Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/24"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 24 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 24 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025051.png ; $( x , \xi ) \in R ^ { x } \times S ^ { x - 1 }$ ; confidence 0.877
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240156.png ; $c ^ { \prime }$ ; confidence 0.970
  
2. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200106.png ; $\psi : ( u , v ) \rightarrow ( 2 u , 2 v )$ ; confidence 0.998
+
2. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240112.png ; $G ( \overline { Q } / Q )$ ; confidence 0.970
  
3. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080104.png ; $b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty$ ; confidence 0.970
  
4. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003030.png ; $S _ { A } : A \times L A \rightarrow L A$ ; confidence 0.495
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220103.png ; $f ( z ) d z \mapsto \overline { f ( z ) } d z$ ; confidence 0.970
  
5. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300606.png ; $- \Delta u = \mu u \text { in } \Omega$ ; confidence 0.997
+
5. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019065.png ; $( S ^ { k } , * )$ ; confidence 0.970
  
6. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011025.png ; $\xi _ { 1 } ( . ) , \ldots , \xi _ { n } ( . )$ ; confidence 0.557
+
6. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023049.png ; $D = i _ { K }$ ; confidence 0.970
  
7. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520367.png ; $X \equiv ( x _ { 1 } , \dots , x _ { x } ) = 0$ ; confidence 0.539
+
7. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016010.png ; $L G _ { C } = \{ \gamma : S ^ { 1 } \rightarrow G _ { C } \}$ ; confidence 0.970
  
8. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300303.png ; $f ( x ) = \sum _ { j = - \infty } ^ { \infty } \sum _ { k = - \infty } ^ { \infty } a _ { j , k } \psi ( 2 ^ { j } x - k )$ ; confidence 0.970
  
9. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520300.png ; $A _ { \alpha } \simeq K _ { \rho _ { 0 } }$ ; confidence 0.347
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005030.png ; $g ( x , k ) = e ^ { - i k x } + o ( 1 ) , x \rightarrow - \infty$ ; confidence 0.970
  
10. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003046.png ; $N ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence 0.755
+
10. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006084.png ; $x , y < i z$ ; confidence 0.970
  
11. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006065.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = 0$ ; confidence 1.000
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340183.png ; $\sigma : \Sigma \rightarrow M$ ; confidence 0.970
  
12. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060128.png ; $f ( \lambda _ { 1 } , \lambda _ { 2 } ) = 0$ ; confidence 1.000
+
12. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005030.png ; $p = \rho R T$ ; confidence 0.970
  
13. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014013.png ; $\theta = \theta ( a _ { 0 } , a _ { 1 } ) > 1$ ; confidence 0.581
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501017.png ; $\phi _ { r } : B _ { r } \rightarrow B O _ { r }$ ; confidence 0.970
  
14. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009049.png ; $f : \partial \Omega \rightarrow R$ ; confidence 0.997
+
14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001013.png ; $u ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.970
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100173.png ; $f _ { j } : \Delta \rightarrow C ^ { * }$ ; confidence 0.154
+
15. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015073.png ; $u \in G ( \Omega )$ ; confidence 0.970
  
16. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001068.png ; $\tau \in \operatorname { Aut } ( G )$ ; confidence 0.930
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006020.png ; $8$ ; confidence 0.970
  
17. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003031.png ; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005018.png ; $z _ { 0 } \in U$ ; confidence 0.970
  
18. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571
+
18. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007021.png ; $f ( y ) = ( f , K ( , y ) )$ ; confidence 0.970
  
19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007058.png ; $v _ { j } \lambda _ { j } ^ { 1 / 2 } = u _ { j }$ ; confidence 0.389
+
19. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010140.png ; $R ( x , y ) _ { 12 } R ( x , z ) _ { 13 } R ( y , z ) _ { 23 } =$ ; confidence 0.970
  
20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070160.png ; $\| f \| = ( f , f ) \frac { 1 / 2 } { d ^ { 2 } }$ ; confidence 0.104
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202006.png ; $F [ t$ ; confidence 0.969
  
21. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008070.png ; $\{ h ( t , p _ { j } ) \} _ { 1 } \leq j \leq x$ ; confidence 0.280
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280151.png ; $M ^ { \phi } ( S _ { E } )$ ; confidence 0.969
  
22. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008024.png ; $| K ( x , y ) | ^ { 2 } \leq K ( x , x ) K ( y , y )$ ; confidence 0.993
+
22. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008079.png ; $L ^ { 2 } ( E , d \mu )$ ; confidence 0.969
  
23. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301406.png ; $\sigma ( R ) \backslash \lambda$ ; confidence 0.997
+
23. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100174.png ; $f _ { j } ( 0 ) \rightarrow z$ ; confidence 0.969
  
24. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232040.png ; $\{ x \in R ^ { x } : | x - x _ { 0 } | \leq R \}$ ; confidence 0.536
+
24. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017060.png ; $\{ X _ { n } \}$ ; confidence 0.969
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002010.png ; $d u = \alpha \wedge d \alpha ^ { n - 1 }$ ; confidence 0.590
+
25. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060101.png ; $k \in R , \varphi _ { \pm } ( \infty ) = 1$ ; confidence 0.969
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951
+
26. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300803.png ; $m = 1,2 , x \in R _ { + } : = [ 0 , \infty )$ ; confidence 0.969
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004025.png ; $( \Gamma \cap P ) \backslash H ^ { 1 }$ ; confidence 1.000
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019040.png ; $h ( S ) = h ( S , \varphi )$ ; confidence 0.969
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004038.png ; $X _ { g } ^ { * } = \cup _ { r \leq g } X _ { r }$ ; confidence 0.386
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695021.png ; $\mathfrak { N } _ { f }$ ; confidence 0.969
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011015.png ; $f _ { w } \in Z [ x _ { 1 } , \dots , x _ { x } ]$ ; confidence 0.071
+
29. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003029.png ; $f \in L ^ { 1 } ( R ) \cap L ^ { 2 } ( R )$ ; confidence 0.969
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004079.png ; $\rho : GL _ { l } \rightarrow GL _ { m }$ ; confidence 0.883
+
30. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005076.png ; $m + k$ ; confidence 0.969
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045046.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) < 0$ ; confidence 0.997
+
31. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070115.png ; $a d - q ^ { - 1 } b c = 1$ ; confidence 0.969
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045041.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) > 0$ ; confidence 0.997
+
32. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016011.png ; $\Sigma \geq 0$ ; confidence 0.969
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022029.png ; $\operatorname { pec } ( M , \Delta )$ ; confidence 0.560
+
33. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120148.png ; $\pi _ { Y } : \overline { B } ( Y ) \rightarrow Y$ ; confidence 0.969
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022073.png ; $\operatorname { det } ( \Delta + z )$ ; confidence 0.992
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087054.png ; $n \neq m$ ; confidence 0.969
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047018.png ; $( T - \lambda l ) ^ { \nu ( \lambda ) } X$ ; confidence 0.645
+
35. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002015.png ; $L ( x ) = - \int _ { 0 } ^ { x } \operatorname { ln } \operatorname { cos } t d t$ ; confidence 0.969
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304801.png ; $\alpha : E ( \alpha ) \rightarrow M$ ; confidence 0.999
+
36. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060820/l06082022.png ; $n \geq p$ ; confidence 0.969
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050020.png ; $| A | ( n - l ) \leq | \nabla ( A ) | ( l + 1 )$ ; confidence 0.683
+
37. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009046.png ; $\delta _ { \eta }$ ; confidence 0.969
  
38. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050034.png ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751
+
38. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001058.png ; $G \leftrightarrow G ^ { c }$ ; confidence 0.969
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510127.png ; $\gamma ( u ) = \gamma ^ { \prime } ( u )$ ; confidence 0.999
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007047.png ; $A u \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.969
  
40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054035.png ; $h ( \alpha ) = w ( \alpha ) w ( 1 ) ^ { - 1 }$ ; confidence 0.731
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065048.png ; $S _ { \mu } ( z ) = \frac { F _ { \mu } ( z ) - F _ { \mu } ( 0 ) } { F _ { \mu } ( z ) + F _ { \mu } ( 0 ) }$ ; confidence 0.969
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025037.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { \lambda - 1 / 2 }$ ; confidence 0.990
+
41. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005078.png ; $\varphi ^ { * }$ ; confidence 0.969
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026042.png ; $\phi : [ 0,1 ] \rightarrow ( L ^ { 2 } )$ ; confidence 0.999
+
42. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004028.png ; $4 / 21 \leq c$ ; confidence 0.969
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998
+
43. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010127.png ; $H ^ { 1 } ( R ^ { 3 } )$ ; confidence 0.969
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067094.png ; $S _ { j _ { 1 } } ^ { i _ { 1 } \cdots j _ { p } }$ ; confidence 0.145
+
44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015059.png ; $r ^ { \prime } ( A )$ ; confidence 0.969
  
45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202909.png ; $\sum _ { k = 1 } ^ { \infty } x _ { n } _ { k }$ ; confidence 0.818
+
45. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002039.png ; $a b < 1$ ; confidence 0.969
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320139.png ; $R ^ { 21 } = \sum b _ { i } \otimes a _ { i }$ ; confidence 0.936
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042096.png ; $1002$ ; confidence 0.969
  
47. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203407.png ; $SH ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662
+
47. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001018.png ; $H > 0$ ; confidence 0.969
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003039.png ; $V ^ { \prime } = F _ { K } \circ \Phi ( V )$ ; confidence 0.996
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015070.png ; $f : [ 0,1 ] \rightarrow R$ ; confidence 0.969
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006084.png ; $\wedge ^ { N } L ^ { 2 } ( R ^ { 3 } ; C ^ { 2 } )$ ; confidence 0.836
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012069.png ; $k < N$ ; confidence 0.969
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140108.png ; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I _ { e }$ ; confidence 0.361
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240478.png ; $0$ ; confidence 0.969
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014038.png ; $\overline { \phi } \in H ^ { \infty }$ ; confidence 0.989
+
51. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009026.png ; $\mu _ { m }$ ; confidence 0.969
  
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140105.png ; $\sigma _ { e } ( T _ { \phi } ) = \phi ( T )$ ; confidence 0.991
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023045.png ; $\operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } T T ^ { \prime } \}$ ; confidence 0.969
  
53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201505.png ; $\eta \in A \mapsto \xi \eta \in A$ ; confidence 0.962
+
53. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100118.png ; $L ^ { 1 } ( \hat { G } )$ ; confidence 0.969
  
54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021031.png ; $R ( x _ { i } ; a _ { 0 } , \dots , a _ { N } ) = 0$ ; confidence 0.681
+
54. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060138.png ; $Q : = \int _ { 0 } ^ { \infty } q ( t ) d t = - 2 i \operatorname { lim } _ { k \rightarrow \infty } \{ k [ f ( k ) - 1 ] \}$ ; confidence 0.969
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200239.png ; $\dot { k } \in [ m + 1 , m + n _ { 1 } n _ { 2 } ]$ ; confidence 0.287
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010060.png ; $( G , F )$ ; confidence 0.969
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020054.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { N } |$ ; confidence 0.814
+
56. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013019.png ; $A ^ { + }$ ; confidence 0.969
  
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020055.png ; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455
+
57. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012059.png ; $c _ { k } = d ( g _ { k } )$ ; confidence 0.969
  
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021064.png ; $A ( C , q , z ) = \sum _ { V \in C } z ^ { w / v }$ ; confidence 0.162
+
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140104.png ; $\phi \in C ( T )$ ; confidence 0.969
  
59. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960308.png ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944
+
59. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170150.png ; $M ( n )$ ; confidence 0.969
  
60. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002095.png ; $G = f \circ g ^ { - 1 } : Y \rightarrow Y$ ; confidence 0.990
+
60. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020157.png ; $u = \operatorname { Re } f$ ; confidence 0.969
  
61. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004063.png ; $\chi ( L ( G ) ) \leq \omega ( L ( G ) ) + 1$ ; confidence 0.996
+
61. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002016.png ; $\left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.969
  
62. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900163.png ; $\zeta \mapsto T ( \zeta ) f ( \zeta )$ ; confidence 0.549
+
62. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006061.png ; $J ^ { 2 } Y$ ; confidence 0.969
  
63. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } } H$ ; confidence 0.207
+
63. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010019.png ; $B _ { X } *$ ; confidence 0.969
  
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200303.png ; $K = \{ x _ { n } / n : n \in N \} \cup \{ 0 \}$ ; confidence 0.705
+
64. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058036.png ; $p = [ Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ] ^ { 1 / 2 } / I$ ; confidence 0.969
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030100.png ; $\| x _ { y } \| _ { \rightarrow } \| x \|$ ; confidence 0.323
+
65. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020134.png ; $F = r \circ t ^ { - 1 }$ ; confidence 0.969
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030105.png ; $x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$ ; confidence 0.708
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003028.png ; $( a b ) ^ { - 1 } < 1$ ; confidence 0.969
  
67. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001017.png ; $+ \psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) . C$ ; confidence 0.404
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027079.png ; $\Gamma = \{ X _ { n } , P _ { n } ; Y _ { n } , Q _ { n } \}$ ; confidence 0.969
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200509.png ; $1 + a _ { 1 } ^ { 2 } + \ldots + a _ { k } ^ { 2 }$ ; confidence 0.804
+
68. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026066.png ; $k h ^ { - 2 } \leq 3 / 2$ ; confidence 0.969
  
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006070.png ; $\kappa _ { M } : T T M \rightarrow T T M$ ; confidence 0.974
+
69. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027011.png ; $E _ { m } ( f )$ ; confidence 0.969
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070101.png ; $C ^ { \prime } , s ^ { \prime } , r \geq 0$ ; confidence 0.998
+
70. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150209.png ; $S ^ { 3 } \rightarrow S ^ { 2 }$ ; confidence 0.969
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090195.png ; $\operatorname { PSL } _ { \eta } ( K )$ ; confidence 0.528
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203407.png ; $\sum _ { \alpha } c _ { \alpha } z ^ { \alpha }$ ; confidence 0.969
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110238.png ; $a _ { n } ^ { + } b \in S ( m _ { 1 } m _ { 2 } , G )$ ; confidence 0.156
+
72. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080129.png ; $N = 1$ ; confidence 0.969
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110112.png ; $( a \circ \chi ) ^ { w } = M ^ { * } a ^ { w } M$ ; confidence 0.745
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240350.png ; $( n - r ) \times p$ ; confidence 0.969
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080188.png ; $\omega ^ { 0 } = ( \delta v , \delta u )$ ; confidence 0.995
+
74. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006011.png ; $u ( t , x ) | _ { t = 0 } = \phi ( x ) , \frac { \partial u ( t , x ) } { \partial t } | _ { t = 0 } = \psi ( x )$ ; confidence 0.969
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008047.png ; $\Omega _ { n } = \Omega _ { n } ( T _ { m } )$ ; confidence 0.967
+
75. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520388.png ; $\operatorname { det } \| \partial \xi _ { i } / \partial y _ { j } \| \neq 0$ ; confidence 0.969
  
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017084.png ; $\iota \omega ( G ) \nmid \omega ( G )$ ; confidence 0.856
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004012.png ; $( d / d t ) x ( t ) = A x ( t )$ ; confidence 0.969
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006034.png ; $- \int _ { 0 } ^ { \infty } y ( t ) f ( t ) d t$ ; confidence 0.999
+
77. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021014.png ; $C _ { 0 } ( \hat { G } ; C )$ ; confidence 0.969
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w1301702.png ; $x _ { t } : \Omega \rightarrow R ^ { x }$ ; confidence 0.772
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300109.png ; $A \otimes O _ { 2 }$ ; confidence 0.969
  
79. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002031.png ; $\delta ( I _ { \delta } ) \subseteq R$ ; confidence 0.927
+
79. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001034.png ; $\operatorname { inf } ( x , y ) = 0$ ; confidence 0.969
  
80. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003036.png ; $F _ { A } ^ { + } = i \sigma ( \phi , \phi )$ ; confidence 0.997
+
80. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005073.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( Y ( u , x _ { 1 } - x _ { 2 } ) v , x _ { 2 } )$ ; confidence 0.969
  
81. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200401.png ; $\nu = \{ \nu _ { X } \} _ { X \in \Omega }$ ; confidence 0.953
+
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090200.png ; $G _ { \chi } ^ { * } ( T ) \in Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.968
  
82. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200404.png ; $f _ { j } : \Omega \rightarrow R ^ { d }$ ; confidence 0.758
+
82. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408028.png ; $* \in A \subset X$ ; confidence 0.968
  
83. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010024.png ; $( \varphi \leftrightarrow \psi )$ ; confidence 0.987
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070246.png ; $\nu _ { 1 } ( 2 g _ { 1 } - 2 ) + \mathfrak { D } _ { 1 } = \nu _ { 2 } ( 2 g _ { 2 } - 2 ) + \mathfrak { D } _ { 2 }$ ; confidence 0.968
  
84. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200106.png ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494
+
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048034.png ; $\overline { \partial } : \Omega ^ { p , 0 } ( M ) \rightarrow \Omega ^ { p , 1 } ( M )$ ; confidence 0.968
  
85. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } }$ ; confidence 0.780
+
85. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005014.png ; $\mathfrak { D } = \operatorname { Der } _ { k } ( R )$ ; confidence 0.968
  
86. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008027.png ; $( 1 - x ^ { 2 } - y ^ { 2 } ) ^ { \alpha } d x d y$ ; confidence 0.999
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120109.png ; $f \notin B _ { 2 , \infty } ^ { \varepsilon + 1 / 2 }$ ; confidence 0.968
  
87. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086430/s0864307.png ; $\alpha ^ { \prime } \subset \alpha$ ; confidence 0.990
+
87. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022069.png ; $p = \operatorname { exp } ( 2 \pi i w )$ ; confidence 0.968
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988
+
88. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003058.png ; $L ^ { 1 } ( Q )$ ; confidence 0.968
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992
+
89. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005067.png ; $- X _ { 0 } ^ { 2 } + \sum X _ { t } ^ { 2 } = 1 = - Y _ { 0 } ^ { 2 } + \sum Y _ { t } ^ { 2 }$ ; confidence 0.968
  
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001053.png ; $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ ; confidence 1.000
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290222.png ; $R ( m )$ ; confidence 0.968
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001059.png ; $\delta x$ ; confidence 0.968
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
+
92. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630117.png ; $r > 1 / p$ ; confidence 0.968
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001063.png ; $U \cap V _ { i }$ ; confidence 0.968
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979
+
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062057.png ; $m _ { 0 } ( \lambda )$ ; confidence 0.968
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040595.png ; $\mathfrak { D } \mathfrak { N } \in$ ; confidence 0.136
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080100.png ; $X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }$ ; confidence 0.968
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040415.png ; $\operatorname { Aod } ^ { * } L _ { D }$ ; confidence 0.225
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a0106001.png ; $A$ ; confidence 0.968
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007059.png ; $f \in B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.999
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040373.png ; $\Omega F \subseteq \Omega G$ ; confidence 0.968
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014050.png ; $\gamma \neq 0$ ; confidence 0.968
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012065.png ; $\lambda ^ { * } \geq \lambda ( x , y )$ ; confidence 0.962
+
99. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200153.png ; $S = [ - m _ { 1 } - n , - m _ { 1 } - 1 ] \cup [ m _ { 2 } + 1 , m _ { 2 } + n ]$ ; confidence 0.968
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889
+
100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180141.png ; $g \in \otimes ^ { 2 } E$ ; confidence 0.968
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160122.png ; $j ^ { \prime } = p _ { t } + 1 , \ldots , p$ ; confidence 0.261
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202406.png ; $H * ( ; G )$ ; confidence 0.968
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160144.png ; $\overline { Q _ { i } } = n _ { i } q _ { i }$ ; confidence 0.335
+
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110149.png ; $L ^ { 1 } ( \Phi = R ^ { 2 n } )$ ; confidence 0.968
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018020.png ; $\Gamma \operatorname { t } L \phi$ ; confidence 0.098
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025069.png ; $\beta _ { 1 } = 0$ ; confidence 0.968
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018084.png ; $s ^ { \prime \prime } \rightarrow$ ; confidence 0.380
+
104. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906708.png ; $U ( C )$ ; confidence 0.968
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180179.png ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895
+
105. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002063.png ; $| x | = x \vee x ^ { - 1 }$ ; confidence 0.968
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020072.png ; $\operatorname { dim } X < + \infty$ ; confidence 0.995
+
106. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004047.png ; $K > 1$ ; confidence 0.968
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302004.png ; $V \times V \times V \rightarrow V$ ; confidence 0.986
+
107. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009066.png ; $\Lambda = O [ [ T ] ]$ ; confidence 0.968
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027046.png ; $T _ { N } : X _ { N } \rightarrow Y _ { N }$ ; confidence 0.761
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003039.png ; $H ^ { * } \operatorname { Map } ( Z , Y )$ ; confidence 0.968
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032048.png ; $\sigma ^ { 2 } E ( N ) = E ( S _ { N } ^ { 2 } )$ ; confidence 0.717
+
109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012047.png ; $K ( 1 / n )$ ; confidence 0.968
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010037.png ; $S ^ { x } ( - t , x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.465
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022037.png ; $C \in \square _ { R }$ ; confidence 0.968
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002018.png ; $| b ( u , u ) | \geq \gamma \| u \| ^ { 2 }$ ; confidence 0.976
+
111. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008066.png ; $[ L ^ { H _ { i } } : K ^ { H _ { i } } ] =$ ; confidence 0.968
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982
+
112. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010113.png ; $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.968
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300902.png ; $u ( x , t ) : R \times R \rightarrow R$ ; confidence 0.990
+
113. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337010.png ; $D f ( x , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h$ ; confidence 0.968
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201206.png ; $\alpha ( n ) = \text { Vol } ( S ^ { x } )$ ; confidence 0.266
+
114. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201407.png ; $D _ { 0 } ( x , a ) = 2$ ; confidence 0.968
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015088.png ; $\operatorname { dim } D _ { s } = n + 1$ ; confidence 0.906
+
115. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003015.png ; $Z ( R ) ^ { 0 }$ ; confidence 0.968
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150167.png ; $h : \{ 1 , \dots , n \} \rightarrow R$ ; confidence 0.610
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030049.png ; $\phi ( ; \eta )$ ; confidence 0.968
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017016.png ; $G _ { \alpha } ^ { - 1 } = G _ { - \alpha }$ ; confidence 0.822
+
117. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024069.png ; $E ( K )$ ; confidence 0.968
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022045.png ; $u ( t , x ) = \int f ( t , x , \xi ) d \xi - k$ ; confidence 0.994
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017033.png ; $g \in L ^ { p }$ ; confidence 0.968
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022065.png ; $H ( , \xi ) : D _ { \xi } \rightarrow R$ ; confidence 0.585
+
119. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691022.png ; $h ( T ^ { k } x )$ ; confidence 0.968
  
120. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301506.png ; $z _ { \Gamma } = O ( \Gamma ^ { - 1 / 2 } )$ ; confidence 0.988
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240110.png ; $x$ ; confidence 0.968
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016022.png ; $\operatorname { Re } ( f | _ { K } ) = 0$ ; confidence 0.995
+
121. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006091.png ; $m _ { B } ( A ) = 0$ ; confidence 0.968
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031026.png ; $( n - 1 ) / 2 ( n + 1 ) < \delta < ( n - 1 ) / 2$ ; confidence 0.999
+
122. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g1300606.png ; $p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$ ; confidence 0.968
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320102.png ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941
+
123. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020043.png ; $[ e _ { i } e _ { j } ] = [ f _ { i } f _ { j } ] = 0$ ; confidence 0.885
+
124. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200103.png ; $\alpha \mapsto x _ { \alpha } \in h$ ; confidence 0.159
+
125. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017068.png ; $\Sigma > 0$ ; confidence 0.968
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021013.png ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676
+
126. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065012.png ; $\| H \| _ { \mu }$ ; confidence 0.968
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021012.png ; $\sum _ { r \in R _ { W } } F _ { r } = d _ { W }$ ; confidence 0.528
+
127. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005025.png ; $h : \Omega ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.968
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015066.png ; $x _ { j } \in \{ 0,1 \}$ ; confidence 0.968
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027022.png ; $\lambda \notin \sigma ( \pi ( T ) )$ ; confidence 0.992
+
129. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008028.png ; $L ( x ^ { 2 } / 2 + i y ) = 0$ ; confidence 0.968
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051087.png ; $\{ s _ { k } , y _ { k } \} _ { k = 0 } ^ { n - 1 }$ ; confidence 0.873
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016082.png ; $A V / P$ ; confidence 0.968
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051050.png ; $d = - H _ { c } ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.924
+
131. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005067.png ; $q ( x ) = - 2 d A _ { + } ( x , x ) / d x$ ; confidence 0.968
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052082.png ; $\{ w _ { j } , v _ { j } \} _ { j = 0 } ^ { n - 1 }$ ; confidence 0.851
+
132. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018067.png ; $A + A$ ; confidence 0.968
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001030.png ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198
+
133. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013044.png ; $\int _ { \Sigma } ( | H | ^ { 2 } + c ) d A$ ; confidence 0.968
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001057.png ; $C ^ { \gamma } \subset P ^ { \gamma }$ ; confidence 0.120
+
134. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060171.png ; $i \frac { \partial f } { \partial t _ { 1 } } + A _ { 1 } f = \Phi ^ { * } \sigma _ { 1 } u$ ; confidence 0.968
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007019.png ; $C ^ { \gamma } ( C , M ) \rightarrow M$ ; confidence 0.270
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050014.png ; $F _ { k } : = \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) \cap F$ ; confidence 0.968
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008036.png ; $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$ ; confidence 0.402
+
136. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014010.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( N , M ) = 0$ ; confidence 0.968
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007031.png ; $n ( n - 1 ) / 2 - 1 - ( n - 1 ) ( n - 2 ) / 2 = n - 2$ ; confidence 0.999
+
137. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006078.png ; $u _ { i } = z _ { i } / p$ ; confidence 0.968
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221102.png ; $\nu = ( \nu _ { 1 } , \dots , \nu _ { k } )$ ; confidence 0.587
+
138. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033830/d0338304.png ; $P ( D )$ ; confidence 0.968
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327010.png ; $\overline { \theta } = \emptyset$ ; confidence 0.530
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a1101702.png ; $R ^ { d }$ ; confidence 0.968
  
140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170115.png ; $M = \operatorname { rank } M ( n ) = r$ ; confidence 0.991
+
140. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696024.png ; $x + 2$ ; confidence 0.968
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016050.png ; $s ( n ) \geq \operatorname { log } n$ ; confidence 1.000
+
141. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260107.png ; $p = p _ { 1 } + \ldots + p _ { n }$ ; confidence 0.968
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018046.png ; $\lambda ^ { k } T ( \lambda g ) = T ( g )$ ; confidence 0.905
+
142. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004091.png ; $u \in D _ { s } ^ { \prime } ( U )$ ; confidence 0.968
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180464.png ; $N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714
+
143. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646014.png ; $\alpha _ { k } > 0$ ; confidence 0.968
  
144. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180506.png ; $N = N \times \{ 1 \} \times \{ 0 \}$ ; confidence 1.000
+
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019048.png ; $- X _ { A } ( z , z ) = I$ ; confidence 0.968
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180147.png ; $g : \otimes ^ { 2 } E * \rightarrow R$ ; confidence 0.396
+
145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140130.png ; $\operatorname { lim } _ { t \rightarrow 0 ^ { + } } \phi ( e ^ { i t } \zeta )$ ; confidence 0.968
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c13023010.png ; $L _ { - } \sim _ { c } L _ { - } ^ { \prime }$ ; confidence 0.257
+
146. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008068.png ; $Z \sim \tau$ ; confidence 0.968
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302307.png ; $L _ { + } \sim _ { c } L _ { + } ^ { \prime }$ ; confidence 0.774
+
147. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006058.png ; $F _ { q } ( T )$ ; confidence 0.968
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c1302309.png ; $L _ { 0 } \sim _ { c } L _ { 0 } ^ { \prime }$ ; confidence 0.327
+
148. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025015.png ; $f : ( X , * ) \rightarrow ( Y , * )$ ; confidence 0.968
  
149. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025063.png ; $R _ { j } = \{ k : h _ { k } ( T _ { j } - ) = 1 \}$ ; confidence 0.742
+
149. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001033.png ; $\operatorname { inf } ( S x , y ) = 0$ ; confidence 0.968
  
150. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006019.png ; $H ^ { ( 0 ) } = - D ^ { 2 } + u = Q ^ { - } Q ^ { + }$ ; confidence 0.984
+
150. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759046.png ; $\square ( E / Q )$ ; confidence 0.968
  
151. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006045.png ; $( x _ { j _ { 1 } } , \dots , x _ { j _ { k } } )$ ; confidence 0.338
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430139.png ; $B \times H$ ; confidence 0.968
  
152. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012024.png ; $U F : U C \rightarrow U C ^ { \prime }$ ; confidence 0.794
+
152. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190125.png ; $\{ x \in g ( a , b ) : d ( a , x ) \leq d ( a , b ) \geq d ( b , x ) \}$ ; confidence 0.968
  
153. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101808.png ; $\Psi ( x , x ^ { 1 / d } ) \sim \rho ( u ) x$ ; confidence 0.839
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005032.png ; $H ^ { \infty } ( B _ { E } ) \equiv \{ f \in H ( B _ { E } ) : f \text { bounded on } B _ { E } \}$ ; confidence 0.968
  
154. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101801.png ; $\rho ( u ) = 1 \quad ( 0 \leq u \leq 1 )$ ; confidence 0.999
+
154. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017028.png ; $d V _ { t } = \phi _ { t } d S _ { t } + \psi _ { t } d B _ { t }$ ; confidence 0.968
  
155. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017021.png ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754
+
155. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d031010105.png ; $S ^ { 2 } \times S ^ { 2 }$ ; confidence 0.968
  
156. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202601.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { k }$ ; confidence 0.993
+
156. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080102.png ; $H _ { eff } = H + 2 m J$ ; confidence 0.968
  
157. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280109.png ; $H ^ { n , n - 1 } ( C ^ { n } \backslash D )$ ; confidence 0.216
+
157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130128.png ; $2 \beta N _ { 0 } + \gamma \xi ^ { p } - \varepsilon > 0$ ; confidence 0.968
  
158. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028057.png ; $D _ { m } = \{ z : \Phi ^ { m } ( z , z ) < 0 \}$ ; confidence 0.680
+
158. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230115.png ; $d ( z , w ) R ( z , w ) = G ( z ) J G ^ { * } ( w )$ ; confidence 0.968
  
159. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280103.png ; $C ^ { n } \backslash \overline { D }$ ; confidence 0.301
+
159. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203008.png ; $X ( t ) \in R ^ { n }$ ; confidence 0.968
  
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012042.png ; $h _ { i } = ( h _ { i 1 } , \dots , h _ { i N } )$ ; confidence 0.486
+
160. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696015.png ; $\lambda = \sum _ { i = 1 } ^ { n } m _ { i } ^ { 2 }$ ; confidence 0.968
  
161. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
+
161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180283.png ; $\{ \wedge ^ { * } E , d \}$ ; confidence 0.968
  
162. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002055.png ; $[ \Sigma X , Y ] \cong [ X , \Omega Y ]$ ; confidence 0.532
+
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020018.png ; $\theta ( e ^ { i t } ) = \operatorname { lim } _ { r \rightarrow 1 } \theta ( r e ^ { i t } )$ ; confidence 0.968
  
163. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120040/e1200403.png ; $\nabla ^ { 2 } ( g ( ; t ) ^ { * } f ( . ) ) = 0$ ; confidence 0.509
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029030.png ; $I ( M ) = 0$ ; confidence 0.967
  
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007080.png ; $\{ p _ { M } \in P ( k ) : M \in \Gamma \}$ ; confidence 0.877
+
164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022092.png ; $N + d = 2 / ( \gamma - 1 )$ ; confidence 0.967
  
165. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070125.png ; $\mu ( g , f ) = \alpha ( g ) + \beta ( f )$ ; confidence 0.859
+
165. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070100.png ; $f \mapsto f ( A )$ ; confidence 0.967
  
166. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007048.png ; $D ^ { k + 1 } \{ ( c z + d ) ^ { k } F ( M z ) \} =$ ; confidence 0.980
+
166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110102.png ; $\chi = \pi ( M )$ ; confidence 0.967
  
167. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007049.png ; $= ( c z + d ) ^ { - k - 2 } F ^ { ( k + 1 ) } ( M z )$ ; confidence 0.985
+
167. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011013.png ; $\partial _ { i } f = \frac { f - s _ { i } f } { x _ { i } - x _ { i } + 1 }$ ; confidence 0.967
  
168. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003021.png ; $\tilde { M } \otimes C = \tilde { M }$ ; confidence 0.683
+
168. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009019.png ; $H = ( H _ { X } , H _ { y } , H _ { z } )$ ; confidence 0.967
  
169. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003034.png ; $C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.846
+
169. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170112.png ; $L ^ { 2 } \times I \backslash K ^ { 2 }$ ; confidence 0.967
  
170. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003035.png ; $C _ { C } ( \Gamma \backslash G ( R ) )$ ; confidence 0.951
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030080.png ; $U ( H )$ ; confidence 0.967
  
171. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003042.png ; $\partial ( \Gamma \backslash X )$ ; confidence 0.998
+
171. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001042.png ; $t ^ { p } ( \operatorname { log } ( 1 + t ) ) ^ { \alpha }$ ; confidence 0.967
  
172. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004045.png ; $( \Omega _ { + } - 1 ) g _ { 0 } \psi ( t ) =$ ; confidence 0.657
+
172. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013026.png ; $G \in F$ ; confidence 0.967
  
173. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000118.png ; $H _ { \epsilon } ^ { \prime \prime }$ ; confidence 0.394
+
173. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030180.png ; $\phi \in H ^ { 2 m } ( \Gamma )$ ; confidence 0.967
  
174. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014029.png ; $f t _ { 1 } \ldots t _ { \rho } ( f ) \in T$ ; confidence 0.492
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004021.png ; $[ D + x , E + y ] : = [ D , E ] + D y - E x + L ( x , y )$ ; confidence 0.967
  
175. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201507.png ; $R ^ { n } \times R ^ { n } \times R ^ { 1 }$ ; confidence 0.551
+
175. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005027.png ; $z _ { j } = S ( w _ { j } )$ ; confidence 0.967
  
176. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201904.png ; $\sigma : X \times X \rightarrow F$ ; confidence 0.973
+
176. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006070.png ; $\{ P _ { i } \} _ { i = 1 } ^ { n }$ ; confidence 0.967
  
177. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190167.png ; $\{ W ^ { + } \cup h _ { 1 } \cup h _ { 2 } \}$ ; confidence 0.979
+
177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007023.png ; $C ^ { * } ( C , M )$ ; confidence 0.967
  
178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190190.png ; $\mu ( \Phi _ { 1 } ) = \mu ( \Phi _ { 2 } )$ ; confidence 0.996
+
178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180241.png ; $( W ( g ) \otimes \ldots \otimes W ( g ) ) \in C ^ { \infty } ( M )$ ; confidence 0.967
  
179. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230101.png ; $E ^ { i t } ( L ) ( \sigma ^ { 2 k } ( x ) ) = 0$ ; confidence 0.157
+
179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150101.png ; $F ^ { \prime } ( x ) \in \Phi ( X , Y )$ ; confidence 0.967
  
180. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260138.png ; $\pi _ { v ^ { \prime } , p ^ { \prime } }$ ; confidence 0.274
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031049.png ; $B ( K )$ ; confidence 0.967
  
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026061.png ; $\nu ( d \omega ) = d x / \sqrt { 2 \pi }$ ; confidence 0.996
+
181. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021016.png ; $x ( t + T ) = x ( t )$ ; confidence 0.967
  
182. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026032.png ; $p = e ^ { \theta } / ( 1 + e ^ { \theta } )$ ; confidence 0.855
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034024.png ; $\frac { 1 } { 3 e ^ { 1 / 3 } } < K _ { n } ( D ^ { \circ } ) \leq \frac { 1 } { 3 }$ ; confidence 0.967
  
183. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300701.png ; $S = \sum _ { n \in A } e ^ { 2 \pi i f ( n ) }$ ; confidence 0.603
+
183. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008047.png ; $\Omega _ { n } = \Omega _ { n } ( T _ { m } )$ ; confidence 0.967
  
184. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001050.png ; $\Omega ( \operatorname { log } q )$ ; confidence 0.997
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043059.png ; $A _ { q } ^ { 2 }$ ; confidence 0.967
  
185. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005028.png ; $y ^ { q ^ { r } } \phi f ( x / y ) - z ^ { p } = 0$ ; confidence 0.393
+
185. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030110/d03011069.png ; $L _ { 1 } ( \mu )$ ; confidence 0.967
  
186. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009091.png ; $x = ( x ^ { k - 1 } , x ^ { k - 2 } , \dots , 1 )$ ; confidence 0.528
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007056.png ; $D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.967
  
187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100120.png ; $u \in L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.835
+
187. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f1201507.png ; $D ( T ) = X$ ; confidence 0.967
  
188. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049039.png ; $( \alpha _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669
+
188. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105031.png ; $E \subset [ a , b ]$ ; confidence 0.967
  
189. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049038.png ; $( \alpha _ { 1 } , \sigma _ { 1 } ^ { 2 } )$ ; confidence 0.724
+
189. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i1200109.png ; $L _ { \Phi } * ( \Omega )$ ; confidence 0.967
  
190. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021028.png ; $\{ u \in B ( G ) : \| u \| _ { B ( G ) } = 1 \}$ ; confidence 0.924
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021083.png ; $d L ^ { \prime } / d L = \operatorname { exp } \lambda$ ; confidence 0.967
  
191. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080151.png ; $L _ { p } ( G ) \otimes \sim L _ { q } ( G )$ ; confidence 0.735
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png ; $n \geq 1$ ; confidence 0.967
  
192. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010039.png ; $r ( I _ { 8 } , m ) = 240 \sigma _ { 3 } ( m )$ ; confidence 0.402
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050230.png ; $A ^ { \# }$ ; confidence 0.967
  
193. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011011.png ; $| \operatorname { Im } z | < \delta$ ; confidence 0.901
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025093.png ; $L ( t )$ ; confidence 0.967
  
194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011082.png ; $H _ { \Omega } ^ { n } ( U , \tilde { O } )$ ; confidence 0.590
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002020.png ; $D _ { 2 }$ ; confidence 0.967
  
195. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110120.png ; $Q ( D ^ { n } ) \rightarrow B ( R ^ { n } )$ ; confidence 0.765
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404905.png ; $f _ { \nu _ { 1 } , \nu _ { 2 } } ( x ) = \frac { 1 } { B ( \nu _ { 1 } / 2 , \nu _ { 2 } / 2 ) } ( \frac { \nu _ { 1 } } { \nu _ { 2 } } ) ^ { \nu _ { 1 } / 2 }$ ; confidence 0.967
  
196. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019042.png ; $O ( N ^ { d } \operatorname { log } N )$ ; confidence 0.213
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e1202606.png ; $\{ \theta , x \}$ ; confidence 0.967
  
197. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101603.png ; $\{ c _ { 1 } , \dots , c _ { n } , \dots \}$ ; confidence 0.412
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037018.png ; $X _ { 1 }$ ; confidence 0.967
  
198. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f120190119.png ; $\operatorname { PSL } ( 2,3 ^ { 2 } )$ ; confidence 0.425
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005052.png ; $f \in H _ { b } ( E )$ ; confidence 0.967
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021080.png ; $\lambda _ { i } - \lambda _ { j } \in N$ ; confidence 0.989
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021017.png ; $L _ { 0 } ( u ) = 0$ ; confidence 0.967
  
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021094.png ; $\lambda _ { 1 } - \lambda _ { 2 } \in N$ ; confidence 0.998
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300603.png ; $| x | | \geq 0$ ; confidence 0.967
  
201. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023083.png ; $L ( \operatorname { ld } _ { T M } ) = d$ ; confidence 0.599
+
201. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340186.png ; $( x _ { 3 } , u _ { 1 } \cup u _ { 2 } \cup \sigma ) \equiv ( x _ { 3 } , u _ { 3 } )$ ; confidence 0.967
  
202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230130.png ; $[ K , L ] ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.397
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034072.png ; $\| f \| = | f ( z _ { 0 } ) | + \| f - f ( z _ { 0 } ) \|$ ; confidence 0.967
  
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023040.png ; $D ( f , \omega ) = f \cdot D ( \omega )$ ; confidence 0.452
+
203. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007019.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t$ ; confidence 0.967
  
204. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024082.png ; $x ( t + \theta ) : = \phi ( t + \theta )$ ; confidence 0.995
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070229.png ; $T _ { 1 } \in \Re ( C _ { 1 } )$ ; confidence 0.967
  
205. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028036.png ; $\operatorname { sin } ( \hat { G } )$ ; confidence 0.153
+
205. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001028.png ; $= - \frac { \partial u } { \partial \eta } + \frac { 2 } { \lambda } \operatorname { sin } ( \frac { u ( \xi , \eta ) - u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } )$ ; confidence 0.967
  
206. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003055.png ; $I _ { 0 , loc } = \{ ( u _ { j } ) _ { j \in N }$ ; confidence 0.230
+
206. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008090.png ; $\rho ( x ) = \lambda \int _ { 0 } ^ { x } y d B ( y )$ ; confidence 0.967
  
207. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g1300407.png ; $f _ { i } : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.419
+
207. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001044.png ; $( D )$ ; confidence 0.967
  
208. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004099.png ; $\sum _ { j = 1 } ^ { n } \xi _ { j } d x _ { j }$ ; confidence 0.873
+
208. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020197.png ; $w ( z ) = \int k _ { \vartheta } ( z ) | \varphi ( e ^ { i \vartheta } ) - h ( z ) | ^ { 2 } \frac { d \vartheta } { 2 \pi }$ ; confidence 0.967
  
209. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004066.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \notin \Gamma$ ; confidence 0.989
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020078.png ; $T S - S T \neq \lambda I$ ; confidence 0.967
  
210. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040177.png ; $e ^ { - 1 / \varepsilon ^ { \sigma } }$ ; confidence 0.810
+
210. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520251.png ; $( d _ { 1 } + \ldots + d _ { j - 1 } + 1 )$ ; confidence 0.967
  
211. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g04332012.png ; $\xi = ( \xi ^ { 1 } , \dots , \xi ^ { n } )$ ; confidence 0.543
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301709.png ; $\Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }$ ; confidence 0.967
  
212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020148.png ; $\{ \hat { \phi } ( j + k ) \} j , k \geq 0$ ; confidence 0.819
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015099.png ; $\Omega = N \cup \{ 0 \}$ ; confidence 0.967
  
213. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003012.png ; $T ^ { * } M \otimes \varphi ^ { - 1 } T N$ ; confidence 0.948
+
213. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013048.png ; $S = T ^ { \prime }$ ; confidence 0.967
  
214. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012030.png ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002087.png ; $d \nu ( t ) = g ( t ) d t$ ; confidence 0.967
  
215. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001038.png ; $C ^ { 0 , \sigma } _ { 2 } ( t ) ( \Omega )$ ; confidence 0.427
+
215. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026057.png ; $N ( m , \sigma ^ { 2 } )$ ; confidence 0.967
  
216. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001041.png ; $C ^ { 0 , \sigma _ { 1 } ( t ) } ( \Omega )$ ; confidence 0.874
+
216. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060161.png ; $\sigma ( x ) : = \int _ { x } ^ { \infty } | q ( t ) | d t$ ; confidence 0.967
  
217. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002036.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } )$ ; confidence 0.391
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027051.png ; $F ^ { ( k ) }$ ; confidence 0.967
  
218. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035070/e03507041.png ; $\theta \rightarrow \theta _ { 0 }$ ; confidence 0.986
+
218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003051.png ; $( Z f ) ( t , w ) = \overline { ( Z f ) } ( t , - w ) = ( Z f ) ( - t , - w )$ ; confidence 0.967
  
219. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050100.png ; $\alpha _ { \gamma } \rightarrow 0$ ; confidence 0.549
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007028.png ; $f \in L _ { p } ( R ^ { n } )$ ; confidence 0.967
  
220. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006029.png ; $U ( x _ { 1 } ) \leq \varrho L ( x _ { 2 } )$ ; confidence 0.607
+
220. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060119.png ; $\Omega ( A ) : =$ ; confidence 0.966
  
221. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006097.png ; $q ( x ) = A ^ { 2 } ( x ) + A ^ { \prime } ( x )$ ; confidence 0.985
+
221. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009045.png ; $( G , \alpha , \beta )$ ; confidence 0.966
  
222. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060103.png ; $\{ \varphi + ( k ) , \varphi - ( k ) \}$ ; confidence 0.625
+
222. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500039.png ; $N _ { \epsilon } ( C , X )$ ; confidence 0.966
  
223. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007011.png ; $| q ( x ) | \leq c ( 1 + | x | ) ^ { - b } , b > 2$ ; confidence 0.940
+
223. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020015.png ; $M _ { 4 } \geq \delta > 0$ ; confidence 0.966
  
224. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times R _ { + }$ ; confidence 0.930
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009055.png ; $F \mu = f$ ; confidence 0.966
  
225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007018.png ; $A ( \alpha ^ { \prime } , \alpha , k )$ ; confidence 0.996
+
225. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003030.png ; $\mu _ { i } \in D$ ; confidence 0.966
  
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007061.png ; $\forall x , y \in P : = \{ x : x \} = 0 \}$ ; confidence 0.981
+
226. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520274.png ; $h _ { 0 } \in H$ ; confidence 0.966
  
227. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008029.png ; $S _ { 1 } = \pm 1 , \dots , S _ { N } = \pm 1$ ; confidence 0.527
+
227. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005037.png ; $0 < \varepsilon \ll 1$ ; confidence 0.966
  
228. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090135.png ; $\lambda _ { p } ( k _ { \infty } / k ) > 0$ ; confidence 0.996
+
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150116.png ; $d ^ { * } : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.966
  
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689
+
229. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601043.png ; $\pi _ { 1 } W \neq \{ 1 \}$ ; confidence 0.966
  
230. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003024.png ; $a \square b ^ { * } : E \rightarrow E$ ; confidence 0.650
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013050.png ; $\Gamma ^ { * } = h _ { \theta } ^ { * } \square ^ { - 1 }$ ; confidence 0.966
  
231. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003045.png ; $\{ x y z \} = ( x y ^ { * } z + z y ^ { * } x ) / 2$ ; confidence 0.980
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030086.png ; $\{ K _ { i } \}$ ; confidence 0.966
  
232. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004027.png ; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982
+
232. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003033.png ; $u \sim v$ ; confidence 0.966
  
233. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220164.png ; $s = 1 + i / 2$ ; confidence 0.966
  
234. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k1300203.png ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.739
+
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007072.png ; $\forall \alpha , \alpha ^ { \prime } \in S _ { + } ^ { 2 }$ ; confidence 0.966
  
235. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005018.png ; $V = \frac { 4 } { 3 } \pi \sigma ^ { 2 } N$ ; confidence 0.998
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003022.png ; $( a b ) ^ { - 1 }$ ; confidence 0.966
  
236. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010069.png ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +$ ; confidence 0.501
+
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008046.png ; $H ( X )$ ; confidence 0.966
  
237. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012010.png ; $\{ \alpha _ { k } : k = 1,2 , \ldots \}$ ; confidence 0.724
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031092.png ; $\lambda _ { k } \geq 0$ ; confidence 0.966
  
238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840189.png ; $\sum \rho ( \lambda ) \leq \kappa$ ; confidence 0.989
+
238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007094.png ; $u , v , w \in V$ ; confidence 0.966
  
239. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840120.png ; $L ^ { \perp } = \{ x : [ x , L ] = \{ 0 \} \}$ ; confidence 0.879
+
239. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004016.png ; $| f ^ { \prime } ( x ) | = \operatorname { max } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.966
  
240. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840182.png ; $E _ { \lambda } ^ { \prime } < \infty$ ; confidence 0.988
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008017.png ; $u _ { 1 } ( x )$ ; confidence 0.966
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572
+
241. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080107.png ; $( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } K ) _ { 0 } = ( u , A ^ { - 1 } K ) _ { 0 } = u ( y )$ ; confidence 0.966
  
242. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002078.png ; $\forall x : x ^ { - 1 } P x \subseteq P$ ; confidence 0.557
+
242. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052040/i05204012.png ; $i + j$ ; confidence 0.966
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003023.png ; $\operatorname { ca } ( \Omega , F )$ ; confidence 0.488
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009047.png ; $n _ { 1 } + 2 n _ { 2 } + \ldots + k n _ { k } = n$ ; confidence 0.966
  
244. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700078.png ; $c _ { k } \equiv \lambda f x . f ^ { k } x$ ; confidence 0.468
+
244. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002022.png ; $f \in L ^ { 1 } ( T )$ ; confidence 0.966
  
245. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000129.png ; $( \sigma \rightarrow \tau ) \in T$ ; confidence 0.998
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007077.png ; $t , s \in [ 0 , T ]$ ; confidence 0.966
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003051.png ; $( ( - ) \otimes _ { F } p _ { p } H ^ { * } Z )$ ; confidence 0.171
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050119.png ; $C ^ { 1 } ( [ 0 , T ] ; X ) \cap C ( [ 0 , T ] ; Y )$ ; confidence 0.966
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004012.png ; $I _ { i } = [ x _ { i - 1 } / 2 , x _ { i + 1 / 2 } ]$ ; confidence 0.353
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009012.png ; $( \phi , A )$ ; confidence 0.966
  
248. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004013.png ; $\Delta x = x _ { i } + 1 / 2 - x _ { i } - 1 / 2$ ; confidence 0.817
+
248. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002038.png ; $N = N ( q , r )$ ; confidence 0.966
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006029.png ; $G ( z ) = G _ { 0 } ( z ) + G _ { 0 } ( z ) V G ( z )$ ; confidence 0.999
+
249. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070131.png ; $C ^ { 0 } ( \Gamma , k + 2 , v ) \oplus C ^ { + } ( \Gamma , k + 2 , v )$ ; confidence 0.966
  
250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007047.png ; $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$ ; confidence 0.414
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240170.png ; $\gamma _ { i } = 0$ ; confidence 0.966
  
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090115.png ; $q _ { H _ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 0.503
+
251. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026036.png ; $x \lambda ( y ) = \rho ( x ) y$ ; confidence 0.966
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600404.png ; $| r _ { 1 } | \geq \ldots \gg | r _ { N } |$ ; confidence 0.233
+
252. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005066.png ; $Y _ { 0 } x ^ { 0 } + \sum Y _ { t } x ^ { t } = 0$ ; confidence 0.988
+
253. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004062.png ; $H ^ { m } ( P ( E ) ) = 0$ ; confidence 0.966
  
254. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005065.png ; $X _ { 0 } x ^ { 0 } + \sum X _ { t } x _ { t } = 0$ ; confidence 0.870
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042064.png ; $\Omega ^ { \prime }$ ; confidence 0.966
  
255. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170212.png ; $H _ { 2 } ( K ^ { * } ) = H _ { 1 } ( K ^ { * } ) = 0$ ; confidence 0.994
+
255. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016015.png ; $D ( C )$ ; confidence 0.966
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170112.png ; $L ^ { 2 } \times I \backslash K ^ { 2 }$ ; confidence 0.967
+
256. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300508.png ; $K \subseteq G$ ; confidence 0.966
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170184.png ; $Wh ^ { * } ( \pi ) \subseteq Wh ( \pi )$ ; confidence 0.883
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204207.png ; $\otimes : C \times C \rightarrow C$ ; confidence 0.966
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201707.png ; $\underline { C } ( \overline { R } )$ ; confidence 0.477
+
258. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001046.png ; $a _ { n - 1 } = - \operatorname { Tr } ( \alpha ) \text { and } a _ { 0 } = ( - 1 ) ^ { n } N ( \alpha )$ ; confidence 0.966
  
259. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711
+
259. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017038.png ; $0 < \alpha < n$ ; confidence 0.966
  
260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001035.png ; $x ^ { \prime } + A ( t ) x = G ( t , x _ { t } )$ ; confidence 0.598
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005016.png ; $P : H ^ { p } ( T ) \rightarrow L ^ { p } ( \mu , D )$ ; confidence 0.966
  
261. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003078.png ; $e = y - \vec { x } ^ { t } \vec { \theta }$ ; confidence 0.762
+
261. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007095.png ; $k = 2 n$ ; confidence 0.966
  
262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120060/m1200602.png ; $\operatorname { div } \vec { B } = 0$ ; confidence 0.997
+
262. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001080.png ; $\square _ { A } C ^ { A }$ ; confidence 0.966
  
263. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200904.png ; $P ( \xi ) = \sum _ { J } a _ { J } \xi ^ { J }$ ; confidence 0.172
+
263. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002017.png ; $\Delta > \lambda / 2$ ; confidence 0.966
  
264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015021.png ; $P ( X \in A ) = \int _ { A } f _ { X } ( X ) d X$ ; confidence 0.732
+
264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051047.png ; $\nabla f ( x ^ { * } )$ ; confidence 0.966
  
265. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016013.png ; $\psi : [ 0 , \infty ) \rightarrow R$ ; confidence 0.991
+
265. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014081.png ; $98$ ; confidence 0.966
  
266. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140139.png ; $f ( z ) = ( L f ) ( z ) = ( L _ { f , n } f ) ( z ) =$ ; confidence 0.238
+
266. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320125.png ; $\varphi = ( \varphi _ { 0 } , \varphi ^ { * } )$ ; confidence 0.966
  
267. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014071.png ; $d \mu = d \sigma _ { 1 } - \delta _ { 0 }$ ; confidence 0.980
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847054.png ; $P ( \varphi ) _ { 2 }$ ; confidence 0.966
  
268. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019017.png ; $x = \operatorname { cosh } \alpha$ ; confidence 0.961
+
268. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005070.png ; $\operatorname { cos } \phi = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.966
  
269. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019028.png ; $L _ { p } ( R _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673
+
269. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006084.png ; $S ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.966
  
270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301903.png ; $m _ { k } = \int _ { l } x ^ { k } d \psi ( x )$ ; confidence 0.611
+
270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058024.png ; $V > 0$ ; confidence 0.966
  
271. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019018.png ; $M _ { N } = [ m _ { i } + j ] _ { i , j = 0 } ^ { n }$ ; confidence 0.369
+
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.966
  
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019024.png ; $M _ { N } = [ m _ { i } - j ] _ { i , j = 0 } ^ { n }$ ; confidence 0.333
+
272. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232047.png ; $D = \{ z = r e ^ { i \theta } \in C : | z | < 1 \}$ ; confidence 0.966
  
273. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697
+
273. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680809.png ; $CO _ { 2 }$ ; confidence 0.966
  
274. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023049.png ; $( ( K _ { X } + B ) , w ^ { \prime } ) \geq 0$ ; confidence 0.303
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032061.png ; $F ( s , t ) \leq F ( s _ { 1 } , t _ { 1 } )$ ; confidence 0.966
  
275. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260110.png ; $\beta \Omega \backslash \Omega$ ; confidence 0.996
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011077.png ; $g f \simeq 1 : \overline { M } \rightarrow \overline { M }$ ; confidence 0.966
  
276. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018052.png ; $\mu ( 0 , x ) = - \sum _ { i j } \mu ( 0 , u )$ ; confidence 0.201
+
276. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001036.png ; $O ( \varepsilon ^ { 3 } )$ ; confidence 0.966
  
277. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004016.png ; $A _ { U } ( s | _ { U } ) = A _ { N } ( s ) | _ { U }$ ; confidence 0.455
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110114.png ; $( \partial \phi / \partial x _ { i } ) | _ { t }$ ; confidence 0.966
  
278. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520233.png ; $( B , A B , \ldots , A ^ { n } B ) = R ( A , B )$ ; confidence 0.603
+
278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023089.png ; $[ D , d ] = 0$ ; confidence 0.966
  
279. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520322.png ; $( x _ { 1 } , \dots , x _ { x } ) \in M ^ { x }$ ; confidence 0.399
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848095.png ; $V$ ; confidence 0.966
  
280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520323.png ; $( y _ { 1 } , \dots , y _ { m } ) \in M ^ { m }$ ; confidence 0.407
+
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008099.png ; $1$ ; confidence 0.966
  
281. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783041.png ; $L ( H ) \rightarrow \overline { A }$ ; confidence 0.997
+
281. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017028.png ; $B$ ; confidence 0.966
  
282. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001035.png ; $e \notin S ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.268
+
282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019022.png ; $\sigma ( x , y ) = x _ { 1 } y _ { 1 } + x _ { 2 } y _ { 2 }$ ; confidence 0.966
  
283. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200205.png ; $x = \operatorname { sinh } ^ { - 2 } t$ ; confidence 0.996
+
283. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051068.png ; $u _ { i } \rightarrow v _ { i }$ ; confidence 0.966
  
284. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300803.png ; $m = 1,2 , x \in R _ { + } : = [ 0 , \infty )$ ; confidence 0.969
+
284. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004011.png ; $L ( x , y ) z : = [ x y z ]$ ; confidence 0.966
  
285. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100140.png ; $K = \{ ( z , w ) : z \in T , w \in K _ { z } \}$ ; confidence 0.995
+
285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015022.png ; $\pi ( A )$ ; confidence 0.966
  
286. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014029.png ; $f ( x ) - f _ { \rho } ( x ) \in C ( R ^ { 2 } )$ ; confidence 0.852
+
286. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008035.png ; $A _ { f } ^ { t } = - 2 \int h _ { t } ( s ) \times [ \int _ { S ^ { 2 } } d \omega \times ( \frac { \partial } { \partial x ^ { 0 } } A ) _ { f } ( s , \omega s ) ] s d s$ ; confidence 0.966
  
287. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040026.png ; $M = G / H$ ; confidence 0.966
  
288. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017076.png ; $\delta _ { A , B ^ { * } } ( X ) \in C _ { 2 }$ ; confidence 0.551
+
288. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080149.png ; $( \kappa \partial + A ) \psi = 0$ ; confidence 0.966
  
289. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002031.png ; $C = \operatorname { Fun } _ { q } ( C )$ ; confidence 0.823
+
289. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008030.png ; $m \equiv \langle M \rangle _ { T } / N$ ; confidence 0.966
  
290. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002040.png ; $\{ \lambda _ { 1 } , \lambda _ { 2 } \}$ ; confidence 1.000
+
290. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200606.png ; $x , y \in X _ { P }$ ; confidence 0.966
  
291. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005099.png ; $h \in QS ( T , C ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455
+
291. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003076.png ; $l = 2 \pi \operatorname { sinh } r$ ; confidence 0.965
  
292. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007037.png ; $k \langle E , F , g , g ^ { - 1 } \rangle$ ; confidence 0.278
+
292. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008047.png ; $K _ { D } ( z , \zeta )$ ; confidence 0.965
  
293. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007078.png ; $\Delta h = \sum h ( 1 ) \otimes h ( 2 )$ ; confidence 0.963
+
293. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016023.png ; $\{ R _ { nd } ( \Omega ) : \Omega$ ; confidence 0.965
  
294. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008010.png ; $\rho = \sum _ { p = 1 } ^ { P } \rho _ { p }$ ; confidence 0.993
+
294. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025460/c02546036.png ; $( r , s )$ ; confidence 0.965
  
295. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008035.png ; $E [ W _ { p } ] _ { NP } < E [ W _ { q } ] _ { NP }$ ; confidence 0.460
+
295. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020166.png ; $q : Z \rightarrow Y$ ; confidence 0.965
  
296. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r13001010.png ; $b _ { j } = a _ { j } k _ { 0 } = 1 / f f ^ { \mu }$ ; confidence 0.398
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019018.png ; $a \overline { a } \equiv 1 ( \operatorname { mod } q )$ ; confidence 0.965
  
297. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070103.png ; $\| f _ { n } - f \| _ { 1 } \rightarrow 0$ ; confidence 0.992
+
297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008012.png ; $W ( f ) = \frac { 1 } { 2 \pi } \int _ { R ^ { 2 n } } f ( q , p ) \Omega ( q , p ) d q d p$ ; confidence 0.965
  
298. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007077.png ; $| f ( y ) | \leq \| f \| \| K ( x , y ) \| = 0$ ; confidence 0.990
+
298. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300604.png ; $n \in N + 1 / 2$ ; confidence 0.965
  
299. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011021.png ; $\Xi ( t ) : = \xi ( \frac { 1 } { 2 } + i t )$ ; confidence 0.791
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023095.png ; $X : = A U$ ; confidence 0.965
  
300. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540109.png ; $K _ { 0 } R$ ; confidence 0.965

Revision as of 00:10, 13 February 2020

List

1. a130240156.png ; $c ^ { \prime }$ ; confidence 0.970

2. e120240112.png ; $G ( \overline { Q } / Q )$ ; confidence 0.970

3. a130080104.png ; $b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty$ ; confidence 0.970

4. b110220103.png ; $f ( z ) d z \mapsto \overline { f ( z ) } d z$ ; confidence 0.970

5. c13019065.png ; $( S ^ { k } , * )$ ; confidence 0.970

6. f12023049.png ; $D = i _ { K }$ ; confidence 0.970

7. l12016010.png ; $L G _ { C } = \{ \gamma : S ^ { 1 } \rightarrow G _ { C } \}$ ; confidence 0.970

8. d1300303.png ; $f ( x ) = \sum _ { j = - \infty } ^ { \infty } \sum _ { k = - \infty } ^ { \infty } a _ { j , k } \psi ( 2 ^ { j } x - k )$ ; confidence 0.970

9. i13005030.png ; $g ( x , k ) = e ^ { - i k x } + o ( 1 ) , x \rightarrow - \infty$ ; confidence 0.970

10. i12006084.png ; $x , y < i z$ ; confidence 0.970

11. s120340183.png ; $\sigma : \Sigma \rightarrow M$ ; confidence 0.970

12. k13005030.png ; $p = \rho R T$ ; confidence 0.970

13. b01501017.png ; $\phi _ { r } : B _ { r } \rightarrow B O _ { r }$ ; confidence 0.970

14. b12001013.png ; $u ( x _ { 1 } , x _ { 2 } )$ ; confidence 0.970

15. c13015073.png ; $u \in G ( \Omega )$ ; confidence 0.970

16. a11006020.png ; $8$ ; confidence 0.970

17. b12005018.png ; $z _ { 0 } \in U$ ; confidence 0.970

18. r13007021.png ; $f ( y ) = ( f , K ( , y ) )$ ; confidence 0.970

19. y120010140.png ; $R ( x , y ) _ { 12 } R ( x , z ) _ { 13 } R ( y , z ) _ { 23 } =$ ; confidence 0.970

20. a1202006.png ; $F [ t$ ; confidence 0.969

21. a120280151.png ; $M ^ { \phi } ( S _ { E } )$ ; confidence 0.969

22. r13008079.png ; $L ^ { 2 } ( E , d \mu )$ ; confidence 0.969

23. p130100174.png ; $f _ { j } ( 0 ) \rightarrow z$ ; confidence 0.969

24. p12017060.png ; $\{ X _ { n } \}$ ; confidence 0.969

25. i130060101.png ; $k \in R , \varphi _ { \pm } ( \infty ) = 1$ ; confidence 0.969

26. o1300803.png ; $m = 1,2 , x \in R _ { + } : = [ 0 , \infty )$ ; confidence 0.969

27. c13019040.png ; $h ( S ) = h ( S , \varphi )$ ; confidence 0.969

28. b01695021.png ; $\mathfrak { N } _ { f }$ ; confidence 0.969

29. d13003029.png ; $f \in L ^ { 1 } ( R ) \cap L ^ { 2 } ( R )$ ; confidence 0.969

30. i12005076.png ; $m + k$ ; confidence 0.969

31. q120070115.png ; $a d - q ^ { - 1 } b c = 1$ ; confidence 0.969

32. m12016011.png ; $\Sigma \geq 0$ ; confidence 0.969

33. h120120148.png ; $\pi _ { Y } : \overline { B } ( Y ) \rightarrow Y$ ; confidence 0.969

34. b11087054.png ; $n \neq m$ ; confidence 0.969

35. l06002015.png ; $L ( x ) = - \int _ { 0 } ^ { x } \operatorname { ln } \operatorname { cos } t d t$ ; confidence 0.969

36. l06082022.png ; $n \geq p$ ; confidence 0.969

37. p13009046.png ; $\delta _ { \eta }$ ; confidence 0.969

38. q12001058.png ; $G \leftrightarrow G ^ { c }$ ; confidence 0.969

39. a12007047.png ; $A u \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.969

40. s13065048.png ; $S _ { \mu } ( z ) = \frac { F _ { \mu } ( z ) - F _ { \mu } ( 0 ) } { F _ { \mu } ( z ) + F _ { \mu } ( 0 ) }$ ; confidence 0.969

41. o12005078.png ; $\varphi ^ { * }$ ; confidence 0.969

42. z13004028.png ; $4 / 21 \leq c$ ; confidence 0.969

43. o130010127.png ; $H ^ { 1 } ( R ^ { 3 } )$ ; confidence 0.969

44. f12015059.png ; $r ^ { \prime } ( A )$ ; confidence 0.969

45. u13002039.png ; $a b < 1$ ; confidence 0.969

46. b12042096.png ; $1002$ ; confidence 0.969

47. e13001018.png ; $H > 0$ ; confidence 0.969

48. b12015070.png ; $f : [ 0,1 ] \rightarrow R$ ; confidence 0.969

49. b13012069.png ; $k < N$ ; confidence 0.969

50. a130240478.png ; $0$ ; confidence 0.969

51. i13009026.png ; $\mu _ { m }$ ; confidence 0.969

52. s12023045.png ; $\operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } T T ^ { \prime } \}$ ; confidence 0.969

53. f130100118.png ; $L ^ { 1 } ( \hat { G } )$ ; confidence 0.969

54. i130060138.png ; $Q : = \int _ { 0 } ^ { \infty } q ( t ) d t = - 2 i \operatorname { lim } _ { k \rightarrow \infty } \{ k [ f ( k ) - 1 ] \}$ ; confidence 0.969

55. t13010060.png ; $( G , F )$ ; confidence 0.969

56. d13013019.png ; $A ^ { + }$ ; confidence 0.969

57. d12012059.png ; $c _ { k } = d ( g _ { k } )$ ; confidence 0.969

58. t120140104.png ; $\phi \in C ( T )$ ; confidence 0.969

59. c120170150.png ; $M ( n )$ ; confidence 0.969

60. j120020157.png ; $u = \operatorname { Re } f$ ; confidence 0.969

61. k13002016.png ; $\left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.969

62. e12006061.png ; $J ^ { 2 } Y$ ; confidence 0.969

63. b11010019.png ; $B _ { X } *$ ; confidence 0.969

64. s13058036.png ; $p = [ Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ] ^ { 1 / 2 } / I$ ; confidence 0.969

65. v120020134.png ; $F = r \circ t ^ { - 1 }$ ; confidence 0.969

66. b12003028.png ; $( a b ) ^ { - 1 } < 1$ ; confidence 0.969

67. a13027079.png ; $\Gamma = \{ X _ { n } , P _ { n } ; Y _ { n } , Q _ { n } \}$ ; confidence 0.969

68. c12026066.png ; $k h ^ { - 2 } \leq 3 / 2$ ; confidence 0.969

69. d03027011.png ; $E _ { m } ( f )$ ; confidence 0.969

70. c023150209.png ; $S ^ { 3 } \rightarrow S ^ { 2 }$ ; confidence 0.969

71. b1203407.png ; $\sum _ { \alpha } c _ { \alpha } z ^ { \alpha }$ ; confidence 0.969

72. w130080129.png ; $N = 1$ ; confidence 0.969

73. a130240350.png ; $( n - r ) \times p$ ; confidence 0.969

74. d03006011.png ; $u ( t , x ) | _ { t = 0 } = \phi ( x ) , \frac { \partial u ( t , x ) } { \partial t } | _ { t = 0 } = \psi ( x )$ ; confidence 0.969

75. n067520388.png ; $\operatorname { det } \| \partial \xi _ { i } / \partial y _ { j } \| \neq 0$ ; confidence 0.969

76. a12004012.png ; $( d / d t ) x ( t ) = A x ( t )$ ; confidence 0.969

77. f13021014.png ; $C _ { 0 } ( \hat { G } ; C )$ ; confidence 0.969

78. c120300109.png ; $A \otimes O _ { 2 }$ ; confidence 0.969

79. f11001034.png ; $\operatorname { inf } ( x , y ) = 0$ ; confidence 0.969

80. v13005073.png ; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( Y ( u , x _ { 1 } - x _ { 2 } ) v , x _ { 2 } )$ ; confidence 0.969

81. i130090200.png ; $G _ { \chi } ^ { * } ( T ) \in Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.968

82. t09408028.png ; $* \in A \subset X$ ; confidence 0.968

83. c130070246.png ; $\nu _ { 1 } ( 2 g _ { 1 } - 2 ) + \mathfrak { D } _ { 1 } = \nu _ { 2 } ( 2 g _ { 2 } - 2 ) + \mathfrak { D } _ { 2 }$ ; confidence 0.968

84. s13048034.png ; $\overline { \partial } : \Omega ^ { p , 0 } ( M ) \rightarrow \Omega ^ { p , 1 } ( M )$ ; confidence 0.968

85. z13005014.png ; $\mathfrak { D } = \operatorname { Der } _ { k } ( R )$ ; confidence 0.968

86. b130120109.png ; $f \notin B _ { 2 , \infty } ^ { \varepsilon + 1 / 2 }$ ; confidence 0.968

87. m13022069.png ; $p = \operatorname { exp } ( 2 \pi i w )$ ; confidence 0.968

88. l11003058.png ; $L ^ { 1 } ( Q )$ ; confidence 0.968

89. l06005067.png ; $- X _ { 0 } ^ { 2 } + \sum X _ { t } ^ { 2 } = 1 = - Y _ { 0 } ^ { 2 } + \sum Y _ { t } ^ { 2 }$ ; confidence 0.968

90. b130290222.png ; $R ( m )$ ; confidence 0.968

91. a11001059.png ; $\delta x$ ; confidence 0.968

92. n066630117.png ; $r > 1 / p$ ; confidence 0.968

93. b13001063.png ; $U \cap V _ { i }$ ; confidence 0.968

94. s13062057.png ; $m _ { 0 } ( \lambda )$ ; confidence 0.968

95. a130080100.png ; $X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }$ ; confidence 0.968

96. a0106001.png ; $A$ ; confidence 0.968

97. a130040373.png ; $\Omega F \subseteq \Omega G$ ; confidence 0.968

98. p13014050.png ; $\gamma \neq 0$ ; confidence 0.968

99. t120200153.png ; $S = [ - m _ { 1 } - n , - m _ { 1 } - 1 ] \cup [ m _ { 2 } + 1 , m _ { 2 } + n ]$ ; confidence 0.968

100. c120180141.png ; $g \in \otimes ^ { 2 } E$ ; confidence 0.968

101. s1202406.png ; $H * ( ; G )$ ; confidence 0.968

102. w120110149.png ; $L ^ { 1 } ( \Phi = R ^ { 2 n } )$ ; confidence 0.968

103. c13025069.png ; $\beta _ { 1 } = 0$ ; confidence 0.968

104. s0906708.png ; $U ( C )$ ; confidence 0.968

105. l11002063.png ; $| x | = x \vee x ^ { - 1 }$ ; confidence 0.968

106. q13004047.png ; $K > 1$ ; confidence 0.968

107. i13009066.png ; $\Lambda = O [ [ T ] ]$ ; confidence 0.968

108. l12003039.png ; $H ^ { * } \operatorname { Map } ( Z , Y )$ ; confidence 0.968

109. p13012047.png ; $K ( 1 / n )$ ; confidence 0.968

110. a13022037.png ; $C \in \square _ { R }$ ; confidence 0.968

111. d11008066.png ; $[ L ^ { H _ { i } } : K ^ { H _ { i } } ] =$ ; confidence 0.968

112. y120010113.png ; $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.968

113. g04337010.png ; $D f ( x , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h$ ; confidence 0.968

114. d1201407.png ; $D _ { 0 } ( x , a ) = 2$ ; confidence 0.968

115. e13003015.png ; $Z ( R ) ^ { 0 }$ ; confidence 0.968

116. b12030049.png ; $\phi ( ; \eta )$ ; confidence 0.968

117. e12024069.png ; $E ( K )$ ; confidence 0.968

118. b12017033.png ; $g \in L ^ { p }$ ; confidence 0.968

119. v09691022.png ; $h ( T ^ { k } x )$ ; confidence 0.968

120. a130240110.png ; $x$ ; confidence 0.968

121. d13006091.png ; $m _ { B } ( A ) = 0$ ; confidence 0.968

122. g1300606.png ; $p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$ ; confidence 0.968

123. n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968

124. w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968

125. w13017068.png ; $\Sigma > 0$ ; confidence 0.968

126. s13065012.png ; $\| H \| _ { \mu }$ ; confidence 0.968

127. e12005025.png ; $h : \Omega ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.968

128. b12015066.png ; $x _ { j } \in \{ 0,1 \}$ ; confidence 0.968

129. l12008028.png ; $L ( x ^ { 2 } / 2 + i y ) = 0$ ; confidence 0.968

130. a12016082.png ; $A V / P$ ; confidence 0.968

131. i13005067.png ; $q ( x ) = - 2 d A _ { + } ( x , x ) / d x$ ; confidence 0.968

132. d12018067.png ; $A + A$ ; confidence 0.968

133. w13013044.png ; $\int _ { \Sigma } ( | H | ^ { 2 } + c ) d A$ ; confidence 0.968

134. o130060171.png ; $i \frac { \partial f } { \partial t _ { 1 } } + A _ { 1 } f = \Phi ^ { * } \sigma _ { 1 } u$ ; confidence 0.968

135. s13050014.png ; $F _ { k } : = \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) \cap F$ ; confidence 0.968

136. w12014010.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( N , M ) = 0$ ; confidence 0.968

137. l13006078.png ; $u _ { i } = z _ { i } / p$ ; confidence 0.968

138. d0338304.png ; $P ( D )$ ; confidence 0.968

139. a1101702.png ; $R ^ { d }$ ; confidence 0.968

140. n06696024.png ; $x + 2$ ; confidence 0.968

141. e120260107.png ; $p = p _ { 1 } + \ldots + p _ { n }$ ; confidence 0.968

142. g12004091.png ; $u \in D _ { s } ^ { \prime } ( U )$ ; confidence 0.968

143. c02646014.png ; $\alpha _ { k } > 0$ ; confidence 0.968

144. l12019048.png ; $- X _ { A } ( z , z ) = I$ ; confidence 0.968

145. t120140130.png ; $\operatorname { lim } _ { t \rightarrow 0 ^ { + } } \phi ( e ^ { i t } \zeta )$ ; confidence 0.968

146. w13008068.png ; $Z \sim \tau$ ; confidence 0.968

147. v12006058.png ; $F _ { q } ( T )$ ; confidence 0.968

148. m12025015.png ; $f : ( X , * ) \rightarrow ( Y , * )$ ; confidence 0.968

149. f11001033.png ; $\operatorname { inf } ( S x , y ) = 0$ ; confidence 0.968

150. w09759046.png ; $\square ( E / Q )$ ; confidence 0.968

151. b120430139.png ; $B \times H$ ; confidence 0.968

152. e120190125.png ; $\{ x \in g ( a , b ) : d ( a , x ) \leq d ( a , b ) \geq d ( b , x ) \}$ ; confidence 0.968

153. b12005032.png ; $H ^ { \infty } ( B _ { E } ) \equiv \{ f \in H ( B _ { E } ) : f \text { bounded on } B _ { E } \}$ ; confidence 0.968

154. b13017028.png ; $d V _ { t } = \phi _ { t } d S _ { t } + \psi _ { t } d B _ { t }$ ; confidence 0.968

155. d031010105.png ; $S ^ { 2 } \times S ^ { 2 }$ ; confidence 0.968

156. i120080102.png ; $H _ { eff } = H + 2 m J$ ; confidence 0.968

157. m120130128.png ; $2 \beta N _ { 0 } + \gamma \xi ^ { p } - \varepsilon > 0$ ; confidence 0.968

158. d120230115.png ; $d ( z , w ) R ( z , w ) = G ( z ) J G ^ { * } ( w )$ ; confidence 0.968

159. d1203008.png ; $X ( t ) \in R ^ { n }$ ; confidence 0.968

160. n06696015.png ; $\lambda = \sum _ { i = 1 } ^ { n } m _ { i } ^ { 2 }$ ; confidence 0.968

161. c120180283.png ; $\{ \wedge ^ { * } E , d \}$ ; confidence 0.968

162. b12020018.png ; $\theta ( e ^ { i t } ) = \operatorname { lim } _ { r \rightarrow 1 } \theta ( r e ^ { i t } )$ ; confidence 0.968

163. b13029030.png ; $I ( M ) = 0$ ; confidence 0.967

164. b12022092.png ; $N + d = 2 / ( \gamma - 1 )$ ; confidence 0.967

165. w120070100.png ; $f \mapsto f ( A )$ ; confidence 0.967

166. w120110102.png ; $\chi = \pi ( M )$ ; confidence 0.967

167. s13011013.png ; $\partial _ { i } f = \frac { f - s _ { i } f } { x _ { i } - x _ { i } + 1 }$ ; confidence 0.967

168. e12009019.png ; $H = ( H _ { X } , H _ { y } , H _ { z } )$ ; confidence 0.967

169. l120170112.png ; $L ^ { 2 } \times I \backslash K ^ { 2 }$ ; confidence 0.967

170. c12030080.png ; $U ( H )$ ; confidence 0.967

171. i12001042.png ; $t ^ { p } ( \operatorname { log } ( 1 + t ) ) ^ { \alpha }$ ; confidence 0.967

172. f13013026.png ; $G \in F$ ; confidence 0.967

173. i130030180.png ; $\phi \in H ^ { 2 m } ( \Gamma )$ ; confidence 0.967

174. l13004021.png ; $[ D + x , E + y ] : = [ D , E ] + D y - E x + L ( x , y )$ ; confidence 0.967

175. s12005027.png ; $z _ { j } = S ( w _ { j } )$ ; confidence 0.967

176. g13006070.png ; $\{ P _ { i } \} _ { i = 1 } ^ { n }$ ; confidence 0.967

177. c12007023.png ; $C ^ { * } ( C , M )$ ; confidence 0.967

178. c120180241.png ; $( W ( g ) \otimes \ldots \otimes W ( g ) ) \in C ^ { \infty } ( M )$ ; confidence 0.967

179. f120150101.png ; $F ^ { \prime } ( x ) \in \Phi ( X , Y )$ ; confidence 0.967

180. a12031049.png ; $B ( K )$ ; confidence 0.967

181. d13021016.png ; $x ( t + T ) = x ( t )$ ; confidence 0.967

182. b12034024.png ; $\frac { 1 } { 3 e ^ { 1 / 3 } } < K _ { n } ( D ^ { \circ } ) \leq \frac { 1 } { 3 }$ ; confidence 0.967

183. w13008047.png ; $\Omega _ { n } = \Omega _ { n } ( T _ { m } )$ ; confidence 0.967

184. b12043059.png ; $A _ { q } ^ { 2 }$ ; confidence 0.967

185. d03011069.png ; $L _ { 1 } ( \mu )$ ; confidence 0.967

186. a12007056.png ; $D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.967

187. f1201507.png ; $D ( T ) = X$ ; confidence 0.967

188. l06105031.png ; $E \subset [ a , b ]$ ; confidence 0.967

189. i1200109.png ; $L _ { \Phi } * ( \Omega )$ ; confidence 0.967

190. c12021083.png ; $d L ^ { \prime } / d L = \operatorname { exp } \lambda$ ; confidence 0.967

191. t12001022.png ; $n \geq 1$ ; confidence 0.967

192. a130050230.png ; $A ^ { \# }$ ; confidence 0.967

193. b11025093.png ; $L ( t )$ ; confidence 0.967

194. a11002020.png ; $D _ { 2 }$ ; confidence 0.967

195. f0404905.png ; $f _ { \nu _ { 1 } , \nu _ { 2 } } ( x ) = \frac { 1 } { B ( \nu _ { 1 } / 2 , \nu _ { 2 } / 2 ) } ( \frac { \nu _ { 1 } } { \nu _ { 2 } } ) ^ { \nu _ { 1 } / 2 }$ ; confidence 0.967

196. e1202606.png ; $\{ \theta , x \}$ ; confidence 0.967

197. a11037018.png ; $X _ { 1 }$ ; confidence 0.967

198. b12005052.png ; $f \in H _ { b } ( E )$ ; confidence 0.967

199. f12021017.png ; $L _ { 0 } ( u ) = 0$ ; confidence 0.967

200. b1300603.png ; $| x | | \geq 0$ ; confidence 0.967

201. s120340186.png ; $( x _ { 3 } , u _ { 1 } \cup u _ { 2 } \cup \sigma ) \equiv ( x _ { 3 } , u _ { 3 } )$ ; confidence 0.967

202. b12034072.png ; $\| f \| = | f ( z _ { 0 } ) | + \| f - f ( z _ { 0 } ) \|$ ; confidence 0.967

203. k12007019.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t$ ; confidence 0.967

204. c130070229.png ; $T _ { 1 } \in \Re ( C _ { 1 } )$ ; confidence 0.967

205. b12001028.png ; $= - \frac { \partial u } { \partial \eta } + \frac { 2 } { \lambda } \operatorname { sin } ( \frac { u ( \xi , \eta ) - u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } )$ ; confidence 0.967

206. q12008090.png ; $\rho ( x ) = \lambda \int _ { 0 } ^ { x } y d B ( y )$ ; confidence 0.967

207. j13001044.png ; $( D )$ ; confidence 0.967

208. j120020197.png ; $w ( z ) = \int k _ { \vartheta } ( z ) | \varphi ( e ^ { i \vartheta } ) - h ( z ) | ^ { 2 } \frac { d \vartheta } { 2 \pi }$ ; confidence 0.967

209. a12020078.png ; $T S - S T \neq \lambda I$ ; confidence 0.967

210. n067520251.png ; $( d _ { 1 } + \ldots + d _ { j - 1 } + 1 )$ ; confidence 0.967

211. d1301709.png ; $\Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }$ ; confidence 0.967

212. b12015099.png ; $\Omega = N \cup \{ 0 \}$ ; confidence 0.967

213. p12013048.png ; $S = T ^ { \prime }$ ; confidence 0.967

214. c12002087.png ; $d \nu ( t ) = g ( t ) d t$ ; confidence 0.967

215. e12026057.png ; $N ( m , \sigma ^ { 2 } )$ ; confidence 0.967

216. i130060161.png ; $\sigma ( x ) : = \int _ { x } ^ { \infty } | q ( t ) | d t$ ; confidence 0.967

217. b12027051.png ; $F ^ { ( k ) }$ ; confidence 0.967

218. z13003051.png ; $( Z f ) ( t , w ) = \overline { ( Z f ) } ( t , - w ) = ( Z f ) ( - t , - w )$ ; confidence 0.967

219. c02007028.png ; $f \in L _ { p } ( R ^ { n } )$ ; confidence 0.967

220. g130060119.png ; $\Omega ( A ) : =$ ; confidence 0.966

221. l12009045.png ; $( G , \alpha , \beta )$ ; confidence 0.966

222. e03500039.png ; $N _ { \epsilon } ( C , X )$ ; confidence 0.966

223. t12020015.png ; $M _ { 4 } \geq \delta > 0$ ; confidence 0.966

224. f12009055.png ; $F \mu = f$ ; confidence 0.966

225. l11003030.png ; $\mu _ { i } \in D$ ; confidence 0.966

226. n067520274.png ; $h _ { 0 } \in H$ ; confidence 0.966

227. g12005037.png ; $0 < \varepsilon \ll 1$ ; confidence 0.966

228. b120150116.png ; $d ^ { * } : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.966

229. h04601043.png ; $\pi _ { 1 } W \neq \{ 1 \}$ ; confidence 0.966

230. a12013050.png ; $\Gamma ^ { * } = h _ { \theta } ^ { * } \square ^ { - 1 }$ ; confidence 0.966

231. c12030086.png ; $\{ K _ { i } \}$ ; confidence 0.966

232. g13003033.png ; $u \sim v$ ; confidence 0.966

233. b110220164.png ; $s = 1 + i / 2$ ; confidence 0.966

234. i13007072.png ; $\forall \alpha , \alpha ^ { \prime } \in S _ { + } ^ { 2 }$ ; confidence 0.966

235. b12003022.png ; $( a b ) ^ { - 1 }$ ; confidence 0.966

236. w12008046.png ; $H ( X )$ ; confidence 0.966

237. b12031092.png ; $\lambda _ { k } \geq 0$ ; confidence 0.966

238. t12007094.png ; $u , v , w \in V$ ; confidence 0.966

239. q13004016.png ; $| f ^ { \prime } ( x ) | = \operatorname { max } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.966

240. a12008017.png ; $u _ { 1 } ( x )$ ; confidence 0.966

241. r130080107.png ; $( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } K ) _ { 0 } = ( u , A ^ { - 1 } K ) _ { 0 } = u ( y )$ ; confidence 0.966

242. i05204012.png ; $i + j$ ; confidence 0.966

243. f13009047.png ; $n _ { 1 } + 2 n _ { 2 } + \ldots + k n _ { k } = n$ ; confidence 0.966

244. h12002022.png ; $f \in L ^ { 1 } ( T )$ ; confidence 0.966

245. a12007077.png ; $t , s \in [ 0 , T ]$ ; confidence 0.966

246. a120050119.png ; $C ^ { 1 } ( [ 0 , T ] ; X ) \cap C ( [ 0 , T ] ; Y )$ ; confidence 0.966

247. m13009012.png ; $( \phi , A )$ ; confidence 0.966

248. h13002038.png ; $N = N ( q , r )$ ; confidence 0.966

249. e120070131.png ; $C ^ { 0 } ( \Gamma , k + 2 , v ) \oplus C ^ { + } ( \Gamma , k + 2 , v )$ ; confidence 0.966

250. a130240170.png ; $\gamma _ { i } = 0$ ; confidence 0.966

251. m13026036.png ; $x \lambda ( y ) = \rho ( x ) y$ ; confidence 0.966

252. s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966

253. g13004062.png ; $H ^ { m } ( P ( E ) ) = 0$ ; confidence 0.966

254. b11042064.png ; $\Omega ^ { \prime }$ ; confidence 0.966

255. w12016015.png ; $D ( C )$ ; confidence 0.966

256. w1300508.png ; $K \subseteq G$ ; confidence 0.966

257. b1204207.png ; $\otimes : C \times C \rightarrow C$ ; confidence 0.966

258. g13001046.png ; $a _ { n - 1 } = - \operatorname { Tr } ( \alpha ) \text { and } a _ { 0 } = ( - 1 ) ^ { n } N ( \alpha )$ ; confidence 0.966

259. b12017038.png ; $0 < \alpha < n$ ; confidence 0.966

260. c12005016.png ; $P : H ^ { p } ( T ) \rightarrow L ^ { p } ( \mu , D )$ ; confidence 0.966

261. w12007095.png ; $k = 2 n$ ; confidence 0.966

262. y12001080.png ; $\square _ { A } C ^ { A }$ ; confidence 0.966

263. j13002017.png ; $\Delta > \lambda / 2$ ; confidence 0.966

264. b12051047.png ; $\nabla f ( x ^ { * } )$ ; confidence 0.966

265. t13014081.png ; $98$ ; confidence 0.966

266. s120320125.png ; $\varphi = ( \varphi _ { 0 } , \varphi ^ { * } )$ ; confidence 0.966

267. f03847054.png ; $P ( \varphi ) _ { 2 }$ ; confidence 0.966

268. l06005070.png ; $\operatorname { cos } \phi = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.966

269. i13006084.png ; $S ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.966

270. s13058024.png ; $V > 0$ ; confidence 0.966

271. z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.966

272. r08232047.png ; $D = \{ z = r e ^ { i \theta } \in C : | z | < 1 \}$ ; confidence 0.966

273. o0680809.png ; $CO _ { 2 }$ ; confidence 0.966

274. b12032061.png ; $F ( s , t ) \leq F ( s _ { 1 } , t _ { 1 } )$ ; confidence 0.966

275. m12011077.png ; $g f \simeq 1 : \overline { M } \rightarrow \overline { M }$ ; confidence 0.966

276. o12001036.png ; $O ( \varepsilon ^ { 3 } )$ ; confidence 0.966

277. m130110114.png ; $( \partial \phi / \partial x _ { i } ) | _ { t }$ ; confidence 0.966

278. f12023089.png ; $[ D , d ] = 0$ ; confidence 0.966

279. l05848095.png ; $V$ ; confidence 0.966

280. f12008099.png ; $1$ ; confidence 0.966

281. p12017028.png ; $B$ ; confidence 0.966

282. e12019022.png ; $\sigma ( x , y ) = x _ { 1 } y _ { 1 } + x _ { 2 } y _ { 2 }$ ; confidence 0.966

283. s13051068.png ; $u _ { i } \rightarrow v _ { i }$ ; confidence 0.966

284. l13004011.png ; $L ( x , y ) z : = [ x y z ]$ ; confidence 0.966

285. t12015022.png ; $\pi ( A )$ ; confidence 0.966

286. m13008035.png ; $A _ { f } ^ { t } = - 2 \int h _ { t } ( s ) \times [ \int _ { S ^ { 2 } } d \omega \times ( \frac { \partial } { \partial x ^ { 0 } } A ) _ { f } ( s , \omega s ) ] s d s$ ; confidence 0.966

287. b12040026.png ; $M = G / H$ ; confidence 0.966

288. w130080149.png ; $( \kappa \partial + A ) \psi = 0$ ; confidence 0.966

289. i12008030.png ; $m \equiv \langle M \rangle _ { T } / N$ ; confidence 0.966

290. i1200606.png ; $x , y \in X _ { P }$ ; confidence 0.966

291. l06003076.png ; $l = 2 \pi \operatorname { sinh } r$ ; confidence 0.965

292. r13008047.png ; $K _ { D } ( z , \zeta )$ ; confidence 0.965

293. r13016023.png ; $\{ R _ { nd } ( \Omega ) : \Omega$ ; confidence 0.965

294. c02546036.png ; $( r , s )$ ; confidence 0.965

295. v120020166.png ; $q : Z \rightarrow Y$ ; confidence 0.965

296. b13019018.png ; $a \overline { a } \equiv 1 ( \operatorname { mod } q )$ ; confidence 0.965

297. w12008012.png ; $W ( f ) = \frac { 1 } { 2 \pi } \int _ { R ^ { 2 n } } f ( q , p ) \Omega ( q , p ) d q d p$ ; confidence 0.965

298. v1300604.png ; $n \in N + 1 / 2$ ; confidence 0.965

299. s12023095.png ; $X : = A U$ ; confidence 0.965

300. s130540109.png ; $K _ { 0 } R$ ; confidence 0.965

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/24. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/24&oldid=44512