Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/32"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 32 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 32 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040048.png ; $X ^ { G } \hookrightarrow X$ ; confidence 0.935
+
1. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201407.png ; $n > 2$ ; confidence 0.915
  
2. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040037.png ; $X _ { G } E G = ( X \times E G ) / G$ ; confidence 0.270
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016089.png ; $F ( C )$ ; confidence 0.915
  
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041067.png ; $z \in C \backslash [ - 1,1 ]$ ; confidence 0.994
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059049.png ; $r = r ( x )$ ; confidence 0.915
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304102.png ; $\{ \mu _ { i } \} _ { i = 0 } ^ { N }$ ; confidence 0.989
+
4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001028.png ; $\hat { f } ( x _ { i } ) \neq c ( x _ { i } )$ ; confidence 0.915
  
5. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s120170100.png ; $s = ( m - 1 , m - 2 , \dots , 1,0 )$ ; confidence 0.745
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205108.png ; $x _ { + } = x _ { c } - \lambda \nabla f ( x _ { c } )$ ; confidence 0.915
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a0130502.png ; $d = ( d _ { 1 } , \dots , d _ { n } )$ ; confidence 0.327
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024036.png ; $g \geq 1$ ; confidence 0.914
  
7. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018031.png ; $\langle x , y \rangle \in K$ ; confidence 0.482
+
7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301207.png ; $f ( t ) = \sum _ { n = - \infty } ^ { \infty } a _ { n } e ^ { i n t } , a _ { 0 } = 0$ ; confidence 0.914
  
8. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s1202006.png ; $\sum _ { i } \lambda _ { i } = n$ ; confidence 0.985
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040100.png ; $x x ^ { \prime } \in L _ { 1 } ( \mu )$ ; confidence 0.914
  
9. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049056.png ; $\{ \vec { p } : p \in N _ { l } \}$ ; confidence 0.131
+
9. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007040.png ; $( k \in N , N \leq x \leq N + M )$ ; confidence 0.914
  
10. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png ; $\dot { k } = 1 , \ldots , r ( P )$ ; confidence 0.289
+
10. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301406.png ; $Q ( t ) = \prod _ { i } \frac { 1 + x _ { i } t } { 1 - x _ { i } t } = \sum _ { r \geq 0 } q _ { r } t ^ { r }$ ; confidence 0.914
  
11. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062710/m0627105.png ; $\sum _ { i = 1 } ^ { r } n _ { i } = n$ ; confidence 0.906
+
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025053.png ; $( x , - \xi ) \notin W F ( u )$ ; confidence 0.914
  
12. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230125.png ; $X = ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.413
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031095.png ; $L = ( \Delta / 2 ) - x . \nabla$ ; confidence 0.914
  
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000141.png ; $f$ ; confidence 0.914
  
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794
+
14. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003073.png ; $\frac { q ( z ) t ( w ) - q ( w ) t ( z ) } { z - w } = \sum _ { i , j = 1 } ^ { n } b _ { i , j } z ^ { i - 1 } w ^ { j - 1 }$ ; confidence 0.914
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023067.png ; $K _ { 2 } ( m \times m ) = I _ { m }$ ; confidence 0.339
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012013.png ; $h$ ; confidence 0.914
  
16. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230139.png ; $S _ { i } = X _ { i } X ^ { \prime }$ ; confidence 0.610
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021065.png ; $\{ L _ { n } ^ { \prime } \}$ ; confidence 0.914
  
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051068.png ; $u _ { i } \rightarrow v _ { i }$ ; confidence 0.966
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064028.png ; $T ( \alpha )$ ; confidence 0.914
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051077.png ; $( u _ { j } , v _ { j } ) \in E _ { j }$ ; confidence 0.613
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026047.png ; $m ^ { c }$ ; confidence 0.914
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305108.png ; $= \operatorname { min } 5 =$ ; confidence 0.200
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068059.png ; $p ^ { \prime }$ ; confidence 0.914
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025020.png ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509
+
20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201403.png ; $\{ \gamma _ { j } \} _ { j \in Z }$ ; confidence 0.914
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025021.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { - 1 / 2 }$ ; confidence 0.997
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026050.png ; $\phi ( s ) \in ( L ^ { 2 } ) ^ { + }$ ; confidence 0.998
+
22. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702023.png ; $( Z / l ^ { n } Z ) _ { X }$ ; confidence 0.914
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028035.png ; $E * ( | \overline { S } ( X ) | )$ ; confidence 0.270
+
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021019.png ; $t ( M ) = t ( M / e ) + t ( M - e )$ ; confidence 0.914
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067090.png ; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012054.png ; $d = q ^ { - 1 } b$ ; confidence 0.914
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067054.png ; $\pi W : W ( M ) \rightarrow M$ ; confidence 0.961
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620138.png ; $m _ { + } ( \lambda ) = \infty$ ; confidence 0.997
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320105.png ; $\operatorname { det } ( T )$ ; confidence 0.921
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320124.png ; $\varphi : U \rightarrow V$ ; confidence 0.997
+
28. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203406.png ; $SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.945
+
29. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035013.png ; $g ( t | t - 1 ) = f ( Z ^ { t - 1 } , t )$ ; confidence 0.327
+
30. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558406.png ; $x _ { 1 } , x _ { 2 } , x , y \in K$ ; confidence 0.914
  
31. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211034.png ; $\tau \rightarrow \infty$ ; confidence 0.515
+
31. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011045.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon } \| = 0$ ; confidence 0.914
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064051.png ; $\omega _ { \alpha , \beta }$ ; confidence 0.994
+
32. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300407.png ; $j a j + a j - 1 = 0$ ; confidence 0.914
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005078.png ; $\sigma ^ { \prime \prime }$ ; confidence 0.588
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010064.png ; $\alpha ( x , \alpha , p )$ ; confidence 0.914
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003060.png ; $\| \psi \| = K \| \varphi \|$ ; confidence 0.999
+
34. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100115.png ; $\hat { G }$ ; confidence 0.914
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } +$ ; confidence 0.565
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020091.png ; $\omega e _ { i } = f _ { i }$ ; confidence 0.914
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007033.png ; $0 , - b _ { 1 } , - b _ { 2 } , \dots$ ; confidence 0.909
+
36. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190163.png ; $x \neq p$ ; confidence 0.914
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050118.png ; $x \in \Sigma ^ { i _ { 1 } } ( f )$ ; confidence 0.395
+
37. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010067.png ; $L _ { 0 , n } ^ { 1 } = ( S _ { n } ) ^ { - n }$ ; confidence 0.914
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795
+
38. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004022.png ; $G = Cl _ { 2 } ( \frac { 1 } { 2 } \pi ) = - Cl _ { 2 } ( \frac { 3 } { 2 } \pi ) =$ ; confidence 0.914
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006028.png ; $\rho \in L ^ { 5 / 3 } ( R ^ { 3 } )$ ; confidence 0.951
+
39. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200503.png ; $K _ { \nu } ( x )$ ; confidence 0.914
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007045.png ; $V ^ { 4 } = \oplus _ { n } V _ { n }$ ; confidence 0.164
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060111.png ; $\kappa = - 2 J$ ; confidence 0.914
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070126.png ; $L = \oplus _ { R \in Z } L _ { R }$ ; confidence 0.122
+
41. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e1201605.png ; $* \tau = \xi \wedge d \xi$ ; confidence 0.914
  
42. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013032.png ; $y = \operatorname { Sub } T$ ; confidence 0.371
+
42. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408027.png ; $\pi _ { N } ( X , A , * )$ ; confidence 0.914
  
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140151.png ; $\operatorname { prin } K l$ ; confidence 0.500
+
43. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001039.png ; $\alpha ^ { \prime } , \alpha$ ; confidence 0.914
  
44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013075.png ; $\operatorname { Jac } ( C )$ ; confidence 0.948
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048045.png ; $\chi ( D ) = \sum ( - 1 ) ^ { i } \operatorname { dim } H _ { S } ^ { i } ( D )$ ; confidence 0.914
  
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013054.png ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941
+
45. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005048.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( A - z I ) ^ { - 1 } K J$ ; confidence 0.914
  
46. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020076.png ; $[ \sqrt { n } , \sqrt { n + 1 } ]$ ; confidence 1.000
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914
  
47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021032.png ; $t ( M ^ { * } ; x , y ) = t ( M ; y , x )$ ; confidence 0.987
+
47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005066.png ; $g : V \rightarrow W$ ; confidence 0.914
  
48. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020106.png ; $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$ ; confidence 0.950
+
48. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001066.png ; $\| S _ { N B } \|$ ; confidence 0.914
  
49. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011018.png ; $\Gamma = \Delta \vec { U } .$ ; confidence 0.281
+
49. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001031.png ; $X \subset G$ ; confidence 0.914
  
50. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900157.png ; $f ( \zeta ) = f _ { p } ( \zeta )$ ; confidence 0.999
+
50. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200308.png ; $f _ { \theta } ( x ) > 0$ ; confidence 0.913
  
51. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006036.png ; $k B _ { 1 } ( h / k ) = G _ { 1 } + 1 / 2$ ; confidence 0.990
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204007.png ; $g E _ { m } = \pi ^ { - 1 } ( g m )$ ; confidence 0.913
  
52. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001032.png ; $\{ A _ { X } = z ^ { N } : n \in Z \}$ ; confidence 0.298
+
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014025.png ; $( W _ { k } f ) ( t ) = \int _ { 0 } ^ { \infty } k ( t - s ) f ( s ) d s , t \in R _ { + }$ ; confidence 0.913
  
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005062.png ; $R ^ { m } \rightarrow R ^ { k }$ ; confidence 0.393
+
53. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003059.png ; $JC ^ { * }$ ; confidence 0.913
  
54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006029.png ; $f , g : R ^ { n } \rightarrow M$ ; confidence 0.745
+
54. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050111.png ; $n ^ { 1 / 2 } \epsilon _ { n } \rightarrow \infty$ ; confidence 0.913
  
55. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006022.png ; $T _ { A } : M f \rightarrow M f$ ; confidence 0.509
+
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034010.png ; $\sum _ { \alpha } | c _ { \alpha } z ^ { \alpha } | < 1$ ; confidence 0.913
  
56. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007033.png ; $a = ( a _ { 1 } , \dots , a _ { k } )$ ; confidence 0.333
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055011.png ; $b _ { \gamma } ( x ) = \operatorname { lim } _ { t \rightarrow \infty } ( t - d ( x , \gamma ( t ) ) ) , \quad x \in M$ ; confidence 0.913
  
57. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007035.png ; $X = ( X _ { 1 } , \dots , X _ { n } )$ ; confidence 0.595
+
57. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004064.png ; $d r \neq 0$ ; confidence 0.913
  
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007080.png ; $A = ( A _ { 1 } , \dots , A _ { k } )$ ; confidence 0.435
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913
  
59. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c0238907.png ; $p = ( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.432
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110770/a11077013.png ; $b _ { j }$ ; confidence 0.913
  
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007034.png ; $D = ( D _ { 1 } , \dots , D _ { n } )$ ; confidence 0.369
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300402.png ; $Fm$ ; confidence 0.913
  
61. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090231.png ; $d \frac { G } { B } ( \lambda )$ ; confidence 0.412
+
61. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603020.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = E _ { 0 } + E \operatorname { sin } \omega t$ ; confidence 0.913
  
62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090389.png ; $\nabla ( \lambda ) = M _ { K }$ ; confidence 0.735
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064054.png ; $\Omega = \sum _ { r = 1 } ^ { R } ( \alpha _ { r } ^ { 2 } - \beta _ { r } ^ { 2 } )$ ; confidence 0.913
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090364.png ; $\Lambda ( V ) \neq \Lambda$ ; confidence 0.996
+
63. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025086.png ; $M _ { i } ( R ^ { n } ) \subset M _ { i + 1 } ( R ^ { n } )$ ; confidence 0.913
  
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026024.png ; $\tau _ { j } ^ { n + 1 } = \frac { u _ { j } ^ { n + 1 } - u _ { j } ^ { n } } { k } - \delta ^ { 2 } ( \frac { u _ { j } ^ { n + 1 } + u _ { j } ^ { n } } { 2 } )$ ; confidence 0.913
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013020.png ; $( A + i ) ^ { - 1 } - ( B + i ) ^ { - 1 }$ ; confidence 1.000
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080147.png ; $A \sim ( A , \overline { A } )$ ; confidence 0.742
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003012.png ; $t \in J$ ; confidence 0.913
  
67. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009087.png ; $B ( t , \omega ) = \omega ( t )$ ; confidence 0.802
+
67. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005019.png ; $t _ { - } ( k ) = t _ { + } ( k ) : = t ( k )$ ; confidence 0.913
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009052.png ; $\theta _ { N } ( f ) = \varphi$ ; confidence 0.754
+
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060120.png ; $E ( \rho )$ ; confidence 0.913
  
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200107.png ; $\{ z ^ { n } ( \frac { d } { d z } ) ^ { m } : n \in Z , m \in N _ { 0 } \}$ ; confidence 0.913
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202003.png ; $L _ { \nu } [ f ] = f ( x _ { \nu } )$ ; confidence 0.992
+
70. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002013.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta } | ^ { 2 } }$ ; confidence 0.913
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021072.png ; $\{ A _ { 1 } , \dots , A _ { k } \}$ ; confidence 0.835
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510104.png ; $\gamma ( F ( u ) ) = \{ \gamma ( v ) < \infty : v \in F ( u ) \}$ ; confidence 0.913
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021062.png ; $A _ { i } A _ { j } = A _ { j } A _ { i }$ ; confidence 0.588
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026010.png ; $u _ { j } ^ { n } = u ( x _ { j } , t _ { n } )$ ; confidence 0.913
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013012.png ; $\Delta H + 2 H ( H ^ { 2 } - K ) = 0$ ; confidence 0.996
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001051.png ; $| A |$ ; confidence 0.913
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017030.png ; $\varepsilon _ { t } ^ { ( l ) }$ ; confidence 0.857
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002017.png ; $103$ ; confidence 0.913
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017019.png ; $E _ { \varepsilon _ { t } } = 0$ ; confidence 0.420
+
75. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018072.png ; $A \mapsto A$ ; confidence 0.913
  
76. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001084.png ; $C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.745
+
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110191.png ; $X \mapsto G _ { X }$ ; confidence 0.913
  
77. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001057.png ; $1 \leq p , q , r , a , b , c \leq n$ ; confidence 0.964
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180414.png ; $( N , g | _ { N } )$ ; confidence 0.913
  
78. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010120.png ; $\square _ { A ( R ) } c ^ { A / R }$ ; confidence 0.437
+
78. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012071.png ; $\operatorname { im } ( \pi ^ { \prime } )$ ; confidence 0.913
  
79. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002023.png ; $\nabla _ { A } ^ { * } F _ { A } = 0$ ; confidence 0.899
+
79. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c110420158.png ; $x < y$ ; confidence 0.913
  
80. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001066.png ; $( - 1 ) ^ { k } D ^ { k } ( z / ( z - 1 )$ ; confidence 0.994
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015031.png ; $q = p ^ { t }$ ; confidence 0.913
  
81. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001039.png ; $x ( z ) z ^ { x - 1 } = h ( z ) / g ( z )$ ; confidence 0.523
+
81. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015057.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } | \Sigma | ^ { n / 2 } | \Psi | ^ { p / 2 } }$ ; confidence 0.913
  
82. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930
+
82. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011060.png ; $E = - \nabla \phi - \frac { 1 } { c } \frac { \partial A } { \partial t } , B = \nabla \times A$ ; confidence 0.913
  
83. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003076.png ; $\operatorname { sin } b , x$ ; confidence 0.229
+
83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065014.png ; $H \in H ^ { 2 } ( \mu , D )$ ; confidence 0.913
  
84. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003043.png ; $( Z f ) ( t , w + 1 ) = ( Z f ) ( t , w )$ ; confidence 0.998
+
84. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202009.png ; $\lambda _ { m } = \operatorname { log } n$ ; confidence 0.913
  
85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003047.png ; $( Z f ) ( t , w ) = ( Z f ) ( - t , - w )$ ; confidence 0.995
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021043.png ; $N > 1$ ; confidence 0.912
  
86. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z1200205.png ; $F _ { N } = F _ { N } - 1 + F _ { N } - 2$ ; confidence 0.209
+
86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003091.png ; $\varepsilon ^ { * } ( T ) = 0$ ; confidence 0.912
  
87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011066.png ; $f ( k , n ) \sim A k ^ { - ( 1 + q ) }$ ; confidence 0.649
+
87. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008096.png ; $\square ^ { t } M _ { \varphi }$ ; confidence 0.912
  
88. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011049.png ; $\{ p _ { i x } \} \frac { N } { 1 }$ ; confidence 0.486
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024950/c02495024.png ; $R = 1$ ; confidence 0.912
  
89. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110139.png ; $a ^ { k } ( 1 - \alpha ) ^ { q - k }$ ; confidence 0.599
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026011.png ; $K \subset V$ ; confidence 0.912
  
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
+
90. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c1201603.png ; $x ^ { T } A x$ ; confidence 0.912
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022034.png ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657
+
91. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007063.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } ( F ( z ) - \eta ) / ( z - \omega ) = \angle F ^ { \prime } ( \omega )$ ; confidence 0.912
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978
+
92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120216.png ; $S = \{ \infty \}$ ; confidence 0.912
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
+
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303604.png ; $X _ { t } ^ { + } = | X _ { t } | , t \geq 0$ ; confidence 0.912
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836
+
94. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170117.png ; $M$ ; confidence 0.912
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
+
95. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003011.png ; $X f ( 1 ) = X f ( \theta , p ) = \int _ { - \infty } ^ { \infty } f ( x + t \theta ) d t$ ; confidence 0.912
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781
+
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001050.png ; $K \hookrightarrow C$ ; confidence 0.912
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919
+
97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t1200309.png ; $\mu ( z ) = f _ { z } / f _ { z }$ ; confidence 0.912
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040345.png ; $\tilde { \Omega } _ { D } F =$ ; confidence 0.971
+
98. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005064.png ; $H ( \theta , \theta _ { 0 } ) \sim c \| \theta - \theta _ { 0 } \| ^ { 2 }$ ; confidence 0.912
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040762.png ; $\Sigma ( P , R ^ { \prime } )$ ; confidence 0.995
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046083.png ; $0 \in D$ ; confidence 0.912
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040316.png ; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362
+
100. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020027.png ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$ ; confidence 0.912
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006081.png ; $( t , u ) \in [ 0 , T ] \times W$ ; confidence 0.995
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049062.png ; $P \times Q$ ; confidence 0.912
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070111.png ; $C ( \overline { \Omega } )$ ; confidence 0.998
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027029.png ; $n - p$ ; confidence 0.912
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008043.png ; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971
+
103. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105075.png ; $f : \Omega \rightarrow T$ ; confidence 0.912
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448
+
104. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807013.png ; $S = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } Z _ { i } ^ { \prime } Z _ { i }$ ; confidence 0.912
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L } ^ { 2 }$ ; confidence 0.273
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040200.png ; $L _ { p } [ 0,1 ]$ ; confidence 0.912
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008049.png ; $\operatorname { ln } 1 d s$ ; confidence 0.137
+
106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260101.png ; $d [ f , S ^ { n } , S ^ { n } ]$ ; confidence 0.912
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201007.png ; $y ^ { \prime } ( t ) = - A y ( t )$ ; confidence 0.983
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008040.png ; $M _ { k } = \partial / \partial x + i x ^ { k } \partial / \partial y$ ; confidence 0.911
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012050.png ; $0 \leq y ^ { \prime } \leq y$ ; confidence 0.997
+
108. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520173.png ; $J \in M _ { n \times n } ( K )$ ; confidence 0.911
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627
+
109. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w1300406.png ; $\sum _ { j = 1 } ^ { n } ( \frac { \partial X _ { j } } { \partial z } ) ^ { 2 } = 0$ ; confidence 0.911
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015014.png ; $T ( T ) : = C ^ { * } ( T _ { f } : f \in C ( T ) )$ ; confidence 0.911
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013025.png ; $H ( \theta , X ) = X - \alpha$ ; confidence 0.657
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301503.png ; $\gamma = | \partial z / \partial \Gamma | ^ { - 1 }$ ; confidence 0.911
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415
+
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020038.png ; $g ( k )$ ; confidence 0.911
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201503.png ; $Ad : G \rightarrow GL ( g )$ ; confidence 0.617
+
113. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004034.png ; $+ \Delta t \partial _ { t } ^ { ( 1 ) } u ( x _ { i } , t ^ { n } ) + \frac { \Delta t ^ { 2 } } { 2 } \partial _ { t } ^ { ( 2 ) } u ( x _ { i } , t ^ { n } ) + O ( \Delta t ^ { 2 } )$ ; confidence 0.911
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020048.png ; $r _ { 1 } = \ldots = r _ { n } = 1$ ; confidence 0.426
+
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200707.png ; $17.19 .23 .29 .31 .41 .47 .59 .71$ ; confidence 0.911
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982
+
115. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060177.png ; $v = v ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.911
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023037.png ; $p _ { 1 } = \ldots = p _ { n } = 1$ ; confidence 0.955
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007017.png ; $1$ ; confidence 0.911
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027034.png ; $\{ \psi _ { n } \} \subset Y$ ; confidence 0.990
+
117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008048.png ; $\pi ( x ) = \eta ( x ^ { - 1 } )$ ; confidence 0.911
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043023.png ; $t \rightarrow \infty$ ; confidence 0.998
+
118. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019023.png ; $P > 0$ ; confidence 0.911
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027075.png ; $| T _ { R } ( x ) \| \geq c \| x |$ ; confidence 0.531
+
119. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001030.png ; $- t / 2 < t _ { 1 } \leq \ldots \leq t _ { n } < t / 2$ ; confidence 0.911
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023062.png ; $\phi * O _ { X } = O _ { Y }$ ; confidence 0.911
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026040.png ; $\mathfrak { Y } \in A ^ { S }$ ; confidence 0.762
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049032.png ; $x ^ { 2 }$ ; confidence 0.911
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260120.png ; $A ( X _ { 1 } , \dots , X _ { N } )$ ; confidence 0.287
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280160.png ; $\pi : A \rightarrow B ( H )$ ; confidence 0.998
+
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280101.png ; $\{ \phi _ { t } \} _ { t \in G }$ ; confidence 0.990
+
124. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029031.png ; $P \rightarrow \Sigma$ ; confidence 0.991
+
125. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005028.png ; $\varphi + = W _ { \Theta } ( z ) \varphi _ { - }$ ; confidence 0.911
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a1303003.png ; $\theta : A \rightarrow B$ ; confidence 0.997
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032010.png ; $X _ { 1 } + \ldots + X _ { n } > 0$ ; confidence 0.850
+
127. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002025.png ; $X = \{ x : A _ { 2 } x \leq b _ { 2 } , x \geq 0 \}$ ; confidence 0.911
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010043.png ; $X _ { i } ( 0 , x _ { i } ) = x _ { i }$ ; confidence 0.979
+
128. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012024.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \theta ( \| x \| ^ { p } + \| y \| ^ { p } )$ ; confidence 0.911
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021086.png ; $\Pi \subset \Delta ^ { + }$ ; confidence 0.990
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170157.png ; $p \in P _ { k - 1 }$ ; confidence 0.911
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210120.png ; $w _ { 1 } \leftarrow w _ { 2 }$ ; confidence 0.848
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016029.png ; $q ^ { \prime } = q$ ; confidence 0.911
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210103.png ; $\mu = w ( \mu + \rho ) - \rho$ ; confidence 0.999
+
131. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003015.png ; $( A - \mu I ) ^ { - 1 }$ ; confidence 0.911
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009019.png ; $\| . \| _ { 1 }$ ; confidence 0.911
  
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002014.png ; $\alpha _ { n } + \beta _ { n }$ ; confidence 0.398
+
133. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006033.png ; $S : = \{ S ( k ) , i k _ { j } , s _ { j } : 1 \leq j \leq J \}$ ; confidence 0.911
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
+
134. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062170/m06217018.png ; $p \geq n$ ; confidence 0.911
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004084.png ; $f \in L _ { 1 } + L _ { \infty }$ ; confidence 0.989
+
135. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007052.png ; $L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.911
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040111.png ; $f ( x _ { n } ) \rightarrow 0$ ; confidence 0.999
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003057.png ; $R \subset D B _ { 1 }$ ; confidence 0.911
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040180.png ; $1 / r = 1 / p ^ { \prime } + 1 / 2$ ; confidence 0.992
+
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240133.png ; $T = \operatorname { Sym } ^ { 2 } T _ { p } ( E )$ ; confidence 0.911
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005067.png ; $M ( H ^ { \infty } ( B _ { E } ) )$ ; confidence 0.995
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022074.png ; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023044.png ; $\operatorname { rist } _ { G } ( n )$ ; confidence 0.911
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982
+
140. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002047.png ; $\operatorname { var } ( X ) \sim \overline { \Delta }$ ; confidence 0.910
  
141. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220176.png ; $_ { s = m } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.355
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001045.png ; $E \subset C ^ { n } \subset P ^ { n }$ ; confidence 0.910
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022062.png ; $\subset H _ { M } ( X , Q ( * ) )$ ; confidence 0.426
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024046.png ; $L ( E / Q ; s )$ ; confidence 0.910
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009022.png ; $\alpha : R \rightarrow R$ ; confidence 0.542
+
143. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007074.png ; $= \sum _ { j = 1 } ^ { J } K ( y , y _ { j } ) c _ { j } = f ( y ) , \forall y \in E$ ; confidence 0.910
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013065.png ; $L _ { i j } ^ { 1 } ^ { * } \cong B$ ; confidence 0.100
+
144. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007046.png ; $\forall \alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.910
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014035.png ; $a ( z ) , b ( z ) \in F _ { q } [ z ]$ ; confidence 0.560
+
145. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011021.png ; $\sigma y$ ; confidence 0.910
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150133.png ; $d : \Omega \rightarrow R$ ; confidence 0.975
+
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021063.png ; $u ( z , \lambda _ { i } ) = z ^ { \lambda _ { i } } + \ldots$ ; confidence 0.910
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150166.png ; $g : \Theta \rightarrow R$ ; confidence 0.588
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f042070137.png ; $\lambda _ { 2 }$ ; confidence 0.910
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150158.png ; $i , j \in \{ 1 , \ldots , n \}$ ; confidence 0.489
+
148. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960303.png ; $\dot { x } = v , \quad \dot { v } = - x + \mu ( 1 - x ^ { 2 } ) v$ ; confidence 0.910
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011026.png ; $\{ p ( t ) : 0 \leq t \leq 1 \}$ ; confidence 1.000
+
149. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001038.png ; $( \nabla _ { X } J ) Y = g ( X , Y ) Z - \alpha ( Y ) X$ ; confidence 0.910
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018062.png ; $L _ { \omega _ { 1 } \omega }$ ; confidence 0.420
+
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016065.png ; $x _ { 1 } ^ { \prime } = x _ { 1 } ( s + v )$ ; confidence 0.910
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202009.png ; $f ( z ) \rightarrow z f ( z )$ ; confidence 0.996
+
151. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011074.png ; $d M _ { 1 } = \rho \frac { \Gamma \dot { b } } { l } ( - U )$ ; confidence 0.910
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022047.png ; $\int M ( u , \xi ) d \xi = u + k$ ; confidence 0.957
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022061.png ; $f ( t , x , \xi ) \in D _ { \xi }$ ; confidence 0.987
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024033.png ; $f = f _ { - } . \delta . f _ { + }$ ; confidence 0.290
+
154. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170102.png ; $e ^ { i t }$ ; confidence 0.910
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029019.png ; $C U : = R ^ { n } \backslash U$ ; confidence 0.469
+
155. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002047.png ; $6 \beta$ ; confidence 0.910
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030015.png ; $Y ^ { \prime } = [ 0,1 [ ^ { N }$ ; confidence 0.961
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b1300706.png ; $a ^ { - 1 } b ^ { m } a b ^ { - n }$ ; confidence 0.910
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031072.png ; $| 1 | p - 1 / 2 | \geq 1 / ( n + 1 )$ ; confidence 0.684
+
157. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013078.png ; $\dot { x } _ { i } = x _ { i } y _ { i }$ ; confidence 0.910
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032087.png ; $( a ; ) _ { j = 1 } ^ { \infty } 1$ ; confidence 0.150
+
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018015.png ; $R _ { + } ^ { N }$ ; confidence 0.910
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203206.png ; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973
+
159. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003018.png ; $\rho ( x , \theta ) = - \operatorname { ln } f _ { \theta } ( x )$ ; confidence 0.910
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710
+
160. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001030.png ; $( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }$ ; confidence 0.910
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034053.png ; $\varphi _ { N } ( z _ { 0 } ) = 0$ ; confidence 0.773
+
161. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021041.png ; $| u - u _ { N } | = O ( h ^ { \alpha } )$ ; confidence 0.910
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301905.png ; $M _ { 1 } , M _ { 2 } \in [ M , 2 M ]$ ; confidence 0.983
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017048.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037087.png ; $n ^ { \Omega ( \sqrt { k } ) }$ ; confidence 0.826
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150157.png ; $p _ { i } = 1 - p _ { j }$ ; confidence 0.910
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004022.png ; $L ( x , y ) , D , E \in \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.910
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200192.png ; $\epsilon ( s ) = ( - 1 ) ^ { m }$ ; confidence 0.979
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022041.png ; $j \neq l$ ; confidence 0.910
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200110.png ; $D _ { i } ( \alpha ) = n _ { i } a$ ; confidence 0.890
+
166. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005025.png ; $g : h \mapsto h g ^ { - 1 }$ ; confidence 0.910
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040086.png ; $p \in \mathfrak { h } ^ { * }$ ; confidence 0.280
+
167. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013083.png ; $A _ { 2 l } ^ { ( * ) }$ ; confidence 0.910
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204003.png ; $G \times E \rightarrow E$ ; confidence 0.988
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017051.png ; $n = \operatorname { max } ( \operatorname { dim } ( K _ { 0 } - L ) , \operatorname { dim } ( K _ { 1 } - L ) )$ ; confidence 0.910
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040037.png ; $\pi ( g \times ^ { Q } f ) = g H$ ; confidence 0.576
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024048.png ; $F ^ { * }$ ; confidence 0.910
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043041.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.243
+
170. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040171.png ; $\| \mu \|$ ; confidence 0.910
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043064.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.734
+
171. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001031.png ; $D _ { f , i }$ ; confidence 0.910
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430146.png ; $B \in \square _ { H } ^ { H } M$ ; confidence 0.268
+
172. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110218.png ; $S ( m , G )$ ; confidence 0.909
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022024.png ; $\int _ { T } | u ( x ) | ^ { p } d x$ ; confidence 0.876
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200162.png ; $W ( \Pi ^ { re } )$ ; confidence 0.909
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049044.png ; $A _ { j } \cap B = \emptyset$ ; confidence 0.740
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204902.png ; $m : \Sigma \rightarrow X$ ; confidence 0.824
+
175. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202107.png ; $V _ { Z }$ ; confidence 0.909
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026078.png ; $R ^ { n } \backslash K _ { 2 }$ ; confidence 0.493
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026077.png ; $R ^ { n } \backslash K _ { 1 }$ ; confidence 0.464
+
177. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002025.png ; $< 1 / 3$ ; confidence 0.909
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027039.png ; $A \hookrightarrow Q ( H )$ ; confidence 0.129
+
178. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008030.png ; $\sigma _ { 1 } = \sum _ { i = 0 } ^ { 2 g } \lambda _ { i }$ ; confidence 0.909
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027012.png ; $T T ^ { * } - T ^ { * } T \in K ( H )$ ; confidence 0.988
+
179. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007033.png ; $0 , - b _ { 1 } , - b _ { 2 } , \dots$ ; confidence 0.909
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028028.png ; $H \times T ( n ) \cong G ( n )$ ; confidence 0.955
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066039.png ; $\| T _ { i t } \|$ ; confidence 0.909
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028038.png ; $B ( n ) = \Sigma ^ { n } D T ( n )$ ; confidence 0.587
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028011.png ; $( G ( n ) , M ) \cong M _ { x }$ ; confidence 0.909
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205004.png ; $Z _ { 0 } : = \{ t : W _ { t } = 0 \}$ ; confidence 0.995
+
182. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014069.png ; $\frac { 1 } { \lambda } \leq \operatorname { max } _ { \varphi } | \operatorname { cos } \alpha ( \varphi ) |$ ; confidence 0.909
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010201.png ; $C ^ { \prime } D ^ { \prime }$ ; confidence 0.060
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230132.png ; $R _ { 11 } = - T$ ; confidence 0.909
  
184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786
+
184. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683019.png ; $\epsilon \rightarrow 0$ ; confidence 0.980
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180102.png ; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909
  
186. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200304.png ; $J = [ \alpha , b ] \subset R$ ; confidence 0.512
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300305.png ; $\{ u x \{ v y w \} \} - \{ v y \{ u x w \} \} = \{ \{ u x v \} y w \} - \{ v \{ x u y \} w \}$ ; confidence 0.909
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004019.png ; $\operatorname { Re } s > 1$ ; confidence 0.661
+
187. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010078.png ; $f : \Delta \rightarrow C ^ { n }$ ; confidence 0.909
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008052.png ; $E \alpha + A \beta = I _ { n }$ ; confidence 0.885
+
188. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080216.png ; $T _ { i } = - \frac { n + 1 } { n + 1 - i } \operatorname { Res } _ { \infty } W ^ { 1 - [ i / ( n + 1 ) ] } d p$ ; confidence 0.909
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008013.png ; $A _ { 1 } \in C ^ { m \times m }$ ; confidence 0.884
+
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019039.png ; $\varphi \in H ^ { 2 m } ( \Gamma , C )$ ; confidence 0.909
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008027.png ; $A _ { j } \in C ^ { n \times n }$ ; confidence 0.923
+
190. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067015.png ; $( p : A \rightarrow D , q : B \rightarrow D )$ ; confidence 0.909
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210015.png ; $( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.532
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004040.png ; $y _ { n } ^ { * } ( x ) = \tau \sum _ { k = 0 } ^ { n } c _ { k } ^ { n } Q _ { k } ( x )$ ; confidence 0.909
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221104.png ; $p _ { 1 } + \ldots + p _ { k } = 1$ ; confidence 0.980
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005069.png ; $z \in \overline { B } _ { E } * *$ ; confidence 0.909
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569
+
193. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001093.png ; $GF ( 2 ^ { 155 } )$ ; confidence 0.909
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010046.png ; $\alpha \in [ 0 , + \infty ]$ ; confidence 1.000
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184018.png ; $C _ { F }$ ; confidence 0.909
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011025.png ; $x _ { i } + t _ { i } v _ { i } \in S$ ; confidence 0.835
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023082.png ; $L : \Omega ( M , T M ) \rightarrow \operatorname { Der } \Omega ( M )$ ; confidence 0.909
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014040.png ; $\Gamma _ { l } = ( X , R _ { l } )$ ; confidence 0.999
+
196. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001021.png ; $\operatorname { inf } ( x , y ) = 0 \Rightarrow \operatorname { inf } ( z x , y ) = \operatorname { inf } ( x z , y ) = 0 , \forall z \in A ^ { + }$ ; confidence 0.909
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014048.png ; $\forall ( x , y ) \in R _ { k }$ ; confidence 0.812
+
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019049.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { k } > 0 > \lambda _ { k + 1 } \geq \ldots \geq \lambda _ { n }$ ; confidence 0.909
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015030.png ; $O ( \varepsilon ^ { q - N } )$ ; confidence 0.814
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040205.png ; $T$ ; confidence 0.909
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015057.png ; $W ^ { \infty , p } ( \Omega )$ ; confidence 0.986
+
199. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012091.png ; $V ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.909
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232707.png ; $A \subset \overline { B }$ ; confidence 0.394
+
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180334.png ; $C ( g ) + \tau _ { 3 } C ( g ) + \tau ^ { 2 } 3 C ( g ) = 0$ ; confidence 0.908
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170181.png ; $M _ { r } , ( n + k _ { j } ) \geq 0$ ; confidence 0.326
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025033.png ; $k \geq n + 1$ ; confidence 0.908
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017097.png ; $M ( n + 2 ) , M ( n + 3 ) , \ldots$ ; confidence 0.877
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004022.png ; $e \wedge | x | = 0$ ; confidence 0.908
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016081.png ; $C = \operatorname { coc }$ ; confidence 0.502
+
203. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080133.png ; $w \in H _ { 0 }$ ; confidence 0.908
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180359.png ; $( g ) \in S ^ { 2 } \tilde { E }$ ; confidence 0.422
+
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006041.png ; $h \mapsto [ h \circ f ] \in C ^ { \infty } ( R ^ { n } , R ) / A$ ; confidence 0.908
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180498.png ; $g _ { i j } ( x , 0 ) = g _ { j } ( x )$ ; confidence 0.908
+
205. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002073.png ; $q = \nu + 1$ ; confidence 0.908
  
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180271.png ; $( - 1 ) ^ { p } \in \{ - 1 , + 1 \}$ ; confidence 0.995
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180498.png ; $g _ { i j } ( x , 0 ) = g _ { j } ( x )$ ; confidence 0.908
  
207. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019045.png ; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974
+
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110116.png ; $\frac { D \phi } { D t } = \frac { \partial \phi } { \partial t } + v _ { i } \phi _ { , i } = \frac { \partial \phi } { \partial t } + ( v . \nabla ) \phi$ ; confidence 0.908
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019031.png ; $\varphi ( t _ { 0 } , x ) \in L$ ; confidence 0.870
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908
  
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020010.png ; $S ^ { k } \times S ^ { m - k - 1 }$ ; confidence 0.987
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908
  
210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794
+
210. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200225.png ; $G _ { 2 } ( r ) = \sum _ { j = 1 } ^ { n } b _ { j } \phi ( z _ { j } ) z _ { j } ^ { k }$ ; confidence 0.908
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210136.png ; $\{ P _ { n } , \theta _ { n } \}$ ; confidence 0.650
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016044.png ; $C ( T )$ ; confidence 0.908
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027016.png ; $\alpha ( k ) = Vol ( S ^ { k } )$ ; confidence 0.372
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
  
213. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028015.png ; $B : C r s \rightarrow F T o p$ ; confidence 0.073
+
213. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
  
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.986
+
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009049.png ; $T \beta$ ; confidence 0.908
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030073.png ; $K _ { 0 } ( O _ { N } ) = Z _ { X } - 1$ ; confidence 0.151
+
215. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003010.png ; $X = G ( R ) / K _ { \infty }$ ; confidence 0.908
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002070.png ; $P ^ { \prime } \subseteq P$ ; confidence 0.589
+
216. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004038.png ; $f = \sum _ { j = 1 } ^ { n } f _ { j } d \overline { z _ { j } }$ ; confidence 0.908
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020168.png ; $\gamma ( \pi _ { 1 } ) \leq 0$ ; confidence 0.208
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026029.png ; $\mu ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) \delta _ { k } ( d x )$ ; confidence 0.908
  
218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003052.png ; $x _ { x } \backslash x _ { 0 }$ ; confidence 0.358
+
218. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027018.png ; $\langle w , f \rangle = w _ { 1 } f _ { 1 } + \ldots + w _ { n } f _ { n }$ ; confidence 0.908
  
219. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003020.png ; $b A _ { p } \subset b \Delta$ ; confidence 0.848
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001083.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.908
  
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022079.png ; $\Omega ^ { i } X$ ; confidence 0.908
  
221. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300309.png ; $N \in N \backslash \{ 0 \}$ ; confidence 0.923
+
221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180366.png ; $k = m$ ; confidence 0.908
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025021.png ; $f ( x , u ] , \ldots , u _ { x } )$ ; confidence 0.348
+
222. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025020.png ; $R _ { j } = \{ k : X _ { k } \geq T _ { j } \}$ ; confidence 0.908
  
223. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029018.png ; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973
+
223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012070.png ; $\operatorname { im } ( \pi )$ ; confidence 0.908
  
224. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008016.png ; $\xi \in \partial \Delta$ ; confidence 0.999
+
224. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005033.png ; $Q C$ ; confidence 0.908
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201109.png ; $f ( \sum _ { j \in l } x _ { j } )$ ; confidence 0.660
+
225. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340109.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } w ( s , t ) = x _ { \pm } ( t )$ ; confidence 0.908
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012031.png ; $\Phi : O G \rightarrow A C$ ; confidence 0.827
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080104.png ; $m = \frac { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) - \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) + \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } =$ ; confidence 0.908
  
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012053.png ; $= \operatorname { dom } a$ ; confidence 0.342
+
227. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021071.png ; $A A ^ { T } = A ^ { T } A = ( \sum _ { i = 1 } ^ { k } s _ { i } x _ { i } ^ { 2 } ) I _ { n }$ ; confidence 0.907
  
228. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018016.png ; $e ^ { \xi ( u ) } = 1 + u \xi ( u )$ ; confidence 0.579
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280167.png ; $\pi ( \alpha _ { t } ( \alpha ) ) = U _ { t } \pi ( \alpha ) U _ { t } ^ { * }$ ; confidence 0.907
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201404.png ; $\operatorname { ln } ( 2 )$ ; confidence 0.119
+
229. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007047.png ; $G \rightarrow G / A$ ; confidence 0.907
  
230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011046.png ; $\operatorname { Re } ( 4 )$ ; confidence 0.983
+
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019045.png ; $X = - \int _ { - \infty } ^ { t } X _ { A } ( t , z ) C ( z ) X _ { A } ( t , z ) d z$ ; confidence 0.907
  
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013076.png ; $\psi + = \psi _ { - } - n \phi$ ; confidence 0.544
+
231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201909.png ; $L _ { 2 } ( R _ { + } ; x ^ { - 1 } )$ ; confidence 0.907
  
232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026019.png ; $P \{ w \in \partial G \} = 0$ ; confidence 0.837
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204306.png ; $\varepsilon : B \rightarrow 1$ ; confidence 0.907
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030059.png ; $E _ { \mu _ { X } } [ \psi ( t ) ]$ ; confidence 0.606
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300306.png ; $u , v , w \in V ^ { \pm }$ ; confidence 0.907
  
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120114.png ; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970
+
234. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050029.png ; $\sum _ { k = 0 } ^ { n } \frac { f _ { k } } { \left( \begin{array} { l } { n } \\ { k } \end{array} \right) } \leq 1$ ; confidence 0.907
  
235. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012079.png ; $q \sim X _ { \nu } ^ { 2 } / \nu$ ; confidence 0.425
+
235. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019023.png ; $m _ { - k } = L ( z ^ { - k } ) = \overline { L ( z ^ { k } ) } = \overline { m } _ { k }$ ; confidence 0.907
  
236. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120103.png ; $f ( \phi | \theta ^ { ( t ) } )$ ; confidence 0.901
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026044.png ; $y \in A ^ { S }$ ; confidence 0.907
  
237. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002010.png ; $X \times X \rightarrow X$ ; confidence 0.977
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907
  
238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008031.png ; $S ( t )$ ; confidence 0.907
  
239. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007059.png ; $f \in \{ \Gamma , k + 2 , v \}$ ; confidence 0.865
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044013.png ; $f _ { 2 }$ ; confidence 0.907
  
240. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003032.png ; $\Gamma \backslash G ( R )$ ; confidence 0.983
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045011.png ; $r s = \frac { n ( n ^ { 2 } - 1 ) - 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } - 6 ( T + U ) } { \sqrt { n ( n ^ { 2 } - 1 ) - 12 T } \sqrt { n ( n ^ { 2 } - 1 ) - 12 U } }$ ; confidence 0.907
  
241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015049.png ; $\dot { X } ^ { \dot { \ell } }$ ; confidence 0.159
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015028.png ; $( g )$ ; confidence 0.907
  
242. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e1201606.png ; $\xi = X _ { x } d x ^ { \alpha }$ ; confidence 0.892
+
242. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013037.png ; $X = \{ C : \operatorname { Hom } _ { \Lambda } ( C , Y ) = 0 \}$ ; confidence 0.907
  
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201809.png ; $\operatorname { Re } ( s )$ ; confidence 0.979
+
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440104.png ; $B _ { R } [ H \times H ]$ ; confidence 0.907
  
244. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019078.png ; $\{ p , q \} \equiv \{ r , s \}$ ; confidence 0.998
+
244. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520185.png ; $C \in M _ { n \times n } ( K )$ ; confidence 0.907
  
245. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019039.png ; $\{ a , x \} \equiv \{ b , x \}$ ; confidence 0.998
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040801.png ; $C \subseteq D$ ; confidence 0.907
  
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019032.png ; $\{ a , b \} \equiv \{ c , d \}$ ; confidence 0.993
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
  
247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019067.png ; $\{ m , a \} \equiv \{ m , b \}$ ; confidence 0.875
+
247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907
  
248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190160.png ; $W ^ { + } ( h _ { 1 } , h _ { 2 } , p )$ ; confidence 0.999
+
248. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907
  
249. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190168.png ; $W ^ { - } ( h _ { 1 } , h _ { 2 } , p )$ ; confidence 0.999
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
  
250. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021027.png ; $\sigma : E \rightarrow E$ ; confidence 0.927
+
250. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007098.png ; $h , g , f \in H$ ; confidence 0.907
  
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023022.png ; $\sigma : M \rightarrow E$ ; confidence 0.952
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002026.png ; $G : S N \times R \rightarrow U M$ ; confidence 0.907
  
252. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230139.png ; $\pi _ { r } ^ { k * } ( \theta )$ ; confidence 0.469
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007026.png ; $c = 5$ ; confidence 0.907
  
253. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230121.png ; $\gamma : M \rightarrow R$ ; confidence 0.957
+
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907
  
254. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260103.png ; $S = X _ { 1 } + \ldots + X _ { n }$ ; confidence 0.659
+
254. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060156.png ; $( a - \delta , a )$ ; confidence 0.907
  
255. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260107.png ; $p = p _ { 1 } + \ldots + p _ { n }$ ; confidence 0.968
+
255. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003018.png ; $| \mu | = \operatorname { sup } ( \mu , - \mu ) \in ca ( \Omega , F )$ ; confidence 0.907
  
256. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007042.png ; $\vec { c } _ { i } ^ { \prime }$ ; confidence 0.187
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050268.png ; $k > 0$ ; confidence 0.907
  
257. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027013.png ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029014.png ; $\pi _ { 2 } ( X , A , x ) \rightarrow \pi _ { 1 } ( A , x )$ ; confidence 0.907
  
258. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001010.png ; $\sigma : R \rightarrow R$ ; confidence 0.997
+
258. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005034.png ; $+ \int _ { C _ { N } } \phi _ { ; m } \rho d y$ ; confidence 0.907
  
259. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907
  
260. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002010.png ; $\operatorname { su } ( 2 )$ ; confidence 0.628
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a0114802.png ; $f _ { n }$ ; confidence 0.907
  
261. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009010.png ; $\alpha ( x ) \beta ( x ) = - 1$ ; confidence 0.997
+
261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140111.png ; $D _ { j , k } ^ { p } ( a ) =$ ; confidence 0.907
  
262. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090109.png ; $H _ { \lambda } ^ { ( k ) } ( x )$ ; confidence 0.418
+
262. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009067.png ; $\mu ^ { * } : H ( \Omega + K ) \rightarrow H ( \Omega )$ ; confidence 0.907
  
263. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080112.png ; $\| \varphi \| _ { S } : = \| M$ ; confidence 0.700
+
263. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008020.png ; $E [ W _ { p } ]$ ; confidence 0.907
  
264. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010058.png ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943
+
264. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014035.png ; $z ( \zeta ) = \zeta + \frac { a _ { 1 } } { \zeta } + \frac { a _ { 2 } } { \zeta ^ { 2 } } + \ldots$ ; confidence 0.907
  
265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011045.png ; $F _ { j } ( z ) e ^ { - i z \zeta }$ ; confidence 0.993
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043084.png ; $k \langle E _ { 1 } , E _ { 2 } \rangle$ ; confidence 0.907
  
266. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110125.png ; $f ( x ) = F ( x + i 0 ) - F ( x - i 0 )$ ; confidence 0.998
+
266. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840361.png ; $X B X + X A + A ^ { * } X - C = 0$ ; confidence 0.907
  
267. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160101.png ; $X 1 , \dots , X _ { Y } , \dots$ ; confidence 0.070
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
  
268. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150201.png ; $\{ x _ { n } \} \subset D ( A )$ ; confidence 0.748
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584012.png ; $K = K _ { + } + K _ { - }$ ; confidence 0.906
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150215.png ; $A \in \Phi _ { - } ( D ( A ) , Y )$ ; confidence 0.949
+
269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005035.png ; $p - n$ ; confidence 0.906
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024023.png ; $k : = \{ K ( a , b ) \} _ { span }$ ; confidence 0.440
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200407.png ; $u \in X$ ; confidence 0.906
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024057.png ; $( \varepsilon , \delta )$ ; confidence 1.000
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230156.png ; $D = \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.906
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024011.png ; $L ( a , b ) c = \{ a b c \rangle$ ; confidence 0.219
+
272. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000150.png ; $\{ x : \sigma \} \vdash x : \sigma$ ; confidence 0.906
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019074.png ; $\omega ^ { x } \neq \omega$ ; confidence 0.519
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280137.png ; $\{ D _ { m } \}$ ; confidence 0.906
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019024.png ; $\{ s \in S : s ^ { - 1 } t s = t \}$ ; confidence 0.931
+
274. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584050.png ; $[ x , y ] = ( G x , y ) , \quad x , y \in K )$ ; confidence 0.906
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023039.png ; $D | _ { \Omega ^ { 0 } } ( M ) = 0$ ; confidence 0.679
+
275. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015088.png ; $\operatorname { dim } D _ { s } = n + 1$ ; confidence 0.906
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023079.png ; $K \in \Omega ^ { k } ( M ; T M )$ ; confidence 0.988
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023095.png ; $[ L ( K ) , L ( L ) ] = L ( [ K , L ] )$ ; confidence 0.991
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013043.png ; $\operatorname { adj } ( L ) = \tau ( G ) J$ ; confidence 0.906
  
278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016061.png ; $\operatorname { lim } _ { n \rightarrow \infty } t ( n ) ( \operatorname { log } t ( n ) ) / s ( n ) = 0$ ; confidence 0.906
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023090.png ; $D | _ { \Omega ^ { 0 } ( M ) } = 0$ ; confidence 0.846
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120020/l1200208.png ; $\phi _ { i j } : \phi _ { j } ( U _ { i } \cap U _ { j } ) \rightarrow \phi _ { i } ( U _ { i } \cap U _ { j } )$ ; confidence 0.906
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024085.png ; $\phi ( t _ { 0 } ) = x ( t _ { 0 } )$ ; confidence 0.819
+
280. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160189.png ; $L \subseteq NL \subseteq NC \subseteq P \subseteq NP \subseteq PH \subseteq PSPACE$ ; confidence 0.906
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290147.png ; $L = M , \phi ^ { 0 p } = id _ { L }$ ; confidence 0.336
+
281. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318019.png ; $C ^ { 1 }$ ; confidence 0.906
  
282. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030103.png ; $f ^ { * } ( x , \varepsilon )$ ; confidence 0.992
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906
  
283. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300307.png ; $V = C ^ { \infty } ( \Omega )$ ; confidence 0.990
+
283. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
  
284. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040100.png ; $( x , \xi ) \in \Sigma _ { p }$ ; confidence 0.997
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906
  
285. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004097.png ; $( x , \xi ) \in \Sigma _ { P }$ ; confidence 0.986
+
285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
  
286. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004037.png ; $u \notin G ^ { s } ( \Omega )$ ; confidence 0.600
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202905.png ; $| x - \frac { p } { q } | < f ( q ) , \quad \operatorname { gcd } ( p , q ) = 1 , q > 0$ ; confidence 0.906
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004051.png ; $R ^ { n } \backslash \{ 0 \}$ ; confidence 0.868
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032015.png ; $\| x + y \| = \| u + v \|$ ; confidence 0.906
  
288. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040163.png ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941
+
288. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010051.png ; $R _ { 1212 } = \alpha _ { 2 } , R _ { 1313 } = \alpha _ { 2 } , R _ { 2424 } = \alpha _ { 2 }$ ; confidence 0.906
  
289. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005051.png ; $\operatorname { Re } l < 0$ ; confidence 0.548
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430174.png ; $\partial _ { q , x } ( x ^ { n } y ^ { m } ) = [ n ] _ { q ^ { 2 } } x ^ { n - 1 } y ^ { m }$ ; confidence 0.906
  
290. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433704.png ; $h \rightarrow D f ( x 0 , h )$ ; confidence 0.618
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021028.png ; $H _ { S } = 0$ ; confidence 0.906
  
291. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601098.png ; $M _ { 0 } = M _ { 0 } ^ { \prime }$ ; confidence 0.902
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002057.png ; $SO ( n )$ ; confidence 0.906
  
292. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001024.png ; $\sigma : V \rightarrow R$ ; confidence 0.963
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066044.png ; $H ^ { 1 }$ ; confidence 0.906
  
293. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009034.png ; $G \rightarrow G ^ { * } \mu$ ; confidence 0.988
+
293. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004046.png ; $i - 1$ ; confidence 0.906
  
294. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002013.png ; $w _ { i } ^ { l } = \alpha _ { l }$ ; confidence 0.385
+
294. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d032240238.png ; $\square ^ { x }$ ; confidence 0.906
  
295. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002065.png ; $| R | > \varepsilon q ^ { n }$ ; confidence 0.835
+
295. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003054.png ; $\sum _ { i = 1 } ^ { n } \psi ( \frac { x _ { i } - T _ { n } } { S _ { n } } ) = 0$ ; confidence 0.906
  
296. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002077.png ; $\rho \geq \| H _ { \phi } \|$ ; confidence 0.997
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021054.png ; $\Lambda _ { n } = \operatorname { log } ( d P _ { n } ^ { \prime } / d P _ { n } )$ ; confidence 0.906
  
297. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002044.png ; $H _ { \phi } f = P _ { - } \phi f$ ; confidence 0.987
+
297. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e0350009.png ; $B ( \zeta , \alpha ) = \{ x \in X : \rho ( x , \zeta ) \leq \alpha \}$ ; confidence 0.906
  
298. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004042.png ; $( \kappa , \lambda ^ { * } )$ ; confidence 0.998
+
298. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062710/m0627105.png ; $\sum _ { i = 1 } ^ { r } n _ { i } = n$ ; confidence 0.906
  
299. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005019.png ; $\beta _ { N } ( \phi , \rho )$ ; confidence 0.538
+
299. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230167.png ; $\Theta$ ; confidence 0.905
  
300. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007034.png ; $\alpha _ { i } \in \hat { k }$ ; confidence 0.234
+
300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018046.png ; $\lambda ^ { k } T ( \lambda g ) = T ( g )$ ; confidence 0.905

Revision as of 00:10, 13 February 2020

List

1. p1201407.png ; $n > 2$ ; confidence 0.915

2. c13016089.png ; $F ( C )$ ; confidence 0.915

3. b11059049.png ; $r = r ( x )$ ; confidence 0.915

4. m13001028.png ; $\hat { f } ( x _ { i } ) \neq c ( x _ { i } )$ ; confidence 0.915

5. b1205108.png ; $x _ { + } = x _ { c } - \lambda \nabla f ( x _ { c } )$ ; confidence 0.915

6. a01024036.png ; $g \geq 1$ ; confidence 0.914

7. b1301207.png ; $f ( t ) = \sum _ { n = - \infty } ^ { \infty } a _ { n } e ^ { i n t } , a _ { 0 } = 0$ ; confidence 0.914

8. b120040100.png ; $x x ^ { \prime } \in L _ { 1 } ( \mu )$ ; confidence 0.914

9. e13007040.png ; $( k \in N , N \leq x \leq N + M )$ ; confidence 0.914

10. s1301406.png ; $Q ( t ) = \prod _ { i } \frac { 1 + x _ { i } t } { 1 - x _ { i } t } = \sum _ { r \geq 0 } q _ { r } t ^ { r }$ ; confidence 0.914

11. m13025053.png ; $( x , - \xi ) \notin W F ( u )$ ; confidence 0.914

12. b12031095.png ; $L = ( \Delta / 2 ) - x . \nabla$ ; confidence 0.914

13. a013000141.png ; $f$ ; confidence 0.914

14. h13003073.png ; $\frac { q ( z ) t ( w ) - q ( w ) t ( z ) } { z - w } = \sum _ { i , j = 1 } ^ { n } b _ { i , j } z ^ { i - 1 } w ^ { j - 1 }$ ; confidence 0.914

15. a01012013.png ; $h$ ; confidence 0.914

16. c12021065.png ; $\{ L _ { n } ^ { \prime } \}$ ; confidence 0.914

17. s13064028.png ; $T ( \alpha )$ ; confidence 0.914

18. a12026047.png ; $m ^ { c }$ ; confidence 0.914

19. a11068059.png ; $p ^ { \prime }$ ; confidence 0.914

20. t1201403.png ; $\{ \gamma _ { j } \} _ { j \in Z }$ ; confidence 0.914

21. a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914

22. l05702023.png ; $( Z / l ^ { n } Z ) _ { X }$ ; confidence 0.914

23. t12021019.png ; $t ( M ) = t ( M / e ) + t ( M - e )$ ; confidence 0.914

24. m12012054.png ; $d = q ^ { - 1 } b$ ; confidence 0.914

25. a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914

26. a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914

27. b12037030.png ; $h \in \Omega$ ; confidence 0.914

28. e12002045.png ; $T$ ; confidence 0.914

29. e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914

30. k0558406.png ; $x _ { 1 } , x _ { 2 } , x , y \in K$ ; confidence 0.914

31. w13011045.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon } \| = 0$ ; confidence 0.914

32. t1300407.png ; $j a j + a j - 1 = 0$ ; confidence 0.914

33. l13010064.png ; $\alpha ( x , \alpha , p )$ ; confidence 0.914

34. f130100115.png ; $\hat { G }$ ; confidence 0.914

35. b13020091.png ; $\omega e _ { i } = f _ { i }$ ; confidence 0.914

36. e120190163.png ; $x \neq p$ ; confidence 0.914

37. l12010067.png ; $L _ { 0 , n } ^ { 1 } = ( S _ { n } ) ^ { - n }$ ; confidence 0.914

38. c13004022.png ; $G = Cl _ { 2 } ( \frac { 1 } { 2 } \pi ) = - Cl _ { 2 } ( \frac { 3 } { 2 } \pi ) =$ ; confidence 0.914

39. l1200503.png ; $K _ { \nu } ( x )$ ; confidence 0.914

40. i130060111.png ; $\kappa = - 2 J$ ; confidence 0.914

41. e1201605.png ; $* \tau = \xi \wedge d \xi$ ; confidence 0.914

42. t09408027.png ; $\pi _ { N } ( X , A , * )$ ; confidence 0.914

43. o13001039.png ; $\alpha ^ { \prime } , \alpha$ ; confidence 0.914

44. s13048045.png ; $\chi ( D ) = \sum ( - 1 ) ^ { i } \operatorname { dim } H _ { S } ^ { i } ( D )$ ; confidence 0.914

45. o13005048.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( A - z I ) ^ { - 1 } K J$ ; confidence 0.914

46. a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914

47. t12005066.png ; $g : V \rightarrow W$ ; confidence 0.914

48. l13001066.png ; $\| S _ { N B } \|$ ; confidence 0.914

49. o11001031.png ; $X \subset G$ ; confidence 0.914

50. m1200308.png ; $f _ { \theta } ( x ) > 0$ ; confidence 0.913

51. b1204007.png ; $g E _ { m } = \pi ^ { - 1 } ( g m )$ ; confidence 0.913

52. t12014025.png ; $( W _ { k } f ) ( t ) = \int _ { 0 } ^ { \infty } k ( t - s ) f ( s ) d s , t \in R _ { + }$ ; confidence 0.913

53. j13003059.png ; $JC ^ { * }$ ; confidence 0.913

54. i120050111.png ; $n ^ { 1 / 2 } \epsilon _ { n } \rightarrow \infty$ ; confidence 0.913

55. b12034010.png ; $\sum _ { \alpha } | c _ { \alpha } z ^ { \alpha } | < 1$ ; confidence 0.913

56. b12055011.png ; $b _ { \gamma } ( x ) = \operatorname { lim } _ { t \rightarrow \infty } ( t - d ( x , \gamma ( t ) ) ) , \quad x \in M$ ; confidence 0.913

57. i12004064.png ; $d r \neq 0$ ; confidence 0.913

58. a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913

59. a11077013.png ; $b _ { j }$ ; confidence 0.913

60. a1300402.png ; $Fm$ ; confidence 0.913

61. v09603020.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = E _ { 0 } + E \operatorname { sin } \omega t$ ; confidence 0.913

62. s13064054.png ; $\Omega = \sum _ { r = 1 } ^ { R } ( \alpha _ { r } ^ { 2 } - \beta _ { r } ^ { 2 } )$ ; confidence 0.913

63. m13025086.png ; $M _ { i } ( R ^ { n } ) \subset M _ { i + 1 } ( R ^ { n } )$ ; confidence 0.913

64. c12026024.png ; $\tau _ { j } ^ { n + 1 } = \frac { u _ { j } ^ { n + 1 } - u _ { j } ^ { n } } { k } - \delta ^ { 2 } ( \frac { u _ { j } ^ { n + 1 } + u _ { j } ^ { n } } { 2 } )$ ; confidence 0.913

65. a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913

66. c12003012.png ; $t \in J$ ; confidence 0.913

67. i13005019.png ; $t _ { - } ( k ) = t _ { + } ( k ) : = t ( k )$ ; confidence 0.913

68. t120060120.png ; $E ( \rho )$ ; confidence 0.913

69. w1200107.png ; $\{ z ^ { n } ( \frac { d } { d z } ) ^ { m } : n \in Z , m \in N _ { 0 } \}$ ; confidence 0.913

70. j12002013.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta } | ^ { 2 } }$ ; confidence 0.913

71. s130510104.png ; $\gamma ( F ( u ) ) = \{ \gamma ( v ) < \infty : v \in F ( u ) \}$ ; confidence 0.913

72. c12026010.png ; $u _ { j } ^ { n } = u ( x _ { j } , t _ { n } )$ ; confidence 0.913

73. a11001051.png ; $| A |$ ; confidence 0.913

74. q13002017.png ; $103$ ; confidence 0.913

75. m13018072.png ; $A \mapsto A$ ; confidence 0.913

76. w120110191.png ; $X \mapsto G _ { X }$ ; confidence 0.913

77. c120180414.png ; $( N , g | _ { N } )$ ; confidence 0.913

78. h12012071.png ; $\operatorname { im } ( \pi ^ { \prime } )$ ; confidence 0.913

79. c110420158.png ; $x < y$ ; confidence 0.913

80. d12015031.png ; $q = p ^ { t }$ ; confidence 0.913

81. m12015057.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } | \Sigma | ^ { n / 2 } | \Psi | ^ { p / 2 } }$ ; confidence 0.913

82. e12011060.png ; $E = - \nabla \phi - \frac { 1 } { c } \frac { \partial A } { \partial t } , B = \nabla \times A$ ; confidence 0.913

83. s13065014.png ; $H \in H ^ { 2 } ( \mu , D )$ ; confidence 0.913

84. d1202009.png ; $\lambda _ { m } = \operatorname { log } n$ ; confidence 0.913

85. b11021043.png ; $N > 1$ ; confidence 0.912

86. m12003091.png ; $\varepsilon ^ { * } ( T ) = 0$ ; confidence 0.912

87. f12008096.png ; $\square ^ { t } M _ { \varphi }$ ; confidence 0.912

88. c02495024.png ; $R = 1$ ; confidence 0.912

89. c13026011.png ; $K \subset V$ ; confidence 0.912

90. c1201603.png ; $x ^ { T } A x$ ; confidence 0.912

91. j13007063.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } ( F ( z ) - \eta ) / ( z - \omega ) = \angle F ^ { \prime } ( \omega )$ ; confidence 0.912

92. l120120216.png ; $S = \{ \infty \}$ ; confidence 0.912

93. s1303604.png ; $X _ { t } ^ { + } = | X _ { t } | , t \geq 0$ ; confidence 0.912

94. c120170117.png ; $M$ ; confidence 0.912

95. x12003011.png ; $X f ( 1 ) = X f ( \theta , p ) = \int _ { - \infty } ^ { \infty } f ( x + t \theta ) d t$ ; confidence 0.912

96. s13001050.png ; $K \hookrightarrow C$ ; confidence 0.912

97. t1200309.png ; $\mu ( z ) = f _ { z } / f _ { z }$ ; confidence 0.912

98. i12005064.png ; $H ( \theta , \theta _ { 0 } ) \sim c \| \theta - \theta _ { 0 } \| ^ { 2 }$ ; confidence 0.912

99. a01046083.png ; $0 \in D$ ; confidence 0.912

100. w12020027.png ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$ ; confidence 0.912

101. s13049062.png ; $P \times Q$ ; confidence 0.912

102. d03027029.png ; $n - p$ ; confidence 0.912

103. l06105075.png ; $f : \Omega \rightarrow T$ ; confidence 0.912

104. h04807013.png ; $S = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } Z _ { i } ^ { \prime } Z _ { i }$ ; confidence 0.912

105. b120040200.png ; $L _ { p } [ 0,1 ]$ ; confidence 0.912

106. b130260101.png ; $d [ f , S ^ { n } , S ^ { n } ]$ ; confidence 0.912

107. l12008040.png ; $M _ { k } = \partial / \partial x + i x ^ { k } \partial / \partial y$ ; confidence 0.911

108. n067520173.png ; $J \in M _ { n \times n } ( K )$ ; confidence 0.911

109. w1300406.png ; $\sum _ { j = 1 } ^ { n } ( \frac { \partial X _ { j } } { \partial z } ) ^ { 2 } = 0$ ; confidence 0.911

110. t13015014.png ; $T ( T ) : = C ^ { * } ( T _ { f } : f \in C ( T ) )$ ; confidence 0.911

111. b1301503.png ; $\gamma = | \partial z / \partial \Gamma | ^ { - 1 }$ ; confidence 0.911

112. t12020038.png ; $g ( k )$ ; confidence 0.911

113. l12004034.png ; $+ \Delta t \partial _ { t } ^ { ( 1 ) } u ( x _ { i } , t ^ { n } ) + \frac { \Delta t ^ { 2 } } { 2 } \partial _ { t } ^ { ( 2 ) } u ( x _ { i } , t ^ { n } ) + O ( \Delta t ^ { 2 } )$ ; confidence 0.911

114. t1200707.png ; $17.19 .23 .29 .31 .41 .47 .59 .71$ ; confidence 0.911

115. o130060177.png ; $v = v ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.911

116. a13007017.png ; $1$ ; confidence 0.911

117. f12008048.png ; $\pi ( x ) = \eta ( x ^ { - 1 } )$ ; confidence 0.911

118. l12019023.png ; $P > 0$ ; confidence 0.911

119. q12001030.png ; $- t / 2 < t _ { 1 } \leq \ldots \leq t _ { n } < t / 2$ ; confidence 0.911

120. m13023062.png ; $\phi * O _ { X } = O _ { Y }$ ; confidence 0.911

121. f04049032.png ; $x ^ { 2 }$ ; confidence 0.911

122. a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911

123. f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911

124. w13007023.png ; $\beta$ ; confidence 0.911

125. o13005028.png ; $\varphi + = W _ { \Theta } ( z ) \varphi _ { - }$ ; confidence 0.911

126. a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911

127. d12002025.png ; $X = \{ x : A _ { 2 } x \leq b _ { 2 } , x \geq 0 \}$ ; confidence 0.911

128. h13012024.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \theta ( \| x \| ^ { p } + \| y \| ^ { p } )$ ; confidence 0.911

129. c120170157.png ; $p \in P _ { k - 1 }$ ; confidence 0.911

130. b12016029.png ; $q ^ { \prime } = q$ ; confidence 0.911

131. n13003015.png ; $( A - \mu I ) ^ { - 1 }$ ; confidence 0.911

132. b13009019.png ; $\| . \| _ { 1 }$ ; confidence 0.911

133. i13006033.png ; $S : = \{ S ( k ) , i k _ { j } , s _ { j } : 1 \leq j \leq J \}$ ; confidence 0.911

134. m06217018.png ; $p \geq n$ ; confidence 0.911

135. w12007052.png ; $L ^ { 1 } ( R ^ { 2 n } )$ ; confidence 0.911

136. d12003057.png ; $R \subset D B _ { 1 }$ ; confidence 0.911

137. e120240133.png ; $T = \operatorname { Sym } ^ { 2 } T _ { p } ( E )$ ; confidence 0.911

138. a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911

139. b13023044.png ; $\operatorname { rist } _ { G } ( n )$ ; confidence 0.911

140. j13002047.png ; $\operatorname { var } ( X ) \sim \overline { \Delta }$ ; confidence 0.910

141. c12001045.png ; $E \subset C ^ { n } \subset P ^ { n }$ ; confidence 0.910

142. e12024046.png ; $L ( E / Q ; s )$ ; confidence 0.910

143. r13007074.png ; $= \sum _ { j = 1 } ^ { J } K ( y , y _ { j } ) c _ { j } = f ( y ) , \forall y \in E$ ; confidence 0.910

144. i13007046.png ; $\forall \alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.910

145. d13011021.png ; $\sigma y$ ; confidence 0.910

146. f12021063.png ; $u ( z , \lambda _ { i } ) = z ^ { \lambda _ { i } } + \ldots$ ; confidence 0.910

147. f042070137.png ; $\lambda _ { 2 }$ ; confidence 0.910

148. v0960303.png ; $\dot { x } = v , \quad \dot { v } = - x + \mu ( 1 - x ^ { 2 } ) v$ ; confidence 0.910

149. k11001038.png ; $( \nabla _ { X } J ) Y = g ( X , Y ) Z - \alpha ( Y ) X$ ; confidence 0.910

150. b12016065.png ; $x _ { 1 } ^ { \prime } = x _ { 1 } ( s + v )$ ; confidence 0.910

151. v13011074.png ; $d M _ { 1 } = \rho \frac { \Gamma \dot { b } } { l } ( - U )$ ; confidence 0.910

152. a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910

153. a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910

154. p120170102.png ; $e ^ { i t }$ ; confidence 0.910

155. n13002047.png ; $6 \beta$ ; confidence 0.910

156. b1300706.png ; $a ^ { - 1 } b ^ { m } a b ^ { - n }$ ; confidence 0.910

157. t12013078.png ; $\dot { x } _ { i } = x _ { i } y _ { i }$ ; confidence 0.910

158. w12018015.png ; $R _ { + } ^ { N }$ ; confidence 0.910

159. m12003018.png ; $\rho ( x , \theta ) = - \operatorname { ln } f _ { \theta } ( x )$ ; confidence 0.910

160. z12001030.png ; $( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }$ ; confidence 0.910

161. t13021041.png ; $| u - u _ { N } | = O ( h ^ { \alpha } )$ ; confidence 0.910

162. a12017048.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910

163. b120150157.png ; $p _ { i } = 1 - p _ { j }$ ; confidence 0.910

164. l13004022.png ; $L ( x , y ) , D , E \in \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.910

165. b13022041.png ; $j \neq l$ ; confidence 0.910

166. r13005025.png ; $g : h \mapsto h g ^ { - 1 }$ ; confidence 0.910

167. p13013083.png ; $A _ { 2 l } ^ { ( * ) }$ ; confidence 0.910

168. l12017051.png ; $n = \operatorname { max } ( \operatorname { dim } ( K _ { 0 } - L ) , \operatorname { dim } ( K _ { 1 } - L ) )$ ; confidence 0.910

169. a01024048.png ; $F ^ { * }$ ; confidence 0.910

170. g130040171.png ; $\| \mu \|$ ; confidence 0.910

171. j13001031.png ; $D _ { f , i }$ ; confidence 0.910

172. w120110218.png ; $S ( m , G )$ ; confidence 0.909

173. b130200162.png ; $W ( \Pi ^ { re } )$ ; confidence 0.909

174. a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909

175. s1202107.png ; $V _ { Z }$ ; confidence 0.909

176. a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909

177. q13002025.png ; $< 1 / 3$ ; confidence 0.909

178. w13008030.png ; $\sigma _ { 1 } = \sum _ { i = 0 } ^ { 2 g } \lambda _ { i }$ ; confidence 0.909

179. t13007033.png ; $0 , - b _ { 1 } , - b _ { 2 } , \dots$ ; confidence 0.909

180. b11066039.png ; $\| T _ { i t } \|$ ; confidence 0.909

181. b13028011.png ; $( G ( n ) , M ) \cong M _ { x }$ ; confidence 0.909

182. f12014069.png ; $\frac { 1 } { \lambda } \leq \operatorname { max } _ { \varphi } | \operatorname { cos } \alpha ( \varphi ) |$ ; confidence 0.909

183. d120230132.png ; $R _ { 11 } = - T$ ; confidence 0.909

184. w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909

185. a120180102.png ; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909

186. b1300305.png ; $\{ u x \{ v y w \} \} - \{ v y \{ u x w \} \} = \{ \{ u x v \} y w \} - \{ v \{ x u y \} w \}$ ; confidence 0.909

187. p13010078.png ; $f : \Delta \rightarrow C ^ { n }$ ; confidence 0.909

188. w130080216.png ; $T _ { i } = - \frac { n + 1 } { n + 1 - i } \operatorname { Res } _ { \infty } W ^ { 1 - [ i / ( n + 1 ) ] } d p$ ; confidence 0.909

189. c12019039.png ; $\varphi \in H ^ { 2 m } ( \Gamma , C )$ ; confidence 0.909

190. s09067015.png ; $( p : A \rightarrow D , q : B \rightarrow D )$ ; confidence 0.909

191. t13004040.png ; $y _ { n } ^ { * } ( x ) = \tau \sum _ { k = 0 } ^ { n } c _ { k } ^ { n } Q _ { k } ( x )$ ; confidence 0.909

192. b12005069.png ; $z \in \overline { B } _ { E } * *$ ; confidence 0.909

193. g13001093.png ; $GF ( 2 ^ { 155 } )$ ; confidence 0.909

194. a01184018.png ; $C _ { F }$ ; confidence 0.909

195. f12023082.png ; $L : \Omega ( M , T M ) \rightarrow \operatorname { Der } \Omega ( M )$ ; confidence 0.909

196. f11001021.png ; $\operatorname { inf } ( x , y ) = 0 \Rightarrow \operatorname { inf } ( z x , y ) = \operatorname { inf } ( x z , y ) = 0 , \forall z \in A ^ { + }$ ; confidence 0.909

197. c13019049.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { k } > 0 > \lambda _ { k + 1 } \geq \ldots \geq \lambda _ { n }$ ; confidence 0.909

198. a130040205.png ; $T$ ; confidence 0.909

199. l12012091.png ; $V ( O _ { K , p } ) \neq \emptyset$ ; confidence 0.909

200. c120180334.png ; $C ( g ) + \tau _ { 3 } C ( g ) + \tau ^ { 2 } 3 C ( g ) = 0$ ; confidence 0.908

201. a12025033.png ; $k \geq n + 1$ ; confidence 0.908

202. b12004022.png ; $e \wedge | x | = 0$ ; confidence 0.908

203. r130080133.png ; $w \in H _ { 0 }$ ; confidence 0.908

204. w12006041.png ; $h \mapsto [ h \circ f ] \in C ^ { \infty } ( R ^ { n } , R ) / A$ ; confidence 0.908

205. v12002073.png ; $q = \nu + 1$ ; confidence 0.908

206. c120180498.png ; $g _ { i j } ( x , 0 ) = g _ { j } ( x )$ ; confidence 0.908

207. m130110116.png ; $\frac { D \phi } { D t } = \frac { \partial \phi } { \partial t } + v _ { i } \phi _ { , i } = \frac { \partial \phi } { \partial t } + ( v . \nabla ) \phi$ ; confidence 0.908

208. a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908

209. a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908

210. t120200225.png ; $G _ { 2 } ( r ) = \sum _ { j = 1 } ^ { n } b _ { j } \phi ( z _ { j } ) z _ { j } ^ { k }$ ; confidence 0.908

211. d12016044.png ; $C ( T )$ ; confidence 0.908

212. b13002056.png ; $x \in J$ ; confidence 0.908

213. e1300704.png ; $S = o ( \# A )$ ; confidence 0.908

214. l12009049.png ; $T \beta$ ; confidence 0.908

215. e13003010.png ; $X = G ( R ) / K _ { \infty }$ ; confidence 0.908

216. i12004038.png ; $f = \sum _ { j = 1 } ^ { n } f _ { j } d \overline { z _ { j } }$ ; confidence 0.908

217. e12026029.png ; $\mu ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) \delta _ { k } ( d x )$ ; confidence 0.908

218. m12027018.png ; $\langle w , f \rangle = w _ { 1 } f _ { 1 } + \ldots + w _ { n } f _ { n }$ ; confidence 0.908

219. b13001083.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.908

220. b11022079.png ; $\Omega ^ { i } X$ ; confidence 0.908

221. c120180366.png ; $k = m$ ; confidence 0.908

222. c13025020.png ; $R _ { j } = \{ k : X _ { k } \geq T _ { j } \}$ ; confidence 0.908

223. h12012070.png ; $\operatorname { im } ( \pi )$ ; confidence 0.908

224. v11005033.png ; $Q C$ ; confidence 0.908

225. s120340109.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } w ( s , t ) = x _ { \pm } ( t )$ ; confidence 0.908

226. i120080104.png ; $m = \frac { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) - \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) + \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } =$ ; confidence 0.908

227. w12021071.png ; $A A ^ { T } = A ^ { T } A = ( \sum _ { i = 1 } ^ { k } s _ { i } x _ { i } ^ { 2 } ) I _ { n }$ ; confidence 0.907

228. a120280167.png ; $\pi ( \alpha _ { t } ( \alpha ) ) = U _ { t } \pi ( \alpha ) U _ { t } ^ { * }$ ; confidence 0.907

229. z13007047.png ; $G \rightarrow G / A$ ; confidence 0.907

230. l12019045.png ; $X = - \int _ { - \infty } ^ { t } X _ { A } ( t , z ) C ( z ) X _ { A } ( t , z ) d z$ ; confidence 0.907

231. m1201909.png ; $L _ { 2 } ( R _ { + } ; x ^ { - 1 } )$ ; confidence 0.907

232. b1204306.png ; $\varepsilon : B \rightarrow 1$ ; confidence 0.907

233. b1300306.png ; $u , v , w \in V ^ { \pm }$ ; confidence 0.907

234. s13050029.png ; $\sum _ { k = 0 } ^ { n } \frac { f _ { k } } { \left( \begin{array} { l } { n } \\ { k } \end{array} \right) } \leq 1$ ; confidence 0.907

235. m13019023.png ; $m _ { - k } = L ( z ^ { - k } ) = \overline { L ( z ^ { k } ) } = \overline { m } _ { k }$ ; confidence 0.907

236. a12026044.png ; $y \in A ^ { S }$ ; confidence 0.907

237. a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907

238. a12008031.png ; $S ( t )$ ; confidence 0.907

239. a11044013.png ; $f _ { 2 }$ ; confidence 0.907

240. s13045011.png ; $r s = \frac { n ( n ^ { 2 } - 1 ) - 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } - 6 ( T + U ) } { \sqrt { n ( n ^ { 2 } - 1 ) - 12 T } \sqrt { n ( n ^ { 2 } - 1 ) - 12 U } }$ ; confidence 0.907

241. a12015028.png ; $( g )$ ; confidence 0.907

242. t13013037.png ; $X = \{ C : \operatorname { Hom } _ { \Lambda } ( C , Y ) = 0 \}$ ; confidence 0.907

243. b120440104.png ; $B _ { R } [ H \times H ]$ ; confidence 0.907

244. n067520185.png ; $C \in M _ { n \times n } ( K )$ ; confidence 0.907

245. a130040801.png ; $C \subseteq D$ ; confidence 0.907

246. a01020080.png ; $6$ ; confidence 0.907

247. e12024025.png ; $K ( L )$ ; confidence 0.907

248. p12014048.png ; $E = E$ ; confidence 0.907

249. a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907

250. q12007098.png ; $h , g , f \in H$ ; confidence 0.907

251. s13002026.png ; $G : S N \times R \rightarrow U M$ ; confidence 0.907

252. a13007026.png ; $c = 5$ ; confidence 0.907

253. s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907

254. i130060156.png ; $( a - \delta , a )$ ; confidence 0.907

255. l11003018.png ; $| \mu | = \operatorname { sup } ( \mu , - \mu ) \in ca ( \Omega , F )$ ; confidence 0.907

256. a130050268.png ; $k > 0$ ; confidence 0.907

257. c12029014.png ; $\pi _ { 2 } ( X , A , x ) \rightarrow \pi _ { 1 } ( A , x )$ ; confidence 0.907

258. h12005034.png ; $+ \int _ { C _ { N } } \phi _ { ; m } \rho d y$ ; confidence 0.907

259. a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907

260. a0114802.png ; $f _ { n }$ ; confidence 0.907

261. m130140111.png ; $D _ { j , k } ^ { p } ( a ) =$ ; confidence 0.907

262. f12009067.png ; $\mu ^ { * } : H ( \Omega + K ) \rightarrow H ( \Omega )$ ; confidence 0.907

263. q12008020.png ; $E [ W _ { p } ]$ ; confidence 0.907

264. f12014035.png ; $z ( \zeta ) = \zeta + \frac { a _ { 1 } } { \zeta } + \frac { a _ { 2 } } { \zeta ^ { 2 } } + \ldots$ ; confidence 0.907

265. b12043084.png ; $k \langle E _ { 1 } , E _ { 2 } \rangle$ ; confidence 0.907

266. k055840361.png ; $X B X + X A + A ^ { * } X - C = 0$ ; confidence 0.907

267. a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

268. k05584012.png ; $K = K _ { + } + K _ { - }$ ; confidence 0.906

269. t12005035.png ; $p - n$ ; confidence 0.906

270. b1200407.png ; $u \in X$ ; confidence 0.906

271. m130230156.png ; $D = \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.906

272. l057000150.png ; $\{ x : \sigma \} \vdash x : \sigma$ ; confidence 0.906

273. d120280137.png ; $\{ D _ { m } \}$ ; confidence 0.906

274. k05584050.png ; $[ x , y ] = ( G x , y ) , \quad x , y \in K )$ ; confidence 0.906

275. b12015088.png ; $\operatorname { dim } D _ { s } = n + 1$ ; confidence 0.906

276. a110420109.png ; $x , y \in A$ ; confidence 0.906

277. m13013043.png ; $\operatorname { adj } ( L ) = \tau ( G ) J$ ; confidence 0.906

278. c13016061.png ; $\operatorname { lim } _ { n \rightarrow \infty } t ( n ) ( \operatorname { log } t ( n ) ) / s ( n ) = 0$ ; confidence 0.906

279. l1200208.png ; $\phi _ { i j } : \phi _ { j } ( U _ { i } \cap U _ { j } ) \rightarrow \phi _ { i } ( U _ { i } \cap U _ { j } )$ ; confidence 0.906

280. c130160189.png ; $L \subseteq NL \subseteq NC \subseteq P \subseteq NP \subseteq PH \subseteq PSPACE$ ; confidence 0.906

281. a01318019.png ; $C ^ { 1 }$ ; confidence 0.906

282. t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906

283. d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906

284. a01406028.png ; $20$ ; confidence 0.906

285. w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906

286. d1202905.png ; $| x - \frac { p } { q } | < f ( q ) , \quad \operatorname { gcd } ( p , q ) = 1 , q > 0$ ; confidence 0.906

287. b12032015.png ; $\| x + y \| = \| u + v \|$ ; confidence 0.906

288. i12010051.png ; $R _ { 1212 } = \alpha _ { 2 } , R _ { 1313 } = \alpha _ { 2 } , R _ { 2424 } = \alpha _ { 2 }$ ; confidence 0.906

289. b120430174.png ; $\partial _ { q , x } ( x ^ { n } y ^ { m } ) = [ n ] _ { q ^ { 2 } } x ^ { n - 1 } y ^ { m }$ ; confidence 0.906

290. b13021028.png ; $H _ { S } = 0$ ; confidence 0.906

291. c12002057.png ; $SO ( n )$ ; confidence 0.906

292. b11066044.png ; $H ^ { 1 }$ ; confidence 0.906

293. l12004046.png ; $i - 1$ ; confidence 0.906

294. d032240238.png ; $\square ^ { x }$ ; confidence 0.906

295. m12003054.png ; $\sum _ { i = 1 } ^ { n } \psi ( \frac { x _ { i } - T _ { n } } { S _ { n } } ) = 0$ ; confidence 0.906

296. c12021054.png ; $\Lambda _ { n } = \operatorname { log } ( d P _ { n } ^ { \prime } / d P _ { n } )$ ; confidence 0.906

297. e0350009.png ; $B ( \zeta , \alpha ) = \{ x \in X : \rho ( x , \zeta ) \leq \alpha \}$ ; confidence 0.906

298. m0627105.png ; $\sum _ { i = 1 } ^ { r } n _ { i } = n$ ; confidence 0.906

299. d120230167.png ; $\Theta$ ; confidence 0.905

300. c12018046.png ; $\lambda ^ { k } T ( \lambda g ) = T ( g )$ ; confidence 0.905

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/32. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/32&oldid=44520