Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/29"
(AUTOMATIC EDIT of page 29 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 29 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280155.png ; $\omega \in \hat { G }$ ; confidence 0.940 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023020.png ; $0 \notin \overline { D }$ ; confidence 0.940 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064017.png ; $\{ \lambda _ { k } ^ { ( n ) } \} _ { k = 1 } ^ { n }$ ; confidence 0.940 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040802.png ; $g \circ h = f$ ; confidence 0.940 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002013.png ; $T : S \rightarrow S$ ; confidence 0.940 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082590/r08259096.png ; $Q ( R )$ ; confidence 0.940 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200104.png ; $e : A \rightarrow f [ A ]$ ; confidence 0.940 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013022.png ; $L = \operatorname { Ker } ( P _ { \sigma } )$ ; confidence 0.940 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200109.png ; $\langle u - v , j \rangle \geq 0$ ; confidence 0.940 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023034.png ; $z \in \Omega$ ; confidence 0.940 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015068.png ; $O ( \varepsilon ^ { - N } )$ ; confidence 0.940 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001092.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.940 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $SO ( 3 )$ ; confidence 0.940 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002075.png ; $P = P ( G ) = \{ x \in G : x \succeq e \}$ ; confidence 0.940 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180225.png ; $( M , g )$ ; confidence 0.940 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025023.png ; $E _ { n + 1 } ( x ) = ( 1 - x ^ { 2 } ) U _ { n - 1 } ( x )$ ; confidence 0.940 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007011.png ; $| q ( x ) | \leq c ( 1 + | x | ) ^ { - b } , b > 2$ ; confidence 0.940 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018029.png ; $E \times E \rightarrow K$ ; confidence 0.940 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015027.png ; $= ( 2 ^ { 2 t + 2 } \frac { 2 ^ { 2 t } - 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t + 1 } + 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t - 1 } + 1 } { 3 } , 2 ^ { 4 t - 2 } )$ ; confidence 0.940 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019044.png ; $N H = G$ ; confidence 0.940 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008074.png ; $i , j \in Z +$ ; confidence 0.940 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066059.png ; $| K ( x - , y ) - K ( x , y ) | \leq C | x ^ { \prime } - x | ^ { \gamma } | x - y | ^ { - n - \gamma }$ ; confidence 0.940 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009042.png ; $\hat { \phi } ( \xi ) = \int _ { R ^ { n } } \phi ( x ) e ^ { - i \xi x } d x$ ; confidence 0.940 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006032.png ; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004070.png ; $X = E \oplus F$ ; confidence 0.940 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002043.png ; $\operatorname { ign } ( X _ { 1 } - X _ { 2 } )$ ; confidence 0.940 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006068.png ; $q ^ { - 1 } b \rightarrow r ^ { - 1 } b$ ; confidence 0.940 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059050.png ; $\operatorname { lim } _ { n \rightarrow \infty } [ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } ] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t }$ ; confidence 0.940 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016028.png ; $\| x \| _ { 2 } = ( x ^ { T } x ) ^ { 1 / 2 }$ ; confidence 0.940 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002060.png ; $u , v \in U$ ; confidence 0.940 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/m/m120/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015051.png ; $X ( p \times n ) = ( X _ { j } )$ ; confidence 0.940 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012025.png ; $U : Ca$ ; confidence 0.940 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699015.png ; $X ^ { Y }$ ; confidence 0.940 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130121.png ; $\delta \neq 0$ ; confidence 0.940 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005047.png ; $x \in \Sigma ^ { i } ( f )$ ; confidence 0.940 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013036.png ; $f ^ { \prime } ( N * ) < 0$ ; confidence 0.940 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260169.png ; $B = \pi ( X )$ ; confidence 0.939 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021024.png ; $k = 4,8$ ; confidence 0.939 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015043.png ; $R ^ { n } \backslash \overline { \Omega }$ ; confidence 0.939 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027027.png ; $| V _ { n , p } ( f , x ) | \leq K ( c ) \operatorname { max } | f ( x ) |$ ; confidence 0.939 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017032.png ; $R _ { i } \rightarrow w R _ { i } w ^ { - 1 }$ ; confidence 0.939 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013033.png ; $f ^ { \prime } ( N * ) n$ ; confidence 0.939 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180315.png ; $( \tau _ { 2 } - \tau _ { 1 } ) \circ \nabla \circ \nabla$ ; confidence 0.939 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001026.png ; $\frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } =$ ; confidence 0.939 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005039.png ; $85$ ; confidence 0.939 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006063.png ; $W ^ { k } L _ { \Phi } ( \Omega )$ ; confidence 0.939 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006021.png ; $e : X ^ { Z \times Y } \rightarrow ( X ^ { Y } ) ^ { Z }$ ; confidence 0.939 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110220/m11022021.png ; $W ( u )$ ; confidence 0.939 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png ; $\partial _ { s }$ ; confidence 0.939 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018059.png ; $\neq M \subset E$ ; confidence 0.939 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015042.png ; $f _ { X } ( X )$ ; confidence 0.939 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004049.png ; $\chi _ { l } ^ { \prime } ( G )$ ; confidence 0.939 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003077.png ; $D B _ { 1 }$ ; confidence 0.939 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007012.png ; $( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.939 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008058.png ; $T \rightarrow 0$ ; confidence 0.939 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840219.png ; $[ p ( T ) x , x ] \geq 0$ ; confidence 0.939 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012380/a01238018.png ; $m \geq n$ ; confidence 0.939 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040111.png ; $\equiv - \operatorname { lk } ( L ) v ( \frac { v ^ { - 1 } - v } { z } ) ^ { \operatorname { com } ( L ) - 2 } \operatorname { mod } ( z )$ ; confidence 0.939 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520371.png ; $\| \partial \phi _ { i } / \partial x _ { j } \|$ ; confidence 0.939 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001080.png ; $S ( C ) = H \operatorname { exp } C$ ; confidence 0.938 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005032.png ; $n \leq p$ ; confidence 0.938 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020077.png ; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010020.png ; $( \neg \varphi )$ ; confidence 0.938 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702048.png ; $H ^ { i } ( X , F _ { n } )$ ; confidence 0.938 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003017.png ; $T ^ { \prime } T$ ; confidence 0.938 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025026.png ; $M ( \Omega ) \subset D ^ { \prime } ( \Omega ) \times D ^ { \prime } ( \Omega )$ ; confidence 0.938 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036011.png ; $\{ Y _ { t } , B _ { t } , 1 _ { t } \}$ ; confidence 0.938 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180158.png ; $g ^ { - 1 } : \otimes ^ { 2 } E \rightarrow R$ ; confidence 0.938 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017046.png ; $\beta ( \alpha , x ) = R \beta _ { 0 } ( \alpha ) \Phi ( x )$ ; confidence 0.938 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010123.png ; $V _ { n }$ ; confidence 0.938 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004071.png ; $P _ { i } ( v )$ ; confidence 0.938 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012017.png ; $\sum _ { n = - \infty } ^ { \infty } | b _ { n } | \leq 10 \sum _ { n = 1 } ^ { \infty } a _ { n } ^ { * }$ ; confidence 0.938 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003077.png ; $T _ { E } M ^ { * }$ ; confidence 0.938 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016049.png ; $J \mapsto M ^ { t } J M$ ; confidence 0.938 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508017.png ; $\overline { ( h _ { \mu \nu } ) } \square ^ { T } = ( h _ { \mu \nu } )$ ; confidence 0.938 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006057.png ; $m + 4$ ; confidence 0.938 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a014310185.png ; $C A$ ; confidence 0.938 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025033.png ; $U ^ { \prime \prime } \subseteq U$ ; confidence 0.938 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680145.png ; $\alpha _ { i j }$ ; confidence 0.938 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066011.png ; $f _ { Q } = \frac { 1 } { | Q | } \int _ { Q } f ( t ) d t$ ; confidence 0.938 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013047.png ; $I / 2 - h _ { \theta } ^ { * }$ ; confidence 0.938 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068510/o06851012.png ; $U \subset R ^ { p }$ ; confidence 0.938 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013030.png ; $F _ { p }$ ; confidence 0.938 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006045.png ; $d _ { n } = \prod _ { p - 1 | n } p ^ { 1 + v _ { p } ( n ) }$ ; confidence 0.938 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011013.png ; $\vec { B }$ ; confidence 0.938 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011034.png ; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i i } = 0$ ; confidence 0.938 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q1200302.png ; $q ( G )$ ; confidence 0.938 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201204.png ; $\alpha _ { k } = \int x ^ { k } d F ( x )$ ; confidence 0.938 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030074.png ; $B ( E )$ ; confidence 0.938 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013034.png ; $SP ^ { - } ( n )$ ; confidence 0.938 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690110.png ; $< 6$ ; confidence 0.938 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015016.png ; $\xi \in A$ ; confidence 0.938 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058034.png ; $E \times R$ ; confidence 0.937 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020029.png ; $p ( t ) = t ^ { N } - 1$ ; confidence 0.937 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002098.png ; $P - \phi$ ; confidence 0.937 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200168.png ; $\lambda$ ; confidence 0.937 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003011.png ; $| 1 \}$ ; confidence 0.937 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005069.png ; $\delta ( a b ) = \delta ( a ) b + a \delta ( b )$ ; confidence 0.937 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001097.png ; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120117.png ; $B < R$ ; confidence 0.937 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807041.png ; $X = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X$ ; confidence 0.937 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030153.png ; $( B _ { X } * , w ^ { * } )$ ; confidence 0.937 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010028.png ; $F = \{ Y : \operatorname { Hom } _ { H } ( T , Y ) = 0 \}$ ; confidence 0.937 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001028.png ; $- \infty < t _ { 1 } \leq \ldots \leq t _ { n } < \infty$ ; confidence 0.937 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010017.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in A _ { p } ( G )$ ; confidence 0.937 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290064.png ; $L _ { 2 } ( X , \mu )$ ; confidence 0.937 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008042.png ; $K _ { p } ( f )$ ; confidence 0.937 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007092.png ; $< d$ ; confidence 0.937 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040157.png ; $y \in X ^ { \prime }$ ; confidence 0.937 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014021.png ; $H ( x ) = 1$ ; confidence 0.937 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001023.png ; $f ( x ) \mapsto S _ { N } ( f ; x )$ ; confidence 0.937 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302303.png ; $( L _ { + } , L _ { - } , L _ { 0 } )$ ; confidence 0.937 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.937 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160177.png ; $x _ { j t } , y _ { i t } \geq 0$ ; confidence 0.937 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002066.png ; $A ^ { * } X$ ; confidence 0.937 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002066.png ; $| x | = x ^ { + } ( x ^ { - } ) ^ { - 1 }$ ; confidence 0.937 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050022.png ; $W ^ { + }$ ; confidence 0.937 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032036.png ; $T ( V )$ ; confidence 0.937 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024012.png ; $d f \nmid f$ ; confidence 0.937 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301062.png ; $h > 0$ ; confidence 0.937 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/t/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015046.png ; $\xi \in A ^ { \prime \prime }$ ; confidence 0.937 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003046.png ; $( a b ) ^ { - 1 } = 1$ ; confidence 0.937 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027014.png ; $\langle w , f \rangle \neq 0$ ; confidence 0.937 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010015.png ; $c ( n )$ ; confidence 0.937 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130106.png ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon - \mu _ { 1 } L ) } \\ { \frac { d L } { d t } = \mu _ { 2 } L F - \nu L } \end{array} \right.$ ; confidence 0.937 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006085.png ; $A = [ \alpha , j ]$ ; confidence 0.937 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003074.png ; $T ( M | B )$ ; confidence 0.937 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400110.png ; $V \rightarrow H ^ { 0 } ( G / B , \xi )$ ; confidence 0.937 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022180/c02218013.png ; $r + 1$ ; confidence 0.937 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520121.png ; $d _ { 1 } = \ldots = d _ { q } = 1$ ; confidence 0.936 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002085.png ; $s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0$ ; confidence 0.936 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001097.png ; $C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta$ ; confidence 0.936 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007067.png ; $f \in C ^ { k } [ N , N + M ]$ ; confidence 0.936 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016085.png ; $[ n ] \neq$ ; confidence 0.936 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027049.png ; $N ( t ) = \sum _ { 1 } ^ { \infty } I ( S _ { k } \leq t )$ ; confidence 0.936 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003077.png ; $G ( \Omega ) = E _ { M } / N$ ; confidence 0.936 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025067.png ; $q + 1$ ; confidence 0.936 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320139.png ; $R ^ { 21 } = \sum b _ { i } \otimes a _ { i }$ ; confidence 0.936 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024025.png ; $y , \beta , e$ ; confidence 0.936 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027044.png ; $b _ { i j k }$ ; confidence 0.936 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480114.png ; $b _ { n }$ ; confidence 0.936 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020217.png ; $\sum | I _ { j } | \leq \frac { 1 } { \alpha } \int _ { I } | u ( \vartheta ) | d \vartheta$ ; confidence 0.936 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005087.png ; $| \prod _ { j = 1 } ^ { k } ( \lambda - A ( t _ { j } ) ) ^ { - 1 } \| _ { X } \leq M ( \lambda - \beta ) ^ { - k }$ ; confidence 0.936 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005067.png ; $\sum _ { i , j = 1 } ^ { n } \overline { c } _ { i } K _ { S } ( w _ { j } , w _ { i } ) c _ { j } \geq 0$ ; confidence 0.936 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040182.png ; $b \in G$ ; confidence 0.936 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/w/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030138.png ; $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ ; confidence 0.936 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008035.png ; $s , t \in R$ ; confidence 0.936 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002086.png ; $y x ^ { - 1 } \in P$ ; confidence 0.936 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009030.png ; $H _ { K } ( \zeta ) = \operatorname { sup } _ { z \in K } \operatorname { Re } ( \zeta z )$ ; confidence 0.936 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028029.png ; $\Gamma \subset D \cap Q$ ; confidence 0.936 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030087.png ; $S = - \Delta + W$ ; confidence 0.936 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021050.png ; $k$ ; confidence 0.936 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356026.png ; $f ( x x ^ { * } ) < + \infty$ ; confidence 0.936 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016061.png ; $L _ { p } ( S \times T )$ ; confidence 0.936 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o1300302.png ; $\operatorname { su } ( 3 )$ ; confidence 0.936 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007098.png ; $2 m$ ; confidence 0.936 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011017.png ; $C ( 10 )$ ; confidence 0.936 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003061.png ; $k$ ; confidence 0.936 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014055.png ; $R ( \phi ) \subset \sigma _ { e } ( T _ { \phi } ) \subset \sigma ( T _ { \phi } ) \subset \operatorname { conv } ( R ( \phi ) )$ ; confidence 0.936 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300108.png ; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \\ { z ^ { 2 } Q _ { D _ { 0 } } } \end{array} \right.$ ; confidence 0.936 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240403.png ; $SS _ { e }$ ; confidence 0.936 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004018.png ; $\zeta ( s , \alpha )$ ; confidence 0.936 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006055.png ; $\operatorname { ldim } ( P ) = \operatorname { dim } ( C ( P ) )$ ; confidence 0.936 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040170.png ; $1 \leq s \leq d / ( d - 1 )$ ; confidence 0.936 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031077.png ; $S _ { R } ^ { \delta } ( x ) = f ( x )$ ; confidence 0.936 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211059.png ; $X ^ { 2 } ( \hat { \theta } _ { n } )$ ; confidence 0.936 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023096.png ; $P = ( \frac { u _ { i } u _ { j } ^ { * } - v _ { i } v _ { j } ^ { * } } { 1 - f _ { i } f _ { j } ^ { * } } ) _ { i , j = 0 } ^ { n - 1 }$ ; confidence 0.936 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010135.png ; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008020.png ; $M ( R ^ { 2 n } )$ ; confidence 0.936 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023042.png ; $c = \operatorname { cos } \alpha$ ; confidence 0.935 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220138.png ; $c ( i , m ) = L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m }$ ; confidence 0.935 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090278.png ; $\Lambda \supseteq \Phi$ ; confidence 0.935 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002042.png ; $\notin \{ 0,1 \}$ ; confidence 0.935 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023054.png ; $X \in X ( M )$ ; confidence 0.935 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080154.png ; $1 = 3 g - 3$ ; confidence 0.935 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013710/a01371012.png ; $K = 0$ ; confidence 0.935 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001029.png ; $F ( i )$ ; confidence 0.935 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014051.png ; $\operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma )$ ; confidence 0.935 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007059.png ; $< x \operatorname { exp } ( - \frac { 1 } { 25 } ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } )$ ; confidence 0.935 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029016.png ; $F \rightarrow E \rightarrow B$ ; confidence 0.935 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006023.png ; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017034.png ; $\lambda _ { k } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.935 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300205.png ; $x \circ y : = ( x y + y x ) / 2$ ; confidence 0.935 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005072.png ; $D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right)$ ; confidence 0.935 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007060.png ; $\theta ( 1 ) = - \pi / 2$ ; confidence 0.935 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040048.png ; $X ^ { G } \hookrightarrow X$ ; confidence 0.935 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005053.png ; $f _ { A } : A ^ { m } \rightarrow A$ ; confidence 0.935 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002084.png ; $k _ { \mu } ^ { \prime \prime } ( \theta ) = V _ { F } ( k _ { \mu } ^ { \prime } ( \theta ) )$ ; confidence 0.935 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230103.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0$ ; confidence 0.935 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180319.png ; $S ( g )$ ; confidence 0.935 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007034.png ; $q ( x ) \in L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.935 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011037.png ; $C = C _ { 0 } \oplus C _ { 1 }$ ; confidence 0.935 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006019.png ; $P$ ; confidence 0.935 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s1300104.png ; $a , b \in Z$ ; confidence 0.935 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024059.png ; $( i , j )$ ; confidence 0.935 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009071.png ; $t ^ { \lambda }$ ; confidence 0.935 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008035.png ; $( K , v )$ ; confidence 0.935 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024010.png ; $D _ { + }$ ; confidence 0.935 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001034.png ; $\frac { \partial v } { \partial t } = - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - 2 ( v \frac { \partial u } { \partial x } + u \frac { \partial v } { \partial x } )$ ; confidence 0.935 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029038.png ; $X \rightarrow B ( \mu )$ ; confidence 0.935 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004020.png ; $\operatorname { inf } _ { \nu \in A } T ( \nu )$ ; confidence 0.935 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004021.png ; $\xi < \eta < \kappa$ ; confidence 0.935 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018021.png ; $20$ ; confidence 0.935 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006024.png ; $1 \overline { \partial }$ ; confidence 0.935 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015013.png ; $( A )$ ; confidence 0.935 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028062.png ; $U _ { \mu }$ ; confidence 0.935 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300604.png ; $| x | | = 0$ ; confidence 0.935 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023034.png ; $\xi \in \partial _ { c } g ( x )$ ; confidence 0.935 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005044.png ; $w \in E ^ { * * }$ ; confidence 0.935 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200803.png ; $A \in C ^ { n \times n }$ ; confidence 0.934 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005034.png ; $n > p$ ; confidence 0.934 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003034.png ; $K = ( 1 + k ) / ( 1 - k )$ ; confidence 0.934 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001063.png ; $B _ { R } = \{ x : | x | \leq R \}$ ; confidence 0.934 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002040.png ; $A ^ { \alpha } f$ ; confidence 0.934 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006093.png ; $\Gamma _ { X } ( t , s )$ ; confidence 0.934 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080135.png ; $F ^ { \prime } ( c )$ ; confidence 0.934 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023067.png ; $S _ { j }$ ; confidence 0.934 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023035.png ; $v = v _ { 1 } + v _ { 2 }$ ; confidence 0.934 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013014.png ; $m _ { i j } = - 1$ ; confidence 0.934 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005059.png ; $x ^ { n } = \operatorname { sinh } u ^ { n }$ ; confidence 0.934 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017060.png ; $L = \phi$ ; confidence 0.934 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001066.png ; $J \pi ( g ) = \pi ( \tau ( g ) ) J$ ; confidence 0.934 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034060.png ; $\sum _ { 0 } ^ { \infty } | f _ { n } | \operatorname { sup } _ { U } | \varphi _ { n } ( z ) | \leq \operatorname { sup } _ { K } | f ( z ) |$ ; confidence 0.934 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049019.png ; $E \in \Sigma$ ; confidence 0.934 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029086.png ; $i \neq \operatorname { dim } _ { A } M$ ; confidence 0.934 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054078.png ; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a120250106.png ; $PG ( 2 , q )$ ; confidence 0.934 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021099.png ; $B _ { k } = M _ { 1 } \supset \ldots \supset M _ { s } = 0$ ; confidence 0.934 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006023.png ; $( N )$ ; confidence 0.934 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010045.png ; $A = A _ { 0 } \oplus A _ { 1 } \oplus \ldots$ ; confidence 0.934 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011014.png ; $+ i \infty$ ; confidence 0.934 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203103.png ; $x _ { i } \in [ 0,1 ] ^ { d }$ ; confidence 0.934 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501021.png ; $\{ B _ { r } , \phi _ { r } , g _ { r } \}$ ; confidence 0.934 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015032.png ; $E _ { M } ( D ( \Omega ) ) / N ( D ( \Omega ) )$ ; confidence 0.934 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024032.png ; $m \times p$ ; confidence 0.934 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024220/c0242206.png ; $x , y \in V$ ; confidence 0.934 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012031.png ; $h ( G ) \leq h ( C _ { G } ( A ) ) + 2 l ( A )$ ; confidence 0.934 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450163.png ; $( X )$ ; confidence 0.934 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019036.png ; $V = x ^ { * } P x$ ; confidence 0.934 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002022.png ; $\int _ { \epsilon } ^ { \rho }$ ; confidence 0.934 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011033.png ; $\frac { \partial q f } { \partial t } + \nabla J = 0$ ; confidence 0.934 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j1200109.png ; $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$ ; confidence 0.934 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012920/a01292091.png ; $h \rightarrow 0$ ; confidence 0.934 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620110.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 + } \operatorname { Im } m _ { + } ( \lambda ) = \infty$ ; confidence 0.934 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011060.png ; $\eta ( . )$ ; confidence 0.934 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026041.png ; $\lambda ^ { * } ( x ) = ( \lambda ( x ^ { * } ) ) ^ { * }$ ; confidence 0.934 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011083.png ; $( x , \xi ) \mapsto ( T x , \square ^ { t } T ^ { - 1 } \xi )$ ; confidence 0.934 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007066.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$ ; confidence 0.934 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o12002012.png ; $L _ { 2 } ( R ; \omega ( \tau ) )$ ; confidence 0.934 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020990/c02099038.png ; $x \in ( a , b )$ ; confidence 0.934 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080152.png ; $\mu = \mu ( z , z ) \partial _ { z } \otimes d z$ ; confidence 0.934 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010026.png ; $\{ \square _ { j k } ^ { i } \}$ ; confidence 0.934 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011059.png ; $R _ { n } ( x ) = \frac { G _ { p , n } ( x ) } { \int _ { 0 } ^ { \infty } ( 1 - e ^ { - z } ) G _ { p , n } ( d z ) }$ ; confidence 0.934 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043770/g043770138.png ; $w$ ; confidence 0.933 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201106.png ; $C ( n )$ ; confidence 0.933 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057025.png ; $R ^ { 2 x }$ ; confidence 0.933 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031070.png ; $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$ ; confidence 0.933 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040798.png ; $f : A \rightarrow C$ ; confidence 0.933 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024018.png ; $K ( a , b ) \equiv 0$ ; confidence 0.933 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010011.png ; $E ( G )$ ; confidence 0.933 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040103.png ; $P ( x , D ) = L ^ { m } + Q ( x , D )$ ; confidence 0.933 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015020/b01502010.png ; $\operatorname { Ext } ( A , B )$ ; confidence 0.933 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408021.png ; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}$ ; confidence 0.933 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002078.png ; $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ ; confidence 0.933 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320137.png ; $= \sum$ ; confidence 0.933 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026790/c026790150.png ; $\Delta j$ ; confidence 0.933 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691023.png ; $h ( T _ { t } x )$ ; confidence 0.933 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003013.png ; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1$ ; confidence 0.933 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300607.png ; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega$ ; confidence 0.933 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010028.png ; $\frac { d } { d t } G ( t ) = L G ( t ) + [ L , A ^ { * } ] G ( t )$ ; confidence 0.933 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201603.png ; $X T - I$ ; confidence 0.933 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201201.png ; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi$ ; confidence 0.933 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004047.png ; $K _ { 1 } \# K _ { 2 }$ ; confidence 0.933 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png ; $t _ { n }$ ; confidence 0.933 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200204.png ; $\alpha = 1 / 2$ ; confidence 0.933 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201403.png ; $E ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.933 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096025.png ; $A \rightarrow A$ ; confidence 0.933 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014023.png ; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027017.png ; $W _ { P } ( \rho )$ ; confidence 0.933 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030039.png ; $\operatorname { deg } \alpha _ { i } = 2 i - 1$ ; confidence 0.933 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/c/c130/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070218.png ; $T \in \Re ( C , P )$ ; confidence 0.933 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201109.png ; $\varphi ( \alpha , b , 3 )$ ; confidence 0.933 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003048.png ; $GF _ { 2 }$ ; confidence 0.933 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017030.png ; $R _ { i } \rightarrow R _ { i } R _ { j }$ ; confidence 0.933 |
Revision as of 00:10, 13 February 2020
List
1.
; $\omega \in \hat { G }$ ; confidence 0.940
2.
; $0 \notin \overline { D }$ ; confidence 0.940
3.
; $\{ \lambda _ { k } ^ { ( n ) } \} _ { k = 1 } ^ { n }$ ; confidence 0.940
4.
; $g \circ h = f$ ; confidence 0.940
5.
; $T : S \rightarrow S$ ; confidence 0.940
6.
; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940
7.
; $Q ( R )$ ; confidence 0.940
8.
; $e : A \rightarrow f [ A ]$ ; confidence 0.940
9.
; $L = \operatorname { Ker } ( P _ { \sigma } )$ ; confidence 0.940
10.
; $\langle u - v , j \rangle \geq 0$ ; confidence 0.940
11.
; $z \in \Omega$ ; confidence 0.940
12.
; $O ( \varepsilon ^ { - N } )$ ; confidence 0.940
13.
; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.940
14.
; $SO ( 3 )$ ; confidence 0.940
15.
; $P = P ( G ) = \{ x \in G : x \succeq e \}$ ; confidence 0.940
16.
; $( M , g )$ ; confidence 0.940
17.
; $E _ { n + 1 } ( x ) = ( 1 - x ^ { 2 } ) U _ { n - 1 } ( x )$ ; confidence 0.940
18.
; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940
19.
; $| q ( x ) | \leq c ( 1 + | x | ) ^ { - b } , b > 2$ ; confidence 0.940
20.
; $E \times E \rightarrow K$ ; confidence 0.940
21.
; $= ( 2 ^ { 2 t + 2 } \frac { 2 ^ { 2 t } - 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t + 1 } + 1 } { 3 } , 2 ^ { 2 t - 1 } \frac { 2 ^ { 2 t - 1 } + 1 } { 3 } , 2 ^ { 4 t - 2 } )$ ; confidence 0.940
22.
; $N H = G$ ; confidence 0.940
23.
; $i , j \in Z +$ ; confidence 0.940
24.
; $| K ( x - , y ) - K ( x , y ) | \leq C | x ^ { \prime } - x | ^ { \gamma } | x - y | ^ { - n - \gamma }$ ; confidence 0.940
25.
; $\hat { \phi } ( \xi ) = \int _ { R ^ { n } } \phi ( x ) e ^ { - i \xi x } d x$ ; confidence 0.940
26.
; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940
27.
; $X = E \oplus F$ ; confidence 0.940
28.
; $\operatorname { ign } ( X _ { 1 } - X _ { 2 } )$ ; confidence 0.940
29.
; $q ^ { - 1 } b \rightarrow r ^ { - 1 } b$ ; confidence 0.940
30.
; $\operatorname { lim } _ { n \rightarrow \infty } [ ( - z ) \frac { P _ { n } ( - z ) } { Q _ { n } ( - z ) } ] = z \int _ { 0 } ^ { \infty } \frac { d \psi ( t ) } { z + t }$ ; confidence 0.940
31.
; $\| x \| _ { 2 } = ( x ^ { T } x ) ^ { 1 / 2 }$ ; confidence 0.940
32.
; $u , v \in U$ ; confidence 0.940
33.
; $X ( p \times n ) = ( X _ { j } )$ ; confidence 0.940
34.
; $U : Ca$ ; confidence 0.940
35.
; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940
36.
; $X ^ { Y }$ ; confidence 0.940
37.
; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940
38.
; $\delta \neq 0$ ; confidence 0.940
39.
; $f _ { n } \rightarrow f$ ; confidence 0.940
40.
; $x \in \Sigma ^ { i } ( f )$ ; confidence 0.940
41.
; $f ^ { \prime } ( N * ) < 0$ ; confidence 0.940
42.
; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940
43.
; $B = \pi ( X )$ ; confidence 0.939
44.
; $k = 4,8$ ; confidence 0.939
45.
; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939
46.
; $R ^ { n } \backslash \overline { \Omega }$ ; confidence 0.939
47.
; $| V _ { n , p } ( f , x ) | \leq K ( c ) \operatorname { max } | f ( x ) |$ ; confidence 0.939
48.
; $R _ { i } \rightarrow w R _ { i } w ^ { - 1 }$ ; confidence 0.939
49.
; $f ^ { \prime } ( N * ) n$ ; confidence 0.939
50.
; $( \tau _ { 2 } - \tau _ { 1 } ) \circ \nabla \circ \nabla$ ; confidence 0.939
51.
; $\frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } =$ ; confidence 0.939
52.
; $85$ ; confidence 0.939
53.
; $W ^ { k } L _ { \Phi } ( \Omega )$ ; confidence 0.939
54.
; $e : X ^ { Z \times Y } \rightarrow ( X ^ { Y } ) ^ { Z }$ ; confidence 0.939
55.
; $W ( u )$ ; confidence 0.939
56.
; $\partial _ { s }$ ; confidence 0.939
57.
; $\neq M \subset E$ ; confidence 0.939
58.
; $f _ { X } ( X )$ ; confidence 0.939
59.
; $\chi _ { l } ^ { \prime } ( G )$ ; confidence 0.939
60.
; $D B _ { 1 }$ ; confidence 0.939
61.
; $( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.939
62.
; $T \rightarrow 0$ ; confidence 0.939
63.
; $[ p ( T ) x , x ] \geq 0$ ; confidence 0.939
64.
; $m \geq n$ ; confidence 0.939
65.
; $\equiv - \operatorname { lk } ( L ) v ( \frac { v ^ { - 1 } - v } { z } ) ^ { \operatorname { com } ( L ) - 2 } \operatorname { mod } ( z )$ ; confidence 0.939
66.
; $\| \partial \phi _ { i } / \partial x _ { j } \|$ ; confidence 0.939
67.
; $S ( C ) = H \operatorname { exp } C$ ; confidence 0.938
68.
; $n \leq p$ ; confidence 0.938
69.
; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938
70.
; $( \neg \varphi )$ ; confidence 0.938
71.
; $H ^ { i } ( X , F _ { n } )$ ; confidence 0.938
72.
; $T ^ { \prime } T$ ; confidence 0.938
73.
; $M ( \Omega ) \subset D ^ { \prime } ( \Omega ) \times D ^ { \prime } ( \Omega )$ ; confidence 0.938
74.
; $\{ Y _ { t } , B _ { t } , 1 _ { t } \}$ ; confidence 0.938
75.
; $g ^ { - 1 } : \otimes ^ { 2 } E \rightarrow R$ ; confidence 0.938
76.
; $\beta ( \alpha , x ) = R \beta _ { 0 } ( \alpha ) \Phi ( x )$ ; confidence 0.938
77.
; $V _ { n }$ ; confidence 0.938
78.
; $P _ { i } ( v )$ ; confidence 0.938
79.
; $\sum _ { n = - \infty } ^ { \infty } | b _ { n } | \leq 10 \sum _ { n = 1 } ^ { \infty } a _ { n } ^ { * }$ ; confidence 0.938
80.
; $T _ { E } M ^ { * }$ ; confidence 0.938
81.
; $J \mapsto M ^ { t } J M$ ; confidence 0.938
82.
; $\overline { ( h _ { \mu \nu } ) } \square ^ { T } = ( h _ { \mu \nu } )$ ; confidence 0.938
83.
; $m + 4$ ; confidence 0.938
84.
; $L _ { p } ( T )$ ; confidence 0.938
85.
; $C A$ ; confidence 0.938
86.
; $U ^ { \prime \prime } \subseteq U$ ; confidence 0.938
87.
; $\alpha _ { i j }$ ; confidence 0.938
88.
; $f _ { Q } = \frac { 1 } { | Q | } \int _ { Q } f ( t ) d t$ ; confidence 0.938
89.
; $I / 2 - h _ { \theta } ^ { * }$ ; confidence 0.938
90.
; $U \subset R ^ { p }$ ; confidence 0.938
91.
; $F _ { p }$ ; confidence 0.938
92.
; $d _ { n } = \prod _ { p - 1 | n } p ^ { 1 + v _ { p } ( n ) }$ ; confidence 0.938
93.
; $\vec { B }$ ; confidence 0.938
94.
; $\operatorname { lim } _ { i \rightarrow \infty } x _ { i i } = 0$ ; confidence 0.938
95.
; $q ( G )$ ; confidence 0.938
96.
; $\alpha _ { k } = \int x ^ { k } d F ( x )$ ; confidence 0.938
97.
; $B ( E )$ ; confidence 0.938
98.
; $SP ^ { - } ( n )$ ; confidence 0.938
99.
; $< 6$ ; confidence 0.938
100.
; $\xi \in A$ ; confidence 0.938
101.
; $E \times R$ ; confidence 0.937
102.
; $p ( t ) = t ^ { N } - 1$ ; confidence 0.937
103.
; $P - \phi$ ; confidence 0.937
104.
; $\lambda$ ; confidence 0.937
105.
; $| 1 \}$ ; confidence 0.937
106.
; $\delta ( a b ) = \delta ( a ) b + a \delta ( b )$ ; confidence 0.937
107.
; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937
108.
; $B < R$ ; confidence 0.937
109.
; $X = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X$ ; confidence 0.937
110.
; $( B _ { X } * , w ^ { * } )$ ; confidence 0.937
111.
; $F = \{ Y : \operatorname { Hom } _ { H } ( T , Y ) = 0 \}$ ; confidence 0.937
112.
; $- \infty < t _ { 1 } \leq \ldots \leq t _ { n } < \infty$ ; confidence 0.937
113.
; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in A _ { p } ( G )$ ; confidence 0.937
114.
; $L _ { 2 } ( X , \mu )$ ; confidence 0.937
115.
; $K _ { p } ( f )$ ; confidence 0.937
116.
; $7$ ; confidence 0.937
117.
; $< d$ ; confidence 0.937
118.
; $y \in X ^ { \prime }$ ; confidence 0.937
119.
; $H ( x ) = 1$ ; confidence 0.937
120.
; $f ( x ) \mapsto S _ { N } ( f ; x )$ ; confidence 0.937
121.
; $( L _ { + } , L _ { - } , L _ { 0 } )$ ; confidence 0.937
122.
; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.937
123.
; $x _ { j t } , y _ { i t } \geq 0$ ; confidence 0.937
124.
; $A ^ { * } X$ ; confidence 0.937
125.
; $| x | = x ^ { + } ( x ^ { - } ) ^ { - 1 }$ ; confidence 0.937
126.
; $W ^ { + }$ ; confidence 0.937
127.
; $T ( V )$ ; confidence 0.937
128.
; $d f \nmid f$ ; confidence 0.937
129.
; $h > 0$ ; confidence 0.937
130.
; $\xi \in A ^ { \prime \prime }$ ; confidence 0.937
131.
; $( a b ) ^ { - 1 } = 1$ ; confidence 0.937
132.
; $\langle w , f \rangle \neq 0$ ; confidence 0.937
133.
; $c ( n )$ ; confidence 0.937
134.
; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon - \mu _ { 1 } L ) } \\ { \frac { d L } { d t } = \mu _ { 2 } L F - \nu L } \end{array} \right.$ ; confidence 0.937
135.
; $A = [ \alpha , j ]$ ; confidence 0.937
136.
; $T ( M | B )$ ; confidence 0.937
137.
; $V \rightarrow H ^ { 0 } ( G / B , \xi )$ ; confidence 0.937
138.
; $r + 1$ ; confidence 0.937
139.
; $d _ { 1 } = \ldots = d _ { q } = 1$ ; confidence 0.936
140.
; $s _ { j } ( T ) = \operatorname { inf } \{ \| T - R \| : \operatorname { rank } R \leq j \} , j \geq 0$ ; confidence 0.936
141.
; $C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta$ ; confidence 0.936
142.
; $f \in C ^ { k } [ N , N + M ]$ ; confidence 0.936
143.
; $[ n ] \neq$ ; confidence 0.936
144.
; $N ( t ) = \sum _ { 1 } ^ { \infty } I ( S _ { k } \leq t )$ ; confidence 0.936
145.
; $G ( \Omega ) = E _ { M } / N$ ; confidence 0.936
146.
; $q + 1$ ; confidence 0.936
147.
; $R ^ { 21 } = \sum b _ { i } \otimes a _ { i }$ ; confidence 0.936
148.
; $y , \beta , e$ ; confidence 0.936
149.
; $b _ { i j k }$ ; confidence 0.936
150.
; $b _ { n }$ ; confidence 0.936
151.
; $\sum | I _ { j } | \leq \frac { 1 } { \alpha } \int _ { I } | u ( \vartheta ) | d \vartheta$ ; confidence 0.936
152.
; $| \prod _ { j = 1 } ^ { k } ( \lambda - A ( t _ { j } ) ) ^ { - 1 } \| _ { X } \leq M ( \lambda - \beta ) ^ { - k }$ ; confidence 0.936
153.
; $\sum _ { i , j = 1 } ^ { n } \overline { c } _ { i } K _ { S } ( w _ { j } , w _ { i } ) c _ { j } \geq 0$ ; confidence 0.936
154.
; $b \in G$ ; confidence 0.936
155.
; $\{ \gamma \in \Gamma _ { m } : f ( \gamma ) \neq 0 \}$ ; confidence 0.936
156.
; $s , t \in R$ ; confidence 0.936
157.
; $y x ^ { - 1 } \in P$ ; confidence 0.936
158.
; $H _ { K } ( \zeta ) = \operatorname { sup } _ { z \in K } \operatorname { Re } ( \zeta z )$ ; confidence 0.936
159.
; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
160.
; $K _ { 0 }$ ; confidence 0.936
161.
; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936
162.
; $O _ { S } ^ { * }$ ; confidence 0.936
163.
; $\Gamma \subset D \cap Q$ ; confidence 0.936
164.
; $S = - \Delta + W$ ; confidence 0.936
165.
; $k$ ; confidence 0.936
166.
; $f ( x x ^ { * } ) < + \infty$ ; confidence 0.936
167.
; $L _ { p } ( S \times T )$ ; confidence 0.936
168.
; $\operatorname { su } ( 3 )$ ; confidence 0.936
169.
; $2 m$ ; confidence 0.936
170.
; $C ( 10 )$ ; confidence 0.936
171.
; $k$ ; confidence 0.936
172.
; $R ( \phi ) \subset \sigma _ { e } ( T _ { \phi } ) \subset \sigma ( T _ { \phi } ) \subset \operatorname { conv } ( R ( \phi ) )$ ; confidence 0.936
173.
; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \\ { z ^ { 2 } Q _ { D _ { 0 } } } \end{array} \right.$ ; confidence 0.936
174.
; $SS _ { e }$ ; confidence 0.936
175.
; $\zeta ( s , \alpha )$ ; confidence 0.936
176.
; $\operatorname { ldim } ( P ) = \operatorname { dim } ( C ( P ) )$ ; confidence 0.936
177.
; $1 \leq s \leq d / ( d - 1 )$ ; confidence 0.936
178.
; $S _ { R } ^ { \delta } ( x ) = f ( x )$ ; confidence 0.936
179.
; $X ^ { 2 } ( \hat { \theta } _ { n } )$ ; confidence 0.936
180.
; $P = ( \frac { u _ { i } u _ { j } ^ { * } - v _ { i } v _ { j } ^ { * } } { 1 - f _ { i } f _ { j } ^ { * } } ) _ { i , j = 0 } ^ { n - 1 }$ ; confidence 0.936
181.
; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936
182.
; $M ( R ^ { 2 n } )$ ; confidence 0.936
183.
; $c = \operatorname { cos } \alpha$ ; confidence 0.935
184.
; $c ( i , m ) = L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m }$ ; confidence 0.935
185.
; $\Lambda \supseteq \Phi$ ; confidence 0.935
186.
; $\notin \{ 0,1 \}$ ; confidence 0.935
187.
; $X \in X ( M )$ ; confidence 0.935
188.
; $1 = 3 g - 3$ ; confidence 0.935
189.
; $K = 0$ ; confidence 0.935
190.
; $F ( i )$ ; confidence 0.935
191.
; $\operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma )$ ; confidence 0.935
192.
; $< x \operatorname { exp } ( - \frac { 1 } { 25 } ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } )$ ; confidence 0.935
193.
; $F \rightarrow E \rightarrow B$ ; confidence 0.935
194.
; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935
195.
; $\lambda _ { k } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.935
196.
; $x \circ y : = ( x y + y x ) / 2$ ; confidence 0.935
197.
; $D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right)$ ; confidence 0.935
198.
; $\theta ( 1 ) = - \pi / 2$ ; confidence 0.935
199.
; $X ^ { G } \hookrightarrow X$ ; confidence 0.935
200.
; $f _ { A } : A ^ { m } \rightarrow A$ ; confidence 0.935
201.
; $k _ { \mu } ^ { \prime \prime } ( \theta ) = V _ { F } ( k _ { \mu } ^ { \prime } ( \theta ) )$ ; confidence 0.935
202.
; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0$ ; confidence 0.935
203.
; $S ( g )$ ; confidence 0.935
204.
; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
205.
; $q ( x ) \in L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.935
206.
; $C = C _ { 0 } \oplus C _ { 1 }$ ; confidence 0.935
207.
; $P$ ; confidence 0.935
208.
; $a , b \in Z$ ; confidence 0.935
209.
; $( i , j )$ ; confidence 0.935
210.
; $t ^ { \lambda }$ ; confidence 0.935
211.
; $( K , v )$ ; confidence 0.935
212.
; $D _ { + }$ ; confidence 0.935
213.
; $\frac { \partial v } { \partial t } = - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - 2 ( v \frac { \partial u } { \partial x } + u \frac { \partial v } { \partial x } )$ ; confidence 0.935
214.
; $X \rightarrow B ( \mu )$ ; confidence 0.935
215.
; $\operatorname { inf } _ { \nu \in A } T ( \nu )$ ; confidence 0.935
216.
; $\xi < \eta < \kappa$ ; confidence 0.935
217.
; $20$ ; confidence 0.935
218.
; $1 \overline { \partial }$ ; confidence 0.935
219.
; $( A )$ ; confidence 0.935
220.
; $U _ { \mu }$ ; confidence 0.935
221.
; $| x | | = 0$ ; confidence 0.935
222.
; $\xi \in \partial _ { c } g ( x )$ ; confidence 0.935
223.
; $w \in E ^ { * * }$ ; confidence 0.935
224.
; $A \in C ^ { n \times n }$ ; confidence 0.934
225.
; $n > p$ ; confidence 0.934
226.
; $K = ( 1 + k ) / ( 1 - k )$ ; confidence 0.934
227.
; $B _ { R } = \{ x : | x | \leq R \}$ ; confidence 0.934
228.
; $A ^ { \alpha } f$ ; confidence 0.934
229.
; $\Gamma _ { X } ( t , s )$ ; confidence 0.934
230.
; $F ^ { \prime } ( c )$ ; confidence 0.934
231.
; $S _ { j }$ ; confidence 0.934
232.
; $v = v _ { 1 } + v _ { 2 }$ ; confidence 0.934
233.
; $m _ { i j } = - 1$ ; confidence 0.934
234.
; $x ^ { n } = \operatorname { sinh } u ^ { n }$ ; confidence 0.934
235.
; $L = \phi$ ; confidence 0.934
236.
; $J \pi ( g ) = \pi ( \tau ( g ) ) J$ ; confidence 0.934
237.
; $\sum _ { 0 } ^ { \infty } | f _ { n } | \operatorname { sup } _ { U } | \varphi _ { n } ( z ) | \leq \operatorname { sup } _ { K } | f ( z ) |$ ; confidence 0.934
238.
; $E \in \Sigma$ ; confidence 0.934
239.
; $i \neq \operatorname { dim } _ { A } M$ ; confidence 0.934
240.
; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934
241.
; $PG ( 2 , q )$ ; confidence 0.934
242.
; $B _ { k } = M _ { 1 } \supset \ldots \supset M _ { s } = 0$ ; confidence 0.934
243.
; $( N )$ ; confidence 0.934
244.
; $A = A _ { 0 } \oplus A _ { 1 } \oplus \ldots$ ; confidence 0.934
245.
; $+ i \infty$ ; confidence 0.934
246.
; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
247.
; $x _ { i } \in [ 0,1 ] ^ { d }$ ; confidence 0.934
248.
; $\{ B _ { r } , \phi _ { r } , g _ { r } \}$ ; confidence 0.934
249.
; $E _ { M } ( D ( \Omega ) ) / N ( D ( \Omega ) )$ ; confidence 0.934
250.
; $m \times p$ ; confidence 0.934
251.
; $x , y \in V$ ; confidence 0.934
252.
; $h ( G ) \leq h ( C _ { G } ( A ) ) + 2 l ( A )$ ; confidence 0.934
253.
; $( X )$ ; confidence 0.934
254.
; $V = x ^ { * } P x$ ; confidence 0.934
255.
; $\int _ { \epsilon } ^ { \rho }$ ; confidence 0.934
256.
; $\frac { \partial q f } { \partial t } + \nabla J = 0$ ; confidence 0.934
257.
; $\operatorname { deg } F = \operatorname { max } _ { i } \operatorname { deg } F _ { i } \leq 2$ ; confidence 0.934
258.
; $h \rightarrow 0$ ; confidence 0.934
259.
; $\operatorname { lim } _ { \epsilon \rightarrow 0 + } \operatorname { Im } m _ { + } ( \lambda ) = \infty$ ; confidence 0.934
260.
; $\eta ( . )$ ; confidence 0.934
261.
; $\lambda ^ { * } ( x ) = ( \lambda ( x ^ { * } ) ) ^ { * }$ ; confidence 0.934
262.
; $( x , \xi ) \mapsto ( T x , \square ^ { t } T ^ { - 1 } \xi )$ ; confidence 0.934
263.
; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$ ; confidence 0.934
264.
; $L _ { 2 } ( R ; \omega ( \tau ) )$ ; confidence 0.934
265.
; $x \in ( a , b )$ ; confidence 0.934
266.
; $\mu = \mu ( z , z ) \partial _ { z } \otimes d z$ ; confidence 0.934
267.
; $\{ \square _ { j k } ^ { i } \}$ ; confidence 0.934
268.
; $R _ { n } ( x ) = \frac { G _ { p , n } ( x ) } { \int _ { 0 } ^ { \infty } ( 1 - e ^ { - z } ) G _ { p , n } ( d z ) }$ ; confidence 0.934
269.
; $w$ ; confidence 0.933
270.
; $C ( n )$ ; confidence 0.933
271.
; $R ^ { 2 x }$ ; confidence 0.933
272.
; $\delta > ( n - 1 ) | 1 / 2 - 1 / p |$ ; confidence 0.933
273.
; $f : A \rightarrow C$ ; confidence 0.933
274.
; $K ( a , b ) \equiv 0$ ; confidence 0.933
275.
; $E ( G )$ ; confidence 0.933
276.
; $P ( x , D ) = L ^ { m } + Q ( x , D )$ ; confidence 0.933
277.
; $\operatorname { Ext } ( A , B )$ ; confidence 0.933
278.
; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}$ ; confidence 0.933
279.
; $\{ f \in H ^ { \infty } : \| \phi - f \| _ { L } \infty \leq \rho \}$ ; confidence 0.933
280.
; $= \sum$ ; confidence 0.933
281.
; $\Delta j$ ; confidence 0.933
282.
; $h ( T _ { t } x )$ ; confidence 0.933
283.
; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1$ ; confidence 0.933
284.
; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega$ ; confidence 0.933
285.
; $\frac { d } { d t } G ( t ) = L G ( t ) + [ L , A ^ { * } ] G ( t )$ ; confidence 0.933
286.
; $X T - I$ ; confidence 0.933
287.
; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi$ ; confidence 0.933
288.
; $K _ { 1 } \# K _ { 2 }$ ; confidence 0.933
289.
; $t _ { n }$ ; confidence 0.933
290.
; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
291.
; $\alpha = 1 / 2$ ; confidence 0.933
292.
; $E ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.933
293.
; $A \rightarrow A$ ; confidence 0.933
294.
; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933
295.
; $W _ { P } ( \rho )$ ; confidence 0.933
296.
; $\operatorname { deg } \alpha _ { i } = 2 i - 1$ ; confidence 0.933
297.
; $T \in \Re ( C , P )$ ; confidence 0.933
298.
; $\varphi ( \alpha , b , 3 )$ ; confidence 0.933
299.
; $GF _ { 2 }$ ; confidence 0.933
300.
; $R _ { i } \rightarrow R _ { i } R _ { j }$ ; confidence 0.933
Maximilian Janisch/latexlist/latex/NoNroff/29. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/29&oldid=44517