Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/22"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 22 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 22 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220138.png ; $c ( i , m ) = L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m }$ ; confidence 0.935
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022017.png ; $\rho \geq 0$ ; confidence 0.977
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022022.png ; $\operatorname { Re } ( s ) > 1 + i \nmid 2$ ; confidence 0.645
+
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032024.png ; $( - 1 ) ^ { p ( x ) p ( y ) }$ ; confidence 0.977
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009041.png ; $A ( t , u ( t ) ) ^ { \prime } + B ( t , u ( t ) ) = 0$ ; confidence 0.999
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270132.png ; $\operatorname { Tr } ( x ^ { 2 } )$ ; confidence 0.977
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013063.png ; $\langle f , g \rangle = \int _ { D } f g d A$ ; confidence 0.590
+
4. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002016.png ; $L ( x ) = x \operatorname { ln } 2 - \frac { 1 } { 2 } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \frac { \operatorname { sin } 2 k x } { k ^ { 2 } }$ ; confidence 0.977
  
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130107.png ; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017035.png ; $< 1$ ; confidence 0.977
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150144.png ; $\frac { 1 } { m } \sum _ { j = 1 } ^ { m } k _ { j }$ ; confidence 0.403
+
6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201106.png ; $\nabla \times H - \frac { 1 } { c } \frac { \partial D } { \partial t } = \frac { 1 } { c } J$ ; confidence 0.977
  
7. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
+
7. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020199.png ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011024.png ; $p = \sum _ { j = 0 } ^ { n } a _ { j } b _ { j } ^ { n }$ ; confidence 0.475
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018097.png ; $x = F ( x )$ ; confidence 0.977
  
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017011.png ; $( I - \Delta ) ^ { \alpha / 2 } = G - \alpha$ ; confidence 0.977
+
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150162.png ; $f _ { i } : \Theta \rightarrow [ 0,1 ]$ ; confidence 0.977
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi )$ ; confidence 0.794
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070214.png ; $\mathfrak { D } ( P , x )$ ; confidence 0.977
  
11. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027097.png ; $\eta _ { 0 } = \{ Z ( u ) : 0 \leq u < T _ { 0 } \}$ ; confidence 0.990
+
11. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010021.png ; $P \mapsto P ( z ) , P \in P$ ; confidence 0.977
  
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027086.png ; $\operatorname { gcd } \{ j : p ; > 0 \} = 1$ ; confidence 0.811
+
12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002010.png ; $X \times X \rightarrow X$ ; confidence 0.977
  
13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032099.png ; $F ( m ^ { 1 / p } , n ^ { 1 / p } ) = ( n + m ) ^ { 1 / p }$ ; confidence 0.999
+
13. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012030.png ; $z \in \Sigma ^ { * }$ ; confidence 0.977
  
14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032064.png ; $F ( r , F ( s , t ) ) = \| r x + \| s y + t z \| z \| =$ ; confidence 0.976
+
14. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004089.png ; $U \subset \Omega$ ; confidence 0.977
  
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040029.png ; $( g , f ) \sim ( g h ^ { - 1 } , \varrho ( h ) f )$ ; confidence 0.964
+
15. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020012.png ; $\left( \begin{array} { c c c } { A _ { 1 } } & { \square } & { * } \\ { \square } & { \ddots } & { \square } \\ { 0 } & { \square } & { A _ { n } } \end{array} \right)$ ; confidence 0.977
  
16. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204202.png ; $\otimes \rightarrow \otimes ^ { 0 p }$ ; confidence 0.147
+
16. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002010.png ; $\{ G ; \vee , \wedge \}$ ; confidence 0.977
  
17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420102.png ; $\beta : G \times G \rightarrow k ^ { * }$ ; confidence 0.919
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005029.png ; $B \subset U$ ; confidence 0.977
  
18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204303.png ; $\eta : \underline { 1 } \rightarrow B$ ; confidence 0.990
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029024.png ; $u ( 0 , t ) \in L _ { 0 }$ ; confidence 0.977
  
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049045.png ; $j \in N \backslash \{ j _ { k } : k \in N \}$ ; confidence 0.458
+
19. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006028.png ; $\mu _ { 1 } = 0 < \ldots < \mu _ { N }$ ; confidence 0.977
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026048.png ; $F : \overline { U } \rightarrow R ^ { n }$ ; confidence 0.348
+
20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007048.png ; $( u , B ( x , y ) ) _ { + } = ( u , A ^ { - 1 } B ) = u ( y )$ ; confidence 0.977
  
21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026070.png ; $y \notin g \circ f ( \partial \Omega )$ ; confidence 0.859
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977
  
22. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028050.png ; $D \times H \times \Omega ^ { \infty } X$ ; confidence 0.705
+
22. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
  
23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052037.png ; $x _ { + } = x _ { c } - B _ { c } ^ { - 1 } F ( x _ { c } )$ ; confidence 0.964
+
23. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
  
24. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001022.png ; $H ^ { 0 } ( E ) = Z , \quad H ^ { p } ( E ) = 0 , p > 0$ ; confidence 0.995
+
24. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002067.png ; $x ^ { \prime } = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.686
+
25. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004037.png ; $\Omega = \{ \zeta : \rho ( \zeta ) < 0 \}$ ; confidence 0.999
+
26. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011011.png ; $P \cap P ^ { - 1 } = \{ e \}$ ; confidence 0.977
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005044.png ; $\Gamma = \operatorname { Cay } ( G , S )$ ; confidence 0.834
+
27. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602044.png ; $\| R C ( 1 - P C ) ^ { - 1 } \| _ { \infty } < 1$ ; confidence 0.977
  
28. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010029.png ; $\int a \cdot f d m = a \cdot ( C ) \int f d m$ ; confidence 0.142
+
28. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840390.png ; $K = L _ { 2 } \oplus K _ { 1 }$ ; confidence 0.977
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327020.png ; $p \notin \overline { I \backslash p }$ ; confidence 0.872
+
29. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029064.png ; $f _ { L } ^ { \leftarrow } : L ^ { Y } \rightarrow L ^ { X }$ ; confidence 0.977
  
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017090.png ; $M ( n + 1 ) = \operatorname { rank } M ( n )$ ; confidence 0.991
+
30. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130133.png ; $L _ { 0 } = 0$ ; confidence 0.977
  
31. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017047.png ; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202007.png ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977
  
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017084.png ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010514.png ; $( y _ { t } )$ ; confidence 0.977
  
33. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170174.png ; $\operatorname { deg } r _ { j } = 2 k _ { j }$ ; confidence 0.798
+
33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001088.png ; $\beta _ { p q } = \beta _ { q p }$ ; confidence 0.977
  
34. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016076.png ; $\operatorname { co } C = \{ S : S \in C \}$ ; confidence 0.409
+
34. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006013.png ; $V ( C , U )$ ; confidence 0.977
  
35. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160141.png ; $[ n ^ { Q ( 1 ) } ] = \operatorname { PSPA }$ ; confidence 0.381
+
35. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008010.png ; $\theta _ { i } = \kappa _ { i } + \omega _ { i } + \hat { \theta } _ { i }$ ; confidence 0.977
  
36. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016044.png ; $NL = NSPACE [ \operatorname { log } n ]$ ; confidence 0.681
+
36. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180118.png ; $E * = \operatorname { Hom } _ { R } ( E , R )$ ; confidence 0.807
+
37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008016.png ; $y = r \operatorname { sin } \theta$ ; confidence 0.977
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583082.png ; $T ( K ^ { \prime } ) \subset K ^ { \prime }$ ; confidence 0.997
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024017.png ; $K ( L ) \subset K ( L ^ { \prime } )$ ; confidence 0.977
  
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030011.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I$ ; confidence 0.451
+
39. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010041.png ; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977
  
40. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026025.png ; $d = \partial + \overline { \partial }$ ; confidence 0.997
+
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022012.png ; $h ( X )$ ; confidence 0.977
  
41. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300908.png ; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu }$ ; confidence 0.971
+
41. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201605.png ; $L _ { 1 / 2 } ^ { 2 }$ ; confidence 0.977
  
42. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d03009010.png ; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972
+
42. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120119.png ; $\partial _ { \infty }$ ; confidence 0.977
  
43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002025.png ; $X = \{ x : A _ { 2 } x \leq b _ { 2 } , x \geq 0 \}$ ; confidence 0.911
+
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023087.png ; $D = L _ { K } + i _ { L }$ ; confidence 0.977
  
44. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006020.png ; $H ^ { ( 1 ) } = Q ^ { + } Q ^ { - } = - D ^ { 2 } + u [ 1 ]$ ; confidence 0.991
+
44. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002041.png ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977
  
45. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d0302702.png ; $p = 0 , \ldots , n ; \quad n = 0,1 , \ldots$ ; confidence 0.277
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045049.png ; $( X _ { 3 } , Y _ { 3 } )$ ; confidence 0.977
  
46. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d1300807.png ; $F \in \operatorname { Hol } ( \Delta )$ ; confidence 0.728
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016081.png ; $A V i / P = x$ ; confidence 0.977
  
47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012034.png ; $\Phi g : d g \rightarrow d ^ { \prime } g$ ; confidence 0.988
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040183.png ; $x ^ { * } \in L _ { \infty }$ ; confidence 0.977
  
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012065.png ; $\phi _ { 2 } \circ \phi _ { 1 } = \phi _ { 3 }$ ; confidence 0.993
+
48. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006018.png ; $\operatorname { ldim } ( P ) \leq \operatorname { dim } ( P )$ ; confidence 0.977
  
49. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167010.png ; $\zeta : \xi | \rightarrow \eta | _ { A }$ ; confidence 0.956
+
49. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090208.png ; $L ( k ^ { \prime } )$ ; confidence 0.977
  
50. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017050.png ; $\{ \lambda _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.994
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022013.png ; $0 \leq p \leq \operatorname { dim } M$ ; confidence 0.977
  
51. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022046.png ; $0 = r _ { 0 } < r _ { 1 } < \ldots < r _ { m } = n - 1$ ; confidence 0.657
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977
  
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230105.png ; $F = \operatorname { diag } \{ f _ { i } \}$ ; confidence 0.995
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202608.png ; $L ^ { 2 } ( R , d t )$ ; confidence 0.977
  
53. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230106.png ; $A = \operatorname { diag } \{ a _ { i } \}$ ; confidence 0.926
+
53. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005064.png ; $H = H _ { k }$ ; confidence 0.977
  
54. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026035.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \alpha _ { k }$ ; confidence 0.993
+
54. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016028.png ; $C ( S ) + C ( T )$ ; confidence 0.977
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890220.png ; $D = D _ { 1 } \times \ldots \times D _ { n }$ ; confidence 0.772
+
55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003059.png ; $K ^ { 0 } ( B )$ ; confidence 0.977
  
56. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280145.png ; $| u ( z ) | \leq \frac { C } { | z | ^ { 2 x - 2 } }$ ; confidence 0.774
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014042.png ; $X \geq 3$ ; confidence 0.977
  
57. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021034.png ; $\dot { x } = D _ { X _ { S S } } + G ( x , \alpha )$ ; confidence 0.314
+
57. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452045.png ; $x ( . )$ ; confidence 0.977
  
58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010110.png ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016048.png ; $g ( W )$ ; confidence 0.977
  
59. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003014.png ; $K _ { \infty } = SO ( 2 ) \times Z ( R ) ^ { 0 }$ ; confidence 0.830
+
59. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017024.png ; $* A$ ; confidence 0.977
  
60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
+
60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003048.png ; $L ( E )$ ; confidence 0.977
  
61. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023090.png ; $( x , y , y ^ { \prime } , \dots , y ^ { ( k ) } )$ ; confidence 0.585
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977
  
62. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230153.png ; $\sigma _ { t } = \phi _ { t } \circ \sigma$ ; confidence 0.997
+
62. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060181.png ; $y \geq 2 a$ ; confidence 0.977
  
63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027019.png ; $\Lambda _ { m } ^ { \alpha , \beta , r , s }$ ; confidence 0.212
+
63. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020209.png ; $L ^ { 1 } ( I )$ ; confidence 0.977
  
64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001048.png ; $O ^ { \sim } ( n \operatorname { log } q )$ ; confidence 0.649
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016043.png ; $L = DSP$ ; confidence 0.977
  
65. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010019.png ; $\mathscr { P } ( x ) = \varphi ( x ^ { - 1 } )$ ; confidence 0.832
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png ; $A _ { 1 }$ ; confidence 0.977
  
66. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021033.png ; $B ( G ) \cap C _ { 00 } ( G ; C ) \subset A ( G )$ ; confidence 0.989
+
66. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008021.png ; $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$ ; confidence 0.977
  
67. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024025.png ; $( \text { End } U ( \varepsilon ) ) ^ { + }$ ; confidence 0.492
+
67. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080165.png ; $\Pi _ { 1 } ( \Sigma _ { g } , z _ { 0 } )$ ; confidence 0.977
  
68. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024040.png ; $L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$ ; confidence 0.990
+
68. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060180.png ; $( \xi _ { 1 } \frac { \partial } { \partial t _ { 1 } } + \xi _ { 2 } \frac { \partial } { \partial t _ { 2 } } ) \langle f , f \rangle _ { H } =$ ; confidence 0.977
  
69. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202005.png ; $\operatorname { det } ( \lambda I - A )$ ; confidence 0.997
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008087.png ; $\infty +$ ; confidence 0.977
  
70. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290140.png ; $( f , \phi ) : ( X , L ) \rightarrow ( Y , M )$ ; confidence 0.997
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png ; $M ( k )$ ; confidence 0.977
  
71. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003049.png ; $\{ \lambda : u _ { \lambda } \equiv 0 \}$ ; confidence 0.993
+
71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840262.png ; $\Delta \in R _ { A }$ ; confidence 0.977
  
72. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003085.png ; $V \subset \Omega \backslash \Gamma$ ; confidence 0.990
+
72. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005029.png ; $\mu ( r )$ ; confidence 0.977
  
73. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040129.png ; $P ( x , D ) = \sum _ { j = 1 } ^ { n } X _ { j } ^ { 2 }$ ; confidence 0.904
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018012.png ; $1$ ; confidence 0.977
  
74. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009013.png ; $p ( u , t ) = 1 + \alpha _ { 1 } ( t ) u + \alpha _ { 2 } ( t ) u ^ { 2 } +$ ; confidence 0.976
  
75. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337010.png ; $D f ( x , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h$ ; confidence 0.968
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012510/a0125102.png ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.976
  
76. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337011.png ; $f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.960
+
76. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004040.png ; $w = w ( z , \zeta )$ ; confidence 0.976
  
77. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001055.png ; $\gamma \wedge ( d \gamma ) ^ { n } \neq 0$ ; confidence 0.989
+
77. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018054.png ; $u \neq x$ ; confidence 0.976
  
78. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001025.png ; $\operatorname { exp } ( i A ( x ) ) + o ( 1 )$ ; confidence 0.998
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018052.png ; $\beta > 0$ ; confidence 0.976
  
79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002054.png ; $( \hat { \phi } ( - j - k - 1 ) ) j > 0 , k \geq 0$ ; confidence 0.925
+
79. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060121.png ; $k = k _ { n } > 0$ ; confidence 0.976
  
80. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004026.png ; $U _ { \xi } \cap V _ { \eta } = * \emptyset$ ; confidence 0.959
+
80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080109.png ; $T _ { n } = \delta _ { n , 1 }$ ; confidence 0.976
  
81. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007019.png ; $B ( m , D , n ) < m D + B ( m D + m D ^ { 2 } , D , n - 1 )$ ; confidence 0.997
+
81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016047.png ; $J ^ { \prime } = \left( \begin{array} { c c } { f \omega ^ { 2 } - f ^ { - 1 } r ^ { 2 } } & { - f \omega } \\ { - f \omega } & { f } \end{array} \right)$ ; confidence 0.976
  
82. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013012.png ; $Y ( i ) \times I ^ { 2 } \rightarrow Y ( j )$ ; confidence 0.839
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007064.png ; $b \mapsto b$ ; confidence 0.976
  
83. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030158.png ; $( D ) \in K _ { 0 } ( C _ { r } ^ { * } ( \Gamma ) )$ ; confidence 0.954
+
83. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019020.png ; $t ( k , r ) \leq ( \frac { r - 1 } { k - 1 } ) ^ { r - 1 }$ ; confidence 0.976
  
84. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004011.png ; $x \neq 0 ( \operatorname { mod } 2 \pi )$ ; confidence 0.902
+
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140123.png ; $\phi$ ; confidence 0.976
  
85. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004052.png ; $f ( z ) = \int \partial D f ( \zeta ) K ( s )$ ; confidence 0.989
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015630/b01563012.png ; $m \rightarrow \infty$ ; confidence 0.976
  
86. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060139.png ; $q ( x ) \in L _ { 1,1 } \cap L ^ { 2 } ( R _ { + } )$ ; confidence 0.948
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005023.png ; $a ( k )$ ; confidence 0.976
  
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007021.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.879
+
87. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007057.png ; $( D , X )$ ; confidence 0.976
  
88. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007046.png ; $\forall \alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.910
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016099.png ; $w \in \Sigma ^ { * }$ ; confidence 0.976
  
89. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c0254705.png ; $\alpha \wedge ( d \alpha ) ^ { N } \neq 0$ ; confidence 0.425
+
89. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022070.png ; $\rho = \operatorname { max } _ { T } \rho ( T )$ ; confidence 0.976
  
90. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090185.png ; $G _ { \chi } ( T ) \in Z _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.991
+
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200185.png ; $L ( \Lambda )$ ; confidence 0.976
  
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090116.png ; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628
+
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009017.png ; $1 + r _ { 2 } ( k )$ ; confidence 0.976
  
92. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001053.png ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758
+
92. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010115.png ; $( R )$ ; confidence 0.976
  
93. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001011.png ; $Q _ { D } ( v , z ) \in Z [ v ^ { \pm 1 } , z ^ { 2 } ]$ ; confidence 0.927
+
93. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012080.png ; $\Sigma = R$ ; confidence 0.976
  
94. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020129.png ; $H _ { 0 } ^ { 1 } = \{ f \in H ^ { 1 } : f ( 0 ) = 0 \}$ ; confidence 0.992
+
94. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016034.png ; $L ( n + t )$ ; confidence 0.976
  
95. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040108.png ; $P _ { L } ( v , z ) - P _ { T } _ { com ( L ) } ( v , z )$ ; confidence 0.408
+
95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019066.png ; $m \neq b \neq a$ ; confidence 0.976
  
96. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004024.png ; $P _ { 2 _ { 1 } } = \frac { v - v ^ { 3 } } { z } + v z$ ; confidence 0.380
+
96. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301002.png ; $m : A \rightarrow [ 0 , \infty ]$ ; confidence 0.976
  
97. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793
+
97. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018051.png ; $W ^ { ( 2 ) } ( t )$ ; confidence 0.976
  
98. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557806.png ; $\frac { f ( x _ { 0 } + ) + f ( x _ { 0 } - ) } { 2 } =$ ; confidence 0.932
+
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003039.png ; $V ^ { \sigma }$ ; confidence 0.976
  
99. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010045.png ; $A = A _ { 0 } \oplus A _ { 1 } \oplus \ldots$ ; confidence 0.934
+
99. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001014.png ; $\sum _ { i } R _ { j i } ( g ^ { - 1 } ) \varphi _ { i } ( g [ f ] )$ ; confidence 0.976
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840302.png ; $\overline { D } \subset \{ z : | z | < 1 \}$ ; confidence 0.861
+
100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024073.png ; $p \equiv 3$ ; confidence 0.976
  
101. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840171.png ; $A | _ { R } ( E _ { \overline { \lambda } } )$ ; confidence 0.490
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840266.png ; $\overline { \Delta } \cap \sigma ( A )$ ; confidence 0.986
+
102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006072.png ; $( q , r )$ ; confidence 0.976
  
103. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584028.png ; $\kappa = \operatorname { dim } K _ { + }$ ; confidence 0.989
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006055.png ; $\partial ( I )$ ; confidence 0.976
  
104. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507057.png ; $[ \gamma _ { \omega } ] = 2 \pi c _ { 1 } ( M )$ ; confidence 0.868
+
104. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003069.png ; $N = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in E _ { M }$ ; confidence 0.976
  
105. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507064.png ; $\tilde { \gamma } = \gamma _ { \varpi }$ ; confidence 0.797
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033013.png ; $1 \leq j \leq n$ ; confidence 0.976
  
106. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702040.png ; $X = X \otimes _ { k } \overline { k } _ { s }$ ; confidence 0.303
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003022.png ; $( N , h )$ ; confidence 0.976
  
107. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700097.png ; $? \equiv \lambda p \cdot p ( \lambda x$ ; confidence 0.079
+
107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045057.png ; $( X _ { 3 } , Y _ { 2 } )$ ; confidence 0.976
  
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004073.png ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } )$ ; confidence 0.751
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440110.png ; $C _ { G } ( D ) \subseteq H$ ; confidence 0.976
  
109. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001068.png ; $\int _ { T ^ { 2 } } | \tilde { X } N B ( x ) | d x$ ; confidence 0.055
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310101.png ; $f \in L ^ { 1 }$ ; confidence 0.976
  
110. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008045.png ; $( x , y ) \mapsto ( x ^ { k + 1 } / ( k + 1 ) + i y )$ ; confidence 0.986
+
110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001010.png ; $z x \leq y z$ ; confidence 0.976
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008017.png ; $\nu : = \operatorname { min } \{ m , n \}$ ; confidence 0.993
+
111. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004021.png ; $\psi _ { p - 2 } ( z ) f ( z ) + \phi _ { p - 1 } ( z ) g _ { k } ( z )$ ; confidence 0.976
  
112. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005059.png ; $x ^ { n } = \operatorname { sinh } u ^ { n }$ ; confidence 0.934
+
112. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014063.png ; $U _ { \rho }$ ; confidence 0.976
  
113. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015022.png ; $T V = \oplus _ { k \geq 1 } V ^ { \otimes k }$ ; confidence 0.765
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204006.png ; $E _ { m } = \pi ^ { - 1 } ( m )$ ; confidence 0.976
  
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202004.png ; $A _ { i } \cap ( - A _ { i } ) \neq \emptyset$ ; confidence 0.804
+
114. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080181.png ; $( \kappa \partial + L ) \psi = 0$ ; confidence 0.976
  
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001032.png ; $T _ { \lambda } = T ( I + \lambda T ) ^ { - 1 }$ ; confidence 0.990
+
115. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180116.png ; $\gamma ( x ) \vee x$ ; confidence 0.976
  
116. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200105.png ; $T : X \supset D ( T ) \rightarrow 2 ^ { X }$ ; confidence 0.995
+
116. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450249.png ; $\epsilon \in R$ ; confidence 0.976
  
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007032.png ; $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi - 3 )$ ; confidence 0.918
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976
  
118. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m1200906.png ; $J = ( j _ { 1 } , \ldots , j _ { n } ) \in N ^ { X }$ ; confidence 0.144
+
118. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008085.png ; $E _ { z _ { 0 } } ( x , R )$ ; confidence 0.976
  
119. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120104.png ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
  
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300605.png ; $a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.353
+
120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
  
121. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013043.png ; $\operatorname { adj } ( L ) = \tau ( G ) J$ ; confidence 0.906
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022031.png ; $Q ( f ) = M _ { f } - f$ ; confidence 0.976
  
122. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019050.png ; $| \kappa _ { N } | ^ { 2 } = M _ { N - 1 } / M _ { N }$ ; confidence 0.610
+
122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120108.png ; $\operatorname { log } \int f ( \theta ^ { ( t + 1 ) } , \phi ) d \phi \geq \operatorname { log } \int f ( \theta ^ { ( t ) } , \phi ) d \phi$ ; confidence 0.976
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981
+
123. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900119.png ; $P \sim Q$ ; confidence 0.976
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230149.png ; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982
+
124. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014068.png ; $\lambda \geq \frac { Q + 1 } { Q - 1 }$ ; confidence 0.976
  
125. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023092.png ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184
+
125. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029038.png ; $\sum _ { q = 1 } ^ { \infty } ( \varphi ( q ) f ( q ) ) ^ { k }$ ; confidence 0.976
  
126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180152.png ; $\sum _ { H : H \leq G } \mu ( H , G ) | H | ^ { S }$ ; confidence 0.409
+
126. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650213.png ; $\xi$ ; confidence 0.976
  
127. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200709.png ; $| m ( E ) | < M , \quad m \in M , E \in \Sigma$ ; confidence 0.987
+
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004074.png ; $L _ { 1 } = L _ { 1 } ( \mu )$ ; confidence 0.976
  
128. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n1201003.png ; $f : R \times C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.929
+
128. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001046.png ; $I - C T ^ { - 1 }$ ; confidence 0.976
  
129. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011047.png ; $\xi _ { z } * : R ^ { n } \rightarrow [ 0,1 ]$ ; confidence 0.352
+
129. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002040.png ; $w \mapsto i \frac { 1 - w } { 1 + w }$ ; confidence 0.976
  
130. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752033.png ; $N \in M _ { \operatorname { max } n } ( K )$ ; confidence 0.560
+
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013059.png ; $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ ; confidence 0.976
  
131. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520284.png ; $\rho ( \xi ) = ( E _ { \xi } h _ { 0 } , h _ { 0 } )$ ; confidence 0.993
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976
  
132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010163.png ; $v _ { \varepsilon } ( \alpha , \theta )$ ; confidence 0.872
+
132. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340203.png ; $SH ^ { * } ( M , \omega )$ ; confidence 0.976
  
133. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005010.png ; $\int _ { 0 } ^ { \infty } w ( s ) d s = \infty$ ; confidence 1.000
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293050.png ; $u ( x )$ ; confidence 0.976
  
134. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013030.png ; $\{ 1 , \theta , \theta ^ { 2 } , \ldots \}$ ; confidence 0.890
+
134. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302104.png ; $G ( x , \alpha )$ ; confidence 0.976
  
135. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013020.png ; $\| x \| = \operatorname { dist } ( x , Z )$ ; confidence 0.787
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005032.png ; $\Gamma = G H$ ; confidence 0.976
  
136. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007096.png ; $M ( G ( z , w ) ) = ( 2 \pi ) ^ { n } \delta _ { w }$ ; confidence 0.615
+
136. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005020.png ; $1 \geq k + 1$ ; confidence 0.976
  
137. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548021.png ; $\& ^ { x } , v ^ { x } , \supset ^ { x } , 7 ^ { x }$ ; confidence 0.316
+
137. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976
  
138. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003028.png ; $X ( f g ) = \mu ( \Delta X . ( f \otimes g ) )$ ; confidence 0.335
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018023.png ; $\lambda | > 1$ ; confidence 0.976
  
139. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q1300306.png ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752
+
139. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r1301208.png ; $( E , C )$ ; confidence 0.976
  
140. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005098.png ; $B _ { n } = H _ { n } ^ { - 1 } = D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.986
+
140. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070140.png ; $k [ C ]$ ; confidence 0.976
  
141. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) . d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017032.png ; $< 0$ ; confidence 0.976
  
142. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013010.png ; $\tau = \sigma ( A ) \backslash \sigma$ ; confidence 0.995
+
142. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520378.png ; $( Q , \Lambda ) \equiv q _ { 1 } \lambda _ { 1 } + \ldots + q _ { n } \lambda _ { n } = 0$ ; confidence 0.976
  
143. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232053.png ; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981
+
143. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520144.png ; $\phi ( T )$ ; confidence 0.976
  
144. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232047.png ; $D = \{ z = r e ^ { i \theta } \in C : | z | < 1 \}$ ; confidence 0.966
+
144. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003015.png ; $\operatorname { Tr } ( X Y )$ ; confidence 0.976
  
145. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016035.png ; $R = C ^ { \infty } ( \Omega ) \nmid I _ { S }$ ; confidence 0.760
+
145. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014028.png ; $f _ { \rho } ( x )$ ; confidence 0.976
  
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005079.png ; $S ( z ) c = H c + z G ( 1 - z T ) ^ { - 1 } F c , c \in C$ ; confidence 0.844
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004092.png ; $X \neq L$ ; confidence 0.976
  
147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036010.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + 1 _ { t } , t \geq 0$ ; confidence 0.949
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110163.png ; $\xi _ { 0 } x < 0$ ; confidence 0.976
  
148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045079.png ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2$ ; confidence 0.942
+
148. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011016.png ; $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$ ; confidence 0.976
  
149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780
+
149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059036.png ; $Q _ { 0 } ( z ) = 1$ ; confidence 0.976
  
150. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051093.png ; $O ( \operatorname { log } ( | V | + | E | ) )$ ; confidence 0.990
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976
  
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025023.png ; $E _ { n + 1 } ( x ) = ( 1 - x ^ { 2 } ) U _ { n - 1 } ( x )$ ; confidence 0.940
+
151. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006051.png ; $G _ { i } ( A )$ ; confidence 0.976
  
152. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058035.png ; $I \geq ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.994
+
152. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014060.png ; $r < | \zeta | < R$ ; confidence 0.976
  
153. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459090.png ; $\{ c _ { n } \} _ { n = - \infty } ^ { \infty }$ ; confidence 0.176
+
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027019.png ; $\omega = 1$ ; confidence 0.976
  
154. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059010.png ; $\Lambda _ { 2 m + 1 } = \Lambda - ( m + 1 ) , m$ ; confidence 0.591
+
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032064.png ; $F ( r , F ( s , t ) ) = \| r x + \| s y + t z \| z \| =$ ; confidence 0.976
  
155. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320108.png ; $\operatorname { lim } ( V _ { I } ) \neq 0$ ; confidence 0.902
+
155. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014058.png ; $( E )$ ; confidence 0.976
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340130.png ; $M ( \tilde { x } _ { - } , \tilde { x } _ { + } )$ ; confidence 0.259
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004061.png ; $h ( \varphi )$ ; confidence 0.976
  
157. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306408.png ; $\operatorname { log } a \in L ^ { 1 } ( T )$ ; confidence 0.609
+
157. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016090.png ; $f : \Sigma ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.976
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s1306602.png ; $I _ { \mu } ( f ) = \int _ { T } f ( t ) d \mu ( t )$ ; confidence 0.769
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002018.png ; $| b ( u , u ) | \geq \gamma \| u \| ^ { 2 }$ ; confidence 0.976
  
159. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385
+
159. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301303.png ; $r = ( x , y , z )$ ; confidence 0.976
  
160. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004025.png ; $D y _ { N } ^ { * } ( x ) = \tau T _ { N } ^ { * } ( x )$ ; confidence 0.481
+
160. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001031.png ; $J Z = 0$ ; confidence 0.976
  
161. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003043.png ; $R ^ { \prime } \backslash E ^ { \prime }$ ; confidence 0.997
+
161. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005015.png ; $\mu _ { 0 } ( k , R ) \in C$ ; confidence 0.976
  
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005087.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.423
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012021.png ; $F _ { p } ( ( t ) )$ ; confidence 0.976
  
163. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034034.png ; $H ^ { * } ( L ; Z )$ ; confidence 0.976
  
164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060135.png ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x )$ ; confidence 0.947
+
164. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050132.png ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975
  
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014016.png ; $T _ { \phi } : H ^ { 2 } \rightarrow H ^ { 2 }$ ; confidence 0.999
+
165. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003052.png ; $\Gamma _ { F }$ ; confidence 0.975
  
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014010.png ; $\gamma _ { j } = \hat { \phi } ( j ) , j \in Z$ ; confidence 0.375
+
166. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277019.png ; $L _ { 2 } ( \sigma )$ ; confidence 0.975
  
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015031.png ; $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ ; confidence 0.962
+
167. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008087.png ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975
  
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015025.png ; $\xi \in A \rightarrow \xi ^ { \# } \in A$ ; confidence 0.868
+
168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001023.png ; $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$ ; confidence 0.975
  
169. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015059.png ; $\{ \Delta ^ { \alpha } : \alpha \in C \}$ ; confidence 0.995
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040104.png ; $X ^ { \prime \prime } = X$ ; confidence 0.975
  
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015038.png ; $\xi \in A \rightarrow \pi ( \xi ) \eta$ ; confidence 0.994
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620224.png ; $n = \operatorname { dim } T$ ; confidence 0.975
  
171. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200106.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { x } |$ ; confidence 0.576
+
171. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002012.png ; $P , Q \in R [ X ]$ ; confidence 0.975
  
172. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200169.png ; $\operatorname { Re } G _ { 2 } ( r ) \geq A$ ; confidence 0.916
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240186.png ; $b$ ; confidence 0.975
  
173. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020196.png ; $H ^ { n } ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.997
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008010.png ; $\sigma _ { \mathfrak { P } } = [ \frac { L / K } { \mathfrak { P } } ]$ ; confidence 0.975
  
174. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006013.png ; $D = \frac { E h ^ { 3 } } { 12 ( 1 - \nu ^ { 2 } ) }$ ; confidence 0.823
+
174. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054091.png ; $K _ { 2 } R$ ; confidence 0.975
  
175. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900156.png ; $f _ { p } \in L _ { 2 } ( Z _ { p } , \mu , H _ { p } )$ ; confidence 0.992
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150133.png ; $d : \Omega \rightarrow R$ ; confidence 0.975
  
176. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004033.png ; $\sum _ { j = 1 } ^ { 3 } \omega _ { j } ^ { 2 } = 0$ ; confidence 0.995
+
176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005028.png ; $\Sigma ^ { i , j } ( f )$ ; confidence 0.975
  
177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004015.png ; $\sum _ { j = 1 } ^ { n } \omega _ { j } ^ { 2 } = 0$ ; confidence 0.978
+
177. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008012.png ; $h ( x ) \in L ^ { 2 } ( R _ { + } )$ ; confidence 0.975
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007037.png ; $| \gamma | = r + \sum _ { j = 1 } ^ { s } p _ { j }$ ; confidence 0.755
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029013.png ; $P _ { Y } \times R \rightarrow Y \times R$ ; confidence 0.975
  
179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010033.png ; $m _ { r s } = g _ { l } g _ { r } ^ { i } Q _ { s } ^ { j }$ ; confidence 0.159
+
179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024068.png ; $J _ { t } = [ - h ( t ) , - g ( t ) ] \subset ( - \infty , 0 ]$ ; confidence 0.975
  
180. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201107.png ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310115.png ; $G$ ; confidence 0.975
  
181. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110164.png ; $r _ { m } - 2 \in S _ { 0 c } ^ { m - 2 } ( \Omega )$ ; confidence 0.161
+
181. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014039.png ; $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$ ; confidence 0.975
  
182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012024.png ; $R _ { x y } \equiv R ^ { c } \square _ { x x b }$ ; confidence 0.060
+
182. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100162.png ; $d \theta$ ; confidence 0.975
  
183. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008052.png ; $\operatorname { Jac } ( \Sigma _ { g } )$ ; confidence 0.957
+
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017038.png ; $\omega ^ { \prime \prime } ( G )$ ; confidence 0.975
  
184. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008055.png ; $\psi \psi ^ { * } d \overline { \Omega }$ ; confidence 0.850
+
184. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011056.png ; $G _ { k } ( \zeta )$ ; confidence 0.975
  
185. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008048.png ; $\vec { V } _ { n } = \vec { V } _ { n } ( T _ { m } )$ ; confidence 0.680
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022019.png ; $| \alpha | = \sum _ { j = 1 } ^ { N } \alpha _ { j }$ ; confidence 0.975
  
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018014.png ; $R _ { t } = \prod _ { i = 1 } ^ { N } [ 0 , t _ { i } )$ ; confidence 0.996
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150013.png ; $\theta$ ; confidence 0.975
  
187. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021070.png ; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231608.png ; $A \otimes A \rightarrow A$ ; confidence 0.975
  
188. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004011.png ; $I : A \rightarrow R \cup \{ + \infty \}$ ; confidence 0.474
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030049.png ; $\beta = 1 + ( m - 1 ) 2 ^ { m }$ ; confidence 0.975
  
189. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004015.png ; $\operatorname { inf } _ { x \in A } I ( u )$ ; confidence 0.516
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029042.png ; $L _ { 0 } \subset M ( P )$ ; confidence 0.975
  
190. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001031.png ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) Z ( y ( n ) )$ ; confidence 0.508
+
190. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025010.png ; $( A , \partial , \circ )$ ; confidence 0.975
  
191. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004011.png ; $\operatorname { ln } \nmid 2 \rfloor$ ; confidence 0.166
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027020.png ; $W _ { P } ( \rho ) = 1$ ; confidence 0.975
  
192. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002027.png ; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1$ ; confidence 0.973
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022043.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , w + 1 - s )$ ; confidence 0.975
  
193. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110131.png ; $M _ { k ^ { n } } = \sum _ { i = 1 } ^ { k } M _ { i k }$ ; confidence 0.396
+
193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210121.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( 0 , \Gamma ( \theta ) )$ ; confidence 0.975
  
194. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011052.png ; $\{ \mu _ { n } ( k ) \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.979
+
194. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017016.png ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017027.png ; $V _ { t } = \phi _ { t } S _ { t } + \psi _ { t } B _ { t }$ ; confidence 0.975
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001020.png ; $\frac { d u } { d t } - i \frac { d v } { d t } = 2 e ^ { i \lambda } \operatorname { sin } ( \frac { 1 } { 2 } ( u + i v ) )$ ; confidence 0.975
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040425.png ; $\langle A , F \rangle \in M od ^ { * } L D$ ; confidence 0.065
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032084.png ; $i \in N$ ; confidence 0.975
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050156.png ; $| \alpha | = c ^ { \partial ( \alpha ) }$ ; confidence 0.770
+
199. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055170/k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005015.png ; $t \mapsto ( I - A ( t ) ) ( I - A ( 0 ) ) ^ { - 1 }$ ; confidence 0.963
+
200. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010041.png ; $\Omega _ { \infty }$ ; confidence 0.975
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007085.png ; $\delta \in ( 0 , \eta ) \cap ( 0 , \rho ]$ ; confidence 0.996
+
201. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014025.png ; $p ( t ) , q ( t ) \in F [ t ]$ ; confidence 0.975
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010080.png ; $J _ { \lambda } = ( I + \lambda A ) ^ { - 1 }$ ; confidence 0.995
+
202. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003095.png ; $H ^ { * } E X$ ; confidence 0.975
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
+
203. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050187.png ; $M _ { G }$ ; confidence 0.975
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d _ { x } )$ ; confidence 0.574
+
204. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040121.png ; $\lambda \nmid \mu$ ; confidence 0.975
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013031.png ; $( X _ { x } - 1 , \theta _ { x } - 1 , \ldots )$ ; confidence 0.353
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008093.png ; $n < 2 N$ ; confidence 0.975
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015026.png ; $\operatorname { Ker } ( \text { ad } )$ ; confidence 0.608
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005028.png ; $f \in C ( [ 0 , T ] ; D ( A ( 0 ) )$ ; confidence 0.975
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017045.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha )$ ; confidence 0.808
+
207. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034067.png ; $H : S ^ { 1 } \times M \rightarrow R$ ; confidence 0.975
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a120180101.png ; $u _ { 1 } = F ( u _ { 0 } ) , u _ { 2 } = F ( u _ { 1 } )$ ; confidence 0.964
+
208. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140148.png ; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180110.png ; $c _ { i } ( R ) \subseteq \square ^ { n } U$ ; confidence 0.776
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038091.png ; $n = 0$ ; confidence 0.975
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023063.png ; $b _ { Y , s } = \int \Omega ^ { z } z ^ { s } d v$ ; confidence 0.240
+
210. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002012.png ; $D _ { A } \phi$ ; confidence 0.975
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302708.png ; $X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677
+
211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024051.png ; $\varepsilon _ { i } \rightarrow 0$ ; confidence 0.975
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280105.png ; $I = \{ f \in L ^ { 1 } ( G ) : U _ { f } ( x ) = 0 \}$ ; confidence 0.954
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028015.png ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501018.png ; $g _ { r } : B _ { r } \rightarrow B _ { r } + 1$ ; confidence 0.306
+
213. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006027.png ; $D \cap D ^ { \prime }$ ; confidence 0.975
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b1202109.png ; $\Delta \subset \mathfrak { h } ^ { * }$ ; confidence 0.743
+
214. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510140.png ; $L \neq Z ^ { 0 }$ ; confidence 0.975
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210136.png ; $d _ { k } : C _ { k } \rightarrow C _ { k - 1 }$ ; confidence 0.779
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019046.png ; $X = R ^ { n }$ ; confidence 0.975
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021062.png ; $( M ) \subset Z ( \mathfrak { g } ) ^ { * }$ ; confidence 0.361
+
216. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032075.png ; $M = A ^ { p } | q$ ; confidence 0.975
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006029.png ; $\lambda _ { 1 } , \dots , \lambda _ { n }$ ; confidence 0.590
+
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024038.png ; $h ( t ) \equiv \infty$ ; confidence 0.975
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006026.png ; $( 1 \pm z z ) ^ { 2 } w _ { z z } + \lambda w = 0$ ; confidence 0.997
+
219. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013053.png ; $\square _ { \infty }$ ; confidence 0.975
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007057.png ; $\tau : a \mapsto a , b \mapsto b ^ { - 1 }$ ; confidence 0.741
+
220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302506.png ; $\langle f u , \varphi \rangle = \langle u , f \varphi \rangle$ ; confidence 0.975
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009033.png ; $1 / p ( \xi , \tau ) = p _ { 2 } ( \xi , \tau )$ ; confidence 0.950
+
221. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003023.png ; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009011.png ; $W _ { 2 } ^ { S } ( R _ { X } ) = H ^ { S } ( R _ { X } )$ ; confidence 0.644
+
222. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006038.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0$ ; confidence 0.975
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009021.png ; $u _ { t } + \alpha ( u ) _ { x } - u _ { x x t } = 0$ ; confidence 0.313
+
223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007035.png ; $r = s = 0$ ; confidence 0.975
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013072.png ; $\| \hat { u } \| _ { p } \leq c \| u \| _ { p }$ ; confidence 0.086
+
224. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005042.png ; $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ ; confidence 0.975
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015063.png ; $d ^ { * } : \{ 0,1 \} ^ { n } \rightarrow R$ ; confidence 0.584
+
225. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557805.png ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150111.png ; $E _ { P _ { n } } ( d ) = E _ { P _ { n } } ( d ^ { * } )$ ; confidence 0.504
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060147.png ; $0 \leq b < 1$ ; confidence 0.975
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698
+
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006021.png ; $H ^ { ( i ) }$ ; confidence 0.975
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b12028018.png ; $g = B . O \cdot \frac { S _ { 1 } } { S _ { 2 } }$ ; confidence 0.213
+
228. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010036.png ; $\exists x ( \forall y ( \neg y \in x ) \wedge x \in z )$ ; confidence 0.975
  
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
+
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007095.png ; $\operatorname { sup } _ { \alpha ^ { \prime } \in S ^ { 2 } } | A _ { \delta } ( \alpha ^ { \prime } , \alpha ) - A ( \alpha ^ { \prime } , \alpha ) | < \delta$ ; confidence 0.975
  
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203401.png ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941
+
230. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.975
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203606.png ; $\operatorname { exp } ( - E / k _ { B } T )$ ; confidence 0.998
+
231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201305.png ; $d N / d t = f ( N )$ ; confidence 0.975
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020016.png ; $[ h _ { i } f _ { j } ] = - \alpha _ { j } f _ { j }$ ; confidence 0.847
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085083.png ; $K = C$ ; confidence 0.975
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200175.png ; $( e _ { i } ) ^ { k } , v = 0 = ( f _ { i } ) ^ { k } , v$ ; confidence 0.192
+
233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201304.png ; $\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$ ; confidence 0.975
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020085.png ; $\mathfrak { h } = \mathfrak { g } ^ { 0 }$ ; confidence 0.769
+
234. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008093.png ; $m = \frac { \operatorname { sinh } ( \frac { H } { k _ { B } T } ) } { [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 } }$ ; confidence 0.975
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200118.png ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519
+
235. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002038.png ; $( m , u ) \mapsto u ^ { * } m u$ ; confidence 0.975
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020014.png ; $[ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }$ ; confidence 0.355
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970109.png ; $2 \pi / n$ ; confidence 0.975
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420134.png ; $\sum _ { V } v ^ { ( T ) } \otimes v ^ { ( 2 ) }$ ; confidence 0.427
+
237. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007056.png ; $k q ^ { \prime } s \frac { d } { d s } [ q ^ { \prime } s \frac { d \theta } { d s } ] + \operatorname { cos } \theta - q ^ { \prime } = 0$ ; confidence 0.975
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420113.png ; $G = Z _ { 2 } \times Z _ { 2 } \times Z _ { 2 }$ ; confidence 0.886
+
238. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420132.png ; $R : H \otimes H \rightarrow \dot { k }$ ; confidence 0.770
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290162.png ; $( f , \phi ) : ( X , L , T ) \rightarrow ( Y , M , S )$ ; confidence 0.975
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049024.png ; $m : \Sigma \rightarrow [ 0 , \infty )$ ; confidence 0.916
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058017.png ; $V = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { sin } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.975
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049048.png ; $m _ { N } : A \rightarrow [ 0 , + \infty )$ ; confidence 0.502
+
241. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032014.png ; $[ x , ]$ ; confidence 0.975
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027051.png ; $X \mapsto \operatorname { Ext } ( X )$ ; confidence 0.990
+
242. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302406.png ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050013.png ; $W ^ { d } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006078.png ; $1 > 1$ ; confidence 0.975
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205506.png ; $\gamma : [ 0 , \infty ) \rightarrow M$ ; confidence 0.998
+
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201707.png ; $\gamma _ { i j } = \int z ^ { i } z ^ { j } d \mu , 0 \leq i + j \leq 2 n$ ; confidence 0.975
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001016.png ; $\frac { \partial c } { \partial n } = 0$ ; confidence 0.892
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009036.png ; $\operatorname { Re } p _ { 3 } ( \xi , \tau ) > 0$ ; confidence 0.975
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002015.png ; $( W _ { u } f ) ( x , t ) = ( f ^ { * } u _ { t } ) ( x )$ ; confidence 0.588
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026030.png ; $\sum _ { x \in f ^ { - 1 } ( y ) } \operatorname { sign } \operatorname { det } f ^ { \prime } ( x )$ ; confidence 0.975
  
247. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200708.png ; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632
+
247. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i052800348.png ; $r > 3$ ; confidence 0.975
  
248. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200706.png ; $C ^ { 0 } ( C , M ) = \prod _ { C \in Q C } M ( C )$ ; confidence 0.133
+
248. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010030.png ; $( X , Y )$ ; confidence 0.975
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006028.png ; $\langle \langle A \rangle \rangle$ ; confidence 0.609
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012011.png ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975
  
250. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301102.png ; $f : H \rightarrow R \cup \{ \infty \}$ ; confidence 0.945
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011052.png ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015032.png ; $E _ { M } ( D ( \Omega ) ) / N ( D ( \Omega ) )$ ; confidence 0.934
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007038.png ; $< 6232$ ; confidence 0.975
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180479.png ; $s ^ { 2 } \mathfrak { g } \in S ^ { 2 } \not$ ; confidence 0.135
+
252. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004022.png ; $P _ { L } ( v , z ) = P _ { L } ( - v , - z ) = ( - 1 ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( - v , z )$ ; confidence 0.974
  
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180177.png ; $\{ 1 , \ldots , r , r + 1 , \ldots , r + 4 \}$ ; confidence 0.431
+
253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006070.png ; $\kappa _ { M } : T T M \rightarrow T T M$ ; confidence 0.974
  
254. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180167.png ; $\varepsilon \otimes \varepsilon$ ; confidence 0.773
+
254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006056.png ; $= 2 \pi i | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.974
  
255. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021025.png ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517
+
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027095.png ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026016.png ; $U ^ { 0 } j = P _ { j } , \quad 0 \leq j \leq J$ ; confidence 0.994
+
256. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301508.png ; $D ( \Omega ) \rightarrow C$ ; confidence 0.974
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030026.png ; $( H ^ { \otimes r } , H ^ { \otimes r + k } )$ ; confidence 0.895
+
257. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232071.png ; $0 \leq a \leq b + c$ ; confidence 0.974
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030092.png ; $\operatorname { tr } ( K _ { i } ) \leq 1$ ; confidence 0.841
+
258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023035.png ; $O ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}$ ; confidence 0.974
  
259. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008068.png ; $e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = e ( w | v )$ ; confidence 0.855
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051065.png ; $u \in V$ ; confidence 0.974
  
260. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006017.png ; $Q ( A ) = \sum _ { B ; A \subseteq B m ( B ) }$ ; confidence 0.439
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055012.png ; $t - d ( x , \gamma ( t ) )$ ; confidence 0.974
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080101.png ; $E _ { z _ { 0 } } ( x , R ) = F _ { z _ { 0 } } ( x , R )$ ; confidence 0.985
+
261. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300807.png ; $\rho \leq 1$ ; confidence 0.974
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011023.png ; $\| . \| : G \rightarrow [ 0 , + \infty )$ ; confidence 0.951
+
262. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c12022013.png ; $[ x _ { 0 } , x ]$ ; confidence 0.974
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013038.png ; $w _ { 2 ^ { n } - 2 ^ { i } } ( \rho ) = c _ { n , i }$ ; confidence 0.108
+
263. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005033.png ; $A _ { \pm } ( x , y )$ ; confidence 0.974
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
+
264. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026010.png ; $X _ { n } ( t ) \Rightarrow w ( t )$ ; confidence 0.974
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018030.png ; $L ^ { p } ( \partial D , d \theta / 2 \pi )$ ; confidence 0.894
+
265. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023051.png ; $d f _ { t } ( x ) = 0 \Leftrightarrow \partial f ( x ) \ni 0 \Leftrightarrow f _ { t } ( x ) = f ( x )$ ; confidence 0.974
  
266. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017036.png ; $C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 )$ ; confidence 0.978
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034040.png ; $z _ { 0 } \in D$ ; confidence 0.974
  
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }$ ; confidence 0.783
+
267. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840238.png ; $[ p ( A ) x , x ] \geq 0$ ; confidence 0.974
  
268. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028072.png ; $\tilde { D } _ { m } \supset \tilde { D }$ ; confidence 0.375
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201308.png ; $3.2 ^ { i - 1 } ( n + 1 ) - 2$ ; confidence 0.974
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028083.png ; $A ( D ) ^ { * } \simeq A ( \overline { D } )$ ; confidence 0.679
+
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024051.png ; $y _ { K }$ ; confidence 0.974
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280110.png ; $H ^ { n , n - 1 } = Z ^ { n , n - 1 } / B ^ { n , n - 1 }$ ; confidence 0.931
+
270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m1302206.png ; $V = V _ { - 1 } \oplus V _ { 1 } \oplus V _ { 2 } \oplus \ldots$ ; confidence 0.974
  
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010124.png ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495
+
271. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557804.png ; $x = x _ { 0 } > 0$ ; confidence 0.974
  
272. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { 0 b s }$ ; confidence 0.703
+
272. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245203.png ; $f _ { t }$ ; confidence 0.974
  
273. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002016.png ; $j ( u ( x + \frac { 1 } { j } e _ { k } ) - u ( x ) )$ ; confidence 0.985
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013092.png ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon ) } \end{array} \right.$ ; confidence 0.974
  
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011047.png ; $\nabla \times E = O , \nabla D = q _ { f }$ ; confidence 0.744
+
274. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e1100501.png ; $f : N \rightarrow C$ ; confidence 0.974
  
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140102.png ; $( 1 \rightarrow \varphi ) = \varphi$ ; confidence 1.000
+
275. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011020.png ; $w ( z ) = U _ { x } - i U _ { y } = \frac { d \Phi } { d z } , z = x + i y$ ; confidence 0.974
  
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016030.png ; $Y = \partial \nmid \partial \theta$ ; confidence 0.661
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070250.png ; $T \cap k ( C _ { 2 } ) = \phi ( T \cap k ( C _ { 1 } ) )$ ; confidence 0.974
  
277. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697
+
277. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005017.png ; $\lambda = n ^ { - 1 } c = ( \pi \sigma ^ { 2 } N ) ^ { - 1 }$ ; confidence 0.974
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026069.png ; $L _ { \mu } ( \theta ) = f ( e ^ { \theta } )$ ; confidence 0.999
+
278. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004048.png ; $\chi _ { T } ( G )$ ; confidence 0.974
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004047.png ; $( R _ { + } \backslash \{ 0 \} , x , \leq )$ ; confidence 0.640
+
279. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029027.png ; $\tau \subset L ^ { X }$ ; confidence 0.974
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005044.png ; $S \cap \text { aff } P \neq \emptyset$ ; confidence 0.545
+
280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507049.png ; $\operatorname { Ric } _ { g }$ ; confidence 0.974
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005025.png ; $p _ { i } \in \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.552
+
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060126.png ; $S ( k )$ ; confidence 0.974
  
282. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009092.png ; $H _ { N } ^ { ( k ) } ( x ) = U _ { N } ^ { ( k ) } ( x )$ ; confidence 0.318
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301305.png ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974
  
283. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009095.png ; $H _ { N } ^ { ( k ) } ( x ) = F _ { N } ^ { ( k ) } ( x )$ ; confidence 0.258
+
283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050124.png ; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974
  
284. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110212.png ; $( R ^ { n } - i \Delta ) \cap C _ { \delta }$ ; confidence 0.775
+
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011021.png ; $P = D - E , M = B - H$ ; confidence 0.974
  
285. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110179.png ; $S _ { \infty } ^ { n - 1 } \times S ^ { n - 1 }$ ; confidence 0.953
+
285. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960309.png ; $\tau = t / \mu$ ; confidence 0.974
  
286. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569
+
286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974
  
287. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160186.png ; $P ( T , \omega ) = \{ P ( T , l ) : l \geq 0 \}$ ; confidence 0.863
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png ; $F _ { j k }$ ; confidence 0.974
  
288. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023077.png ; $L _ { X } = [ i \chi , d ] = i \chi d + d i \chi$ ; confidence 0.523
+
288. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005021.png ; $\Gamma$ ; confidence 0.974
  
289. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029014.png ; $T _ { \text { prod } } ( \alpha , b ) = a . b$ ; confidence 0.146
+
289. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006010.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 )$ ; confidence 0.974
  
290. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029066.png ; $f _ { L } ^ { \leftarrow } ( b ) = b \circ f$ ; confidence 0.617
+
290. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r0822902.png ; $x , y , z \in X$ ; confidence 0.974
  
291. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032029.png ; $y ^ { \prime } = \lambda y$ ; confidence 0.974
  
292. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040168.png ; $\| \nu \| ( A ) = \nu ( A \times G ( n , m ) )$ ; confidence 0.995
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016077.png ; $A V$ ; confidence 0.974
  
293. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040114.png ; $\int \theta d H ^ { m } \| _ { R } < \infty$ ; confidence 0.547
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022049.png ; $W _ { p } ^ { m } ( T )$ ; confidence 0.974
  
294. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601090.png ; $( W \cup W ^ { \prime } ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.960
+
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021076.png ; $\pm x _ { i }$ ; confidence 0.974
  
295. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002074.png ; $1 , \dots , \alpha _ { q } \in F ( S ^ { d } )$ ; confidence 0.311
+
295. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003049.png ; $\lambda _ { X } : T _ { E } H ^ { * } X \rightarrow H ^ { * } \operatorname { Map } ( B E , X )$ ; confidence 0.974
  
296. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002046.png ; $( \alpha _ { 1 } , \dots , \alpha _ { q } )$ ; confidence 0.589
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065037.png ; $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$ ; confidence 0.974
  
297. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200301.png ; $\varphi : ( M , g ) \rightarrow ( N , h )$ ; confidence 0.999
+
297. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840257.png ; $R _ { A }$ ; confidence 0.974
  
298. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006048.png ; $u _ { . Y } = \sum _ { w } \mu ( u _ { . v } , w ) w$ ; confidence 0.059
+
298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520314.png ; $\{ \alpha ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.974
  
299. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007016.png ; $f = ( f _ { 1 } , \dots , f _ { l } ) \in R ^ { l }$ ; confidence 0.239
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037054.png ; $D _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.974
  
300. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011015.png ; $\int _ { \sigma ( \gamma ) } f ( z ) d z = 0$ ; confidence 0.996
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023076.png ; $Q X$ ; confidence 0.974

Revision as of 00:10, 13 February 2020

List

1. b12022017.png ; $\rho \geq 0$ ; confidence 0.977

2. s12032024.png ; $( - 1 ) ^ { p ( x ) p ( y ) }$ ; confidence 0.977

3. a120270132.png ; $\operatorname { Tr } ( x ^ { 2 } )$ ; confidence 0.977

4. l06002016.png ; $L ( x ) = x \operatorname { ln } 2 - \frac { 1 } { 2 } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \frac { \operatorname { sin } 2 k x } { k ^ { 2 } }$ ; confidence 0.977

5. a12017035.png ; $< 1$ ; confidence 0.977

6. e1201106.png ; $\nabla \times H - \frac { 1 } { c } \frac { \partial D } { \partial t } = \frac { 1 } { c } J$ ; confidence 0.977

7. v120020199.png ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977

8. a12018097.png ; $x = F ( x )$ ; confidence 0.977

9. b120150162.png ; $f _ { i } : \Theta \rightarrow [ 0,1 ]$ ; confidence 0.977

10. c130070214.png ; $\mathfrak { D } ( P , x )$ ; confidence 0.977

11. p13010021.png ; $P \mapsto P ( z ) , P \in P$ ; confidence 0.977

12. e12002010.png ; $X \times X \rightarrow X$ ; confidence 0.977

13. n12012030.png ; $z \in \Sigma ^ { * }$ ; confidence 0.977

14. g12004089.png ; $U \subset \Omega$ ; confidence 0.977

15. f12020012.png ; $\left( \begin{array} { c c c } { A _ { 1 } } & { \square } & { * } \\ { \square } & { \ddots } & { \square } \\ { 0 } & { \square } & { A _ { n } } \end{array} \right)$ ; confidence 0.977

16. l11002010.png ; $\{ G ; \vee , \wedge \}$ ; confidence 0.977

17. b12005029.png ; $B \subset U$ ; confidence 0.977

18. a13029024.png ; $u ( 0 , t ) \in L _ { 0 }$ ; confidence 0.977

19. n13006028.png ; $\mu _ { 1 } = 0 < \ldots < \mu _ { N }$ ; confidence 0.977

20. r13007048.png ; $( u , B ( x , y ) ) _ { + } = ( u , A ^ { - 1 } B ) = u ( y )$ ; confidence 0.977

21. a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977

22. k12003040.png ; $E = \emptyset$ ; confidence 0.977

23. s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977

24. v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977

25. z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977

26. r11011011.png ; $P \cap P ^ { - 1 } = \{ e \}$ ; confidence 0.977

27. h04602044.png ; $\| R C ( 1 - P C ) ^ { - 1 } \| _ { \infty } < 1$ ; confidence 0.977

28. k055840390.png ; $K = L _ { 2 } \oplus K _ { 1 }$ ; confidence 0.977

29. f13029064.png ; $f _ { L } ^ { \leftarrow } : L ^ { Y } \rightarrow L ^ { X }$ ; confidence 0.977

30. m120130133.png ; $L _ { 0 } = 0$ ; confidence 0.977

31. t1202007.png ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977

32. c026010514.png ; $( y _ { t } )$ ; confidence 0.977

33. o13001088.png ; $\beta _ { p q } = \beta _ { q p }$ ; confidence 0.977

34. e13006013.png ; $V ( C , U )$ ; confidence 0.977

35. w13008010.png ; $\theta _ { i } = \kappa _ { i } + \omega _ { i } + \hat { \theta } _ { i }$ ; confidence 0.977

36. g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977

37. z13008016.png ; $y = r \operatorname { sin } \theta$ ; confidence 0.977

38. e12024017.png ; $K ( L ) \subset K ( L ^ { \prime } )$ ; confidence 0.977

39. i12010041.png ; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977

40. b11022012.png ; $h ( X )$ ; confidence 0.977

41. l1201605.png ; $L _ { 1 / 2 } ^ { 2 }$ ; confidence 0.977

42. h120120119.png ; $\partial _ { \infty }$ ; confidence 0.977

43. f12023087.png ; $D = L _ { K } + i _ { L }$ ; confidence 0.977

44. k13002041.png ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977

45. s13045049.png ; $( X _ { 3 } , Y _ { 3 } )$ ; confidence 0.977

46. a12016081.png ; $A V i / P = x$ ; confidence 0.977

47. b120040183.png ; $x ^ { * } \in L _ { \infty }$ ; confidence 0.977

48. i12006018.png ; $\operatorname { ldim } ( P ) \leq \operatorname { dim } ( P )$ ; confidence 0.977

49. i130090208.png ; $L ( k ^ { \prime } )$ ; confidence 0.977

50. s12022013.png ; $0 \leq p \leq \operatorname { dim } M$ ; confidence 0.977

51. a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977

52. s1202608.png ; $L ^ { 2 } ( R , d t )$ ; confidence 0.977

53. q12005064.png ; $H = H _ { k }$ ; confidence 0.977

54. d12016028.png ; $C ( S ) + C ( T )$ ; confidence 0.977

55. i13003059.png ; $K ^ { 0 } ( B )$ ; confidence 0.977

56. a13014042.png ; $X \geq 3$ ; confidence 0.977

57. c02452045.png ; $x ( . )$ ; confidence 0.977

58. a12016048.png ; $g ( W )$ ; confidence 0.977

59. f12017024.png ; $* A$ ; confidence 0.977

60. l11003048.png ; $L ( E )$ ; confidence 0.977

61. a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977

62. i130060181.png ; $y \geq 2 a$ ; confidence 0.977

63. j120020209.png ; $L ^ { 1 } ( I )$ ; confidence 0.977

64. c13016043.png ; $L = DSP$ ; confidence 0.977

65. a01110054.png ; $A _ { 1 }$ ; confidence 0.977

66. i13008021.png ; $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$ ; confidence 0.977

67. w130080165.png ; $\Pi _ { 1 } ( \Sigma _ { g } , z _ { 0 } )$ ; confidence 0.977

68. o130060180.png ; $( \xi _ { 1 } \frac { \partial } { \partial t _ { 1 } } + \xi _ { 2 } \frac { \partial } { \partial t _ { 2 } } ) \langle f , f \rangle _ { H } =$ ; confidence 0.977

69. w13008087.png ; $\infty +$ ; confidence 0.977

70. a01130054.png ; $M ( k )$ ; confidence 0.977

71. k055840262.png ; $\Delta \in R _ { A }$ ; confidence 0.977

72. q13005029.png ; $\mu ( r )$ ; confidence 0.977

73. a13018012.png ; $1$ ; confidence 0.977

74. b12009013.png ; $p ( u , t ) = 1 + \alpha _ { 1 } ( t ) u + \alpha _ { 2 } ( t ) u ^ { 2 } +$ ; confidence 0.976

75. a0125102.png ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.976

76. c12004040.png ; $w = w ( z , \zeta )$ ; confidence 0.976

77. m13018054.png ; $u \neq x$ ; confidence 0.976

78. a01018052.png ; $\beta > 0$ ; confidence 0.976

79. i130060121.png ; $k = k _ { n } > 0$ ; confidence 0.976

80. w130080109.png ; $T _ { n } = \delta _ { n , 1 }$ ; confidence 0.976

81. e12016047.png ; $J ^ { \prime } = \left( \begin{array} { c c } { f \omega ^ { 2 } - f ^ { - 1 } r ^ { 2 } } & { - f \omega } \\ { - f \omega } & { f } \end{array} \right)$ ; confidence 0.976

82. b13007064.png ; $b \mapsto b$ ; confidence 0.976

83. t12019020.png ; $t ( k , r ) \leq ( \frac { r - 1 } { k - 1 } ) ^ { r - 1 }$ ; confidence 0.976

84. t120140123.png ; $\phi$ ; confidence 0.976

85. b01563012.png ; $m \rightarrow \infty$ ; confidence 0.976

86. h13005023.png ; $a ( k )$ ; confidence 0.976

87. w12007057.png ; $( D , X )$ ; confidence 0.976

88. c13016099.png ; $w \in \Sigma ^ { * }$ ; confidence 0.976

89. b13022070.png ; $\rho = \operatorname { max } _ { T } \rho ( T )$ ; confidence 0.976

90. b130200185.png ; $L ( \Lambda )$ ; confidence 0.976

91. i13009017.png ; $1 + r _ { 2 } ( k )$ ; confidence 0.976

92. x120010115.png ; $( R )$ ; confidence 0.976

93. n12012080.png ; $\Sigma = R$ ; confidence 0.976

94. f11016034.png ; $L ( n + t )$ ; confidence 0.976

95. e12019066.png ; $m \neq b \neq a$ ; confidence 0.976

96. c1301002.png ; $m : A \rightarrow [ 0 , \infty ]$ ; confidence 0.976

97. w12018051.png ; $W ^ { ( 2 ) } ( t )$ ; confidence 0.976

98. b13003039.png ; $V ^ { \sigma }$ ; confidence 0.976

99. q12001014.png ; $\sum _ { i } R _ { j i } ( g ^ { - 1 } ) \varphi _ { i } ( g [ f ] )$ ; confidence 0.976

100. e12024073.png ; $p \equiv 3$ ; confidence 0.976

101. s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976

102. e13006072.png ; $( q , r )$ ; confidence 0.976

103. a13006055.png ; $\partial ( I )$ ; confidence 0.976

104. g13003069.png ; $N = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in E _ { M }$ ; confidence 0.976

105. b11033013.png ; $1 \leq j \leq n$ ; confidence 0.976

106. h12003022.png ; $( N , h )$ ; confidence 0.976

107. s13045057.png ; $( X _ { 3 } , Y _ { 2 } )$ ; confidence 0.976

108. b120440110.png ; $C _ { G } ( D ) \subseteq H$ ; confidence 0.976

109. b120310101.png ; $f \in L ^ { 1 }$ ; confidence 0.976

110. f11001010.png ; $z x \leq y z$ ; confidence 0.976

111. l06004021.png ; $\psi _ { p - 2 } ( z ) f ( z ) + \phi _ { p - 1 } ( z ) g _ { k } ( z )$ ; confidence 0.976

112. p13014063.png ; $U _ { \rho }$ ; confidence 0.976

113. b1204006.png ; $E _ { m } = \pi ^ { - 1 } ( m )$ ; confidence 0.976

114. w130080181.png ; $( \kappa \partial + L ) \psi = 0$ ; confidence 0.976

115. m130180116.png ; $\gamma ( x ) \vee x$ ; confidence 0.976

116. d032450249.png ; $\epsilon \in R$ ; confidence 0.976

117. a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976

118. d13008085.png ; $E _ { z _ { 0 } } ( x , R )$ ; confidence 0.976

119. a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976

120. f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976

121. b12022031.png ; $Q ( f ) = M _ { f } - f$ ; confidence 0.976

122. e120120108.png ; $\operatorname { log } \int f ( \theta ^ { ( t + 1 ) } , \phi ) d \phi \geq \operatorname { log } \int f ( \theta ^ { ( t ) } , \phi ) d \phi$ ; confidence 0.976

123. v096900119.png ; $P \sim Q$ ; confidence 0.976

124. f12014068.png ; $\lambda \geq \frac { Q + 1 } { Q - 1 }$ ; confidence 0.976

125. d12029038.png ; $\sum _ { q = 1 } ^ { \infty } ( \varphi ( q ) f ( q ) ) ^ { k }$ ; confidence 0.976

126. i050650213.png ; $\xi$ ; confidence 0.976

127. b12004074.png ; $L _ { 1 } = L _ { 1 } ( \mu )$ ; confidence 0.976

128. m12001046.png ; $I - C T ^ { - 1 }$ ; confidence 0.976

129. j12002040.png ; $w \mapsto i \frac { 1 - w } { 1 + w }$ ; confidence 0.976

130. t12013059.png ; $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ ; confidence 0.976

131. a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976

132. s120340203.png ; $SH ^ { * } ( M , \omega )$ ; confidence 0.976

133. a01293050.png ; $u ( x )$ ; confidence 0.976

134. d1302104.png ; $G ( x , \alpha )$ ; confidence 0.976

135. c13005032.png ; $\Gamma = G H$ ; confidence 0.976

136. w13005020.png ; $1 \geq k + 1$ ; confidence 0.976

137. g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976

138. a12018023.png ; $\lambda | > 1$ ; confidence 0.976

139. r1301208.png ; $( E , C )$ ; confidence 0.976

140. c130070140.png ; $k [ C ]$ ; confidence 0.976

141. a12017032.png ; $< 0$ ; confidence 0.976

142. n067520378.png ; $( Q , \Lambda ) \equiv q _ { 1 } \lambda _ { 1 } + \ldots + q _ { n } \lambda _ { n } = 0$ ; confidence 0.976

143. s086520144.png ; $\phi ( T )$ ; confidence 0.976

144. o13003015.png ; $\operatorname { Tr } ( X Y )$ ; confidence 0.976

145. p13014028.png ; $f _ { \rho } ( x )$ ; confidence 0.976

146. l11004092.png ; $X \neq L$ ; confidence 0.976

147. f120110163.png ; $\xi _ { 0 } x < 0$ ; confidence 0.976

148. m12011016.png ; $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$ ; confidence 0.976

149. s13059036.png ; $Q _ { 0 } ( z ) = 1$ ; confidence 0.976

150. a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976

151. g13006051.png ; $G _ { i } ( A )$ ; confidence 0.976

152. f12014060.png ; $r < | \zeta | < R$ ; confidence 0.976

153. c12027019.png ; $\omega = 1$ ; confidence 0.976

154. b12032064.png ; $F ( r , F ( s , t ) ) = \| r x + \| s y + t z \| z \| =$ ; confidence 0.976

155. t12014058.png ; $( E )$ ; confidence 0.976

156. a13004061.png ; $h ( \varphi )$ ; confidence 0.976

157. c13016090.png ; $f : \Sigma ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.976

158. b11002018.png ; $| b ( u , u ) | \geq \gamma \| u \| ^ { 2 }$ ; confidence 0.976

159. d1301303.png ; $r = ( x , y , z )$ ; confidence 0.976

160. k11001031.png ; $J Z = 0$ ; confidence 0.976

161. g12005015.png ; $\mu _ { 0 } ( k , R ) \in C$ ; confidence 0.976

162. l12012021.png ; $F _ { p } ( ( t ) )$ ; confidence 0.976

163. s12034034.png ; $H ^ { * } ( L ; Z )$ ; confidence 0.976

164. t130050132.png ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975

165. e13003052.png ; $\Gamma _ { F }$ ; confidence 0.975

166. d03277019.png ; $L _ { 2 } ( \sigma )$ ; confidence 0.975

167. i12008087.png ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975

168. o13001023.png ; $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$ ; confidence 0.975

169. b120040104.png ; $X ^ { \prime \prime } = X$ ; confidence 0.975

170. c021620224.png ; $n = \operatorname { dim } T$ ; confidence 0.975

171. f12002012.png ; $P , Q \in R [ X ]$ ; confidence 0.975

172. a130240186.png ; $b$ ; confidence 0.975

173. c13008010.png ; $\sigma _ { \mathfrak { P } } = [ \frac { L / K } { \mathfrak { P } } ]$ ; confidence 0.975

174. s13054091.png ; $K _ { 2 } R$ ; confidence 0.975

175. b120150133.png ; $d : \Omega \rightarrow R$ ; confidence 0.975

176. t12005028.png ; $\Sigma ^ { i , j } ( f )$ ; confidence 0.975

177. o13008012.png ; $h ( x ) \in L ^ { 2 } ( R _ { + } )$ ; confidence 0.975

178. a13029013.png ; $P _ { Y } \times R \rightarrow Y \times R$ ; confidence 0.975

179. f12024068.png ; $J _ { t } = [ - h ( t ) , - g ( t ) ] \subset ( - \infty , 0 ]$ ; confidence 0.975

180. a120310115.png ; $G$ ; confidence 0.975

181. t12014039.png ; $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$ ; confidence 0.975

182. p130100162.png ; $d \theta$ ; confidence 0.975

183. w12017038.png ; $\omega ^ { \prime \prime } ( G )$ ; confidence 0.975

184. f12011056.png ; $G _ { k } ( \zeta )$ ; confidence 0.975

185. b13022019.png ; $| \alpha | = \sum _ { j = 1 } ^ { N } \alpha _ { j }$ ; confidence 0.975

186. a01150013.png ; $\theta$ ; confidence 0.975

187. c0231608.png ; $A \otimes A \rightarrow A$ ; confidence 0.975

188. b13030049.png ; $\beta = 1 + ( m - 1 ) 2 ^ { m }$ ; confidence 0.975

189. a13029042.png ; $L _ { 0 } \subset M ( P )$ ; confidence 0.975

190. m13025010.png ; $( A , \partial , \circ )$ ; confidence 0.975

191. a12027020.png ; $W _ { P } ( \rho ) = 1$ ; confidence 0.975

192. b11022043.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , w + 1 - s )$ ; confidence 0.975

193. c120210121.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( 0 , \Gamma ( \theta ) )$ ; confidence 0.975

194. m12017016.png ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975

195. b13017027.png ; $V _ { t } = \phi _ { t } S _ { t } + \psi _ { t } B _ { t }$ ; confidence 0.975

196. b12001020.png ; $\frac { d u } { d t } - i \frac { d v } { d t } = 2 e ^ { i \lambda } \operatorname { sin } ( \frac { 1 } { 2 } ( u + i v ) )$ ; confidence 0.975

197. a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975

198. b12032084.png ; $i \in N$ ; confidence 0.975

199. k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975

200. p13010041.png ; $\Omega _ { \infty }$ ; confidence 0.975

201. l12014025.png ; $p ( t ) , q ( t ) \in F [ t ]$ ; confidence 0.975

202. l12003095.png ; $H ^ { * } E X$ ; confidence 0.975

203. l057050187.png ; $M _ { G }$ ; confidence 0.975

204. s120040121.png ; $\lambda \nmid \mu$ ; confidence 0.975

205. w13008093.png ; $n < 2 N$ ; confidence 0.975

206. a12005028.png ; $f \in C ( [ 0 , T ] ; D ( A ( 0 ) )$ ; confidence 0.975

207. s12034067.png ; $H : S ^ { 1 } \times M \rightarrow R$ ; confidence 0.975

208. m130140148.png ; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975

209. b11038091.png ; $n = 0$ ; confidence 0.975

210. m13002012.png ; $D _ { A } \phi$ ; confidence 0.975

211. s12024051.png ; $\varepsilon _ { i } \rightarrow 0$ ; confidence 0.975

212. a13028015.png ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975

213. h13006027.png ; $D \cap D ^ { \prime }$ ; confidence 0.975

214. s130510140.png ; $L \neq Z ^ { 0 }$ ; confidence 0.975

215. c13019046.png ; $X = R ^ { n }$ ; confidence 0.975

216. q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975

217. s12032075.png ; $M = A ^ { p } | q$ ; confidence 0.975

218. f12024038.png ; $h ( t ) \equiv \infty$ ; confidence 0.975

219. h12013053.png ; $\square _ { \infty }$ ; confidence 0.975

220. m1302506.png ; $\langle f u , \varphi \rangle = \langle u , f \varphi \rangle$ ; confidence 0.975

221. t12003023.png ; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975

222. k12006038.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0$ ; confidence 0.975

223. w13007035.png ; $r = s = 0$ ; confidence 0.975

224. t13005042.png ; $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ ; confidence 0.975

225. k0557805.png ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975

226. i130060147.png ; $0 \leq b < 1$ ; confidence 0.975

227. d12006021.png ; $H ^ { ( i ) }$ ; confidence 0.975

228. z13010036.png ; $\exists x ( \forall y ( \neg y \in x ) \wedge x \in z )$ ; confidence 0.975

229. i13007095.png ; $\operatorname { sup } _ { \alpha ^ { \prime } \in S ^ { 2 } } | A _ { \delta } ( \alpha ^ { \prime } , \alpha ) - A ( \alpha ^ { \prime } , \alpha ) | < \delta$ ; confidence 0.975

230. e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.975

231. m1201305.png ; $d N / d t = f ( N )$ ; confidence 0.975

232. b11085083.png ; $K = C$ ; confidence 0.975

233. t1201304.png ; $\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$ ; confidence 0.975

234. i12008093.png ; $m = \frac { \operatorname { sinh } ( \frac { H } { k _ { B } T } ) } { [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 } }$ ; confidence 0.975

235. q12002038.png ; $( m , u ) \mapsto u ^ { * } m u$ ; confidence 0.975

236. a012970109.png ; $2 \pi / n$ ; confidence 0.975

237. v13007056.png ; $k q ^ { \prime } s \frac { d } { d s } [ q ^ { \prime } s \frac { d \theta } { d s } ] + \operatorname { cos } \theta - q ^ { \prime } = 0$ ; confidence 0.975

238. w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975

239. f130290162.png ; $( f , \phi ) : ( X , L , T ) \rightarrow ( Y , M , S )$ ; confidence 0.975

240. s13058017.png ; $V = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { sin } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.975

241. s12032014.png ; $[ x , ]$ ; confidence 0.975

242. d0302406.png ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975

243. t12006078.png ; $1 > 1$ ; confidence 0.975

244. c1201707.png ; $\gamma _ { i j } = \int z ^ { i } z ^ { j } d \mu , 0 \leq i + j \leq 2 n$ ; confidence 0.975

245. b12009036.png ; $\operatorname { Re } p _ { 3 } ( \xi , \tau ) > 0$ ; confidence 0.975

246. b13026030.png ; $\sum _ { x \in f ^ { - 1 } ( y ) } \operatorname { sign } \operatorname { det } f ^ { \prime } ( x )$ ; confidence 0.975

247. i052800348.png ; $r > 3$ ; confidence 0.975

248. t13010030.png ; $( X , Y )$ ; confidence 0.975

249. b13012011.png ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975

250. m13011052.png ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975

251. a13007038.png ; $< 6232$ ; confidence 0.975

252. j13004022.png ; $P _ { L } ( v , z ) = P _ { L } ( - v , - z ) = ( - 1 ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( - v , z )$ ; confidence 0.974

253. w12006070.png ; $\kappa _ { M } : T T M \rightarrow T T M$ ; confidence 0.974

254. l12006056.png ; $= 2 \pi i | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.974

255. b12027095.png ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974

256. c1301508.png ; $D ( \Omega ) \rightarrow C$ ; confidence 0.974

257. r08232071.png ; $0 \leq a \leq b + c$ ; confidence 0.974

258. s12023035.png ; $O ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}$ ; confidence 0.974

259. s13051065.png ; $u \in V$ ; confidence 0.974

260. b12055012.png ; $t - d ( x , \gamma ( t ) )$ ; confidence 0.974

261. l1300807.png ; $\rho \leq 1$ ; confidence 0.974

262. c12022013.png ; $[ x _ { 0 } , x ]$ ; confidence 0.974

263. i13005033.png ; $A _ { \pm } ( x , y )$ ; confidence 0.974

264. d12026010.png ; $X _ { n } ( t ) \Rightarrow w ( t )$ ; confidence 0.974

265. m12023051.png ; $d f _ { t } ( x ) = 0 \Leftrightarrow \partial f ( x ) \ni 0 \Leftrightarrow f _ { t } ( x ) = f ( x )$ ; confidence 0.974

266. b12034040.png ; $z _ { 0 } \in D$ ; confidence 0.974

267. k055840238.png ; $[ p ( A ) x , x ] \geq 0$ ; confidence 0.974

268. k1201308.png ; $3.2 ^ { i - 1 } ( n + 1 ) - 2$ ; confidence 0.974

269. e12024051.png ; $y _ { K }$ ; confidence 0.974

270. m1302206.png ; $V = V _ { - 1 } \oplus V _ { 1 } \oplus V _ { 2 } \oplus \ldots$ ; confidence 0.974

271. k0557804.png ; $x = x _ { 0 } > 0$ ; confidence 0.974

272. c0245203.png ; $f _ { t }$ ; confidence 0.974

273. m12013092.png ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon ) } \end{array} \right.$ ; confidence 0.974

274. e1100501.png ; $f : N \rightarrow C$ ; confidence 0.974

275. v13011020.png ; $w ( z ) = U _ { x } - i U _ { y } = \frac { d \Phi } { d z } , z = x + i y$ ; confidence 0.974

276. c130070250.png ; $T \cap k ( C _ { 2 } ) = \phi ( T \cap k ( C _ { 1 } ) )$ ; confidence 0.974

277. k13005017.png ; $\lambda = n ^ { - 1 } c = ( \pi \sigma ^ { 2 } N ) ^ { - 1 }$ ; confidence 0.974

278. v12004048.png ; $\chi _ { T } ( G )$ ; confidence 0.974

279. f13029027.png ; $\tau \subset L ^ { X }$ ; confidence 0.974

280. k05507049.png ; $\operatorname { Ric } _ { g }$ ; confidence 0.974

281. i130060126.png ; $S ( k )$ ; confidence 0.974

282. t1301305.png ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974

283. t130050124.png ; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974

284. e12011021.png ; $P = D - E , M = B - H$ ; confidence 0.974

285. v0960309.png ; $\tau = t / \mu$ ; confidence 0.974

286. t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974

287. a13013043.png ; $F _ { j k }$ ; confidence 0.974

288. c13005021.png ; $\Gamma$ ; confidence 0.974

289. i13006010.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 )$ ; confidence 0.974

290. r0822902.png ; $x , y , z \in X$ ; confidence 0.974

291. a11032029.png ; $y ^ { \prime } = \lambda y$ ; confidence 0.974

292. a12016077.png ; $A V$ ; confidence 0.974

293. b13022049.png ; $W _ { p } ^ { m } ( T )$ ; confidence 0.974

294. w12021076.png ; $\pm x _ { i }$ ; confidence 0.974

295. l12003049.png ; $\lambda _ { X } : T _ { E } H ^ { * } X \rightarrow H ^ { * } \operatorname { Map } ( B E , X )$ ; confidence 0.974

296. s13065037.png ; $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$ ; confidence 0.974

297. k055840257.png ; $R _ { A }$ ; confidence 0.974

298. n067520314.png ; $\{ \alpha ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.974

299. b12037054.png ; $D _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.974

300. s12023076.png ; $Q X$ ; confidence 0.974

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/22. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/22&oldid=44510