808.png ; $B _ { i \alpha } \beta$ ; confidence 0.480

224. b12004083.png ; $g \in X$ ; confidence 0.480

225. f13010094.png ; $L _ { C } ^ { 1 } ( \hat { G } )$ ; confidence 0.479

226. c130160118.png ; $B \in C$ ; confidence 0.479

227. b1203408.png ; $U _ { 1 } = \{ z : | z _ { j } | < 1 , j = 1 , \ldots , n \}$ ; confidence 0.479

228. l13001024.png ; $C ( T ^ { x } )$ ; confidence 0.479

229. l13006073.png ; $( 20 , \dots , z _ { r } - 1 ) \neq ( 0 , \dots , 0 )$ ; confidence 0.479

230. b1201207.png ; $( M ) \geq \alpha ( n ) ( \frac { \operatorname { inj } M } { \pi } ) ^ { n }$ ; confidence 0.479

231. s13044016.png ; $[ X , Y ] * \simeq [ D Y , D X ] \times$ ; confidence 0.479

232. s0857908.png ; $\omega _ { j }$ ; confidence 0.479

233. l11003027.png ; $( \Omega , F ) +$ ; confidence 0.479

234. c120180132.png ; $\otimes ^ { r } E$ ; confidence 0.479

235. w13006040.png ; $^ { + } ( S ^ { 1 } ) / \operatorname { Mob } ( S ^ { 1 } )$ ; confidence 0.479

236. t12015057.png ; $A _ { 0 } \equiv \{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in C } D ( \Delta ^ { \alpha } ) \}$ ; confidence 0.479

237. l05700073.png ; $X \equiv ( \lambda x . F ( x x ) ) W = F ( W W ) \equiv F X$ ; confidence 0.479

238. f120210104.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } \sum _ { n = 0 } ^ { N } a _ { i } ^ { n } z ^ { n } ( \frac { \partial } { \partial z } ) ^ { n } z ^ { \lambda + k } =$ ; confidence 0.479

239. d120230144.png ; $J = ( I _ { p } \oplus - l _ { q } )$ ; confidence 0.479

240. d03127016.png ; $T _ { X }$ ; confidence 0.479

241. t12015053.png ; $\xi \rightarrow \xi ^ { \# } \equiv S \xi$ ; confidence 0.478

242. f03847013.png ; $W ( )$ ; confidence 0.478

243. c12026019.png ; $( x ; ( n + 1 / 2 ) k )$ ; confidence 0.478

244. b12022032.png ; $M _ { f } ( v ) = \frac { \rho f } { ( 2 \pi T _ { f } ) ^ { N / 2 } } e ^ { - p - u } f | ^ { 2 } / 2 T _ { f }$ ; confidence 0.478

245. l120170237.png ; $K _ { P }$ ; confidence 0.478

246. a13004074.png ; $5$ ; confidence 0.478

247. a01055054.png ; $x ^ { G }$ ; confidence 0.478

248. l06005052.png ; $u ^ { 1 } , \ldots , u ^ { n }$ ; confidence 0.478

249. f120110214.png ; $151$ ; confidence 0.478

250. z13003014.png ; $z f$ ; confidence 0.478

251. a11041067.png ; $K _ { X }$ ; confidence 0.478

252. d03399068.png ; $\alpha _ { 1 } = 0$ ; confidence 0.478

253. a13024019.png ; $y$ ; confidence 0.478

254. v1301109.png ; $x = \frac { \Gamma } { l \sqrt { 8 } }$ ; confidence 0.478

255. c1203105.png ; $F _ { d }$ ; confidence 0.478

256. c12002025.png ; $\int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { t } } { t } d t \equiv \operatorname { lim } _ { \epsilon \rightarrow 0 , \rho \rightarrow \infty } \int _ { \epsilon } ^ { \rho } \frac { f ^ { * } \mu _ { t } } { t } d t = c _ { \mu } f$ ; confidence 0.478

257. s12016010.png ; $a ^ { i } \in R$ ; confidence 0.478

258. o0680804.png ; $q _ { i } ( z , t )$ ; confidence 0.478

259. i13007027.png ; $q ( \xi ) : = \int _ { R ^ { 3 } } e ^ { - i \xi x } q ( x ) d x$ ; confidence 0.478

260. l057000190.png ; $d \cdot e = \{ b \in B : \exists \beta \subseteq e ( b , \beta ) \in d \}$ ; confidence 0.477

261. i050840280.png ; $C ^ { 3 }$ ; confidence 0.477

262. d12011014.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ; ) = 0$ ; confidence 0.477

263. v096900141.png ; $p = 1 , \ldots , N _ { 0 }$ ; confidence 0.477

264. m13014040.png ; $B _ { R }$ ; confidence 0.477

265. e12026034.png ; $P ( \theta , \mu ) ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) p ^ { k } q ^ { n - k } \delta _ { k } ( d x )$ ; confidence 0.477

266. c02583035.png ; $u ( \lambda ) \not \equiv 0$ ; confidence 0.477

267. o130060149.png ; $S : \mathfrak { E } \rightarrow \hat { \mathfrak { C } }$ ; confidence 0.477

268. r1300101.png ; $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.477

269. m13002038.png ; $T _ { i } ( S )$ ; confidence 0.477

270. b130290158.png ; $A \backslash \{ m \}$ ; confidence 0.477

271. i12005086.png ; $\{ \theta _ { n } \}$ ; confidence 0.477

272. m13023099.png ; $K _ { X } + + B ^ { + }$ ; confidence 0.477

273. a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477

274. l1201707.png ; $\underline { C } ( \overline { R } )$ ; confidence 0.477

275. c13005034.png ; $H = \{ \sigma \in \operatorname { Aut } \Gamma : v ^ { \sigma } = v \}$ ; confidence 0.477

276. a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477

277. t130050172.png ; $\sigma _ { T } ( N , K ) \subseteq \sigma _ { T } ( S , H ) \subseteq \hat { \sigma } ( N , K )$ ; confidence 0.477

278. k05584044.png ; $( K , ( . . ) )$ ; confidence 0.477

279. h13006035.png ; $\sum c _ { \alpha } D \alpha D$ ; confidence 0.477

280. a11064014.png ; $\Omega$ ; confidence 0.477

281. m13013086.png ; $\vec { i j }$ ; confidence 0.477

282. a0106405.png ; $k$ ; confidence 0.477

283. m130260161.png ; $b _ { 1 } \ldots b _ { n } = 0$ ; confidence 0.476

284. l12006060.png ; $h ^ { I I } ( z ) = h ( z ) + 2 \pi i W ( z )$ ; confidence 0.476

285. m130140130.png ; $r j , 2$ ; confidence 0.476

286. n06752073.png ; $d _ { i } = e _ { 1 } ^ { n _ { i 1 } } \ldots e _ { s } ^ { n _ { i s } } , \quad i = 1 , \dots , r$ ; confidence 0.476

287. a01071045.png ; $x \in M$ ; confidence 0.476

288. z13001069.png ; $f ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.476

289. a13013032.png ; $\phi$ ; confidence 0.476

290. s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476

291. m13023046.png ; $v ^ { \prime } \in \overline { N E } ( X / S )$ ; confidence 0.476

292. f120110164.png ; $\Gamma j$ ; confidence 0.476

293. b13026079.png ; $B [ R ] \subset R ^ { n }$ ; confidence 0.476

294. a130040518.png ; $\Omega$ ; confidence 0.476

295. j12002090.png ; $E [ | Y _ { \infty } - Y _ { T } | | F _ { T } ] \leq c$ ; confidence 0.475

296. a130240305.png ; $4$ ; confidence 0.475

297. k055840329.png ; $x ( . ) \rightarrow \int _ { a } ^ { b } K ( , s ) x ( s ) d \sigma ( s )$ ; confidence 0.475

298. m062160160.png ; $\dot { x } = A x + B u$ ; confidence 0.475

299. m13013089.png ; $[ \delta _ { i j } \alpha _ { i } - k j ] _ { \nu \times \nu }$ ; confidence 0.475

300. b13011024.png ; $p = \sum _ { j = 0 } ^ { n } a _ { j } b _ { j } ^ { n }$ ; confidence 0.475

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/59. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/59&oldid=44547