Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/22"
(AUTOMATIC EDIT of page 22 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 22 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022017.png ; $\rho \geq 0$ ; confidence 0.977 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032024.png ; $( - 1 ) ^ { p ( x ) p ( y ) }$ ; confidence 0.977 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270132.png ; $\operatorname { Tr } ( x ^ { 2 } )$ ; confidence 0.977 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002016.png ; $L ( x ) = x \operatorname { ln } 2 - \frac { 1 } { 2 } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \frac { \operatorname { sin } 2 k x } { k ^ { 2 } }$ ; confidence 0.977 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017035.png ; $< 1$ ; confidence 0.977 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201106.png ; $\nabla \times H - \frac { 1 } { c } \frac { \partial D } { \partial t } = \frac { 1 } { c } J$ ; confidence 0.977 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020199.png ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018097.png ; $x = F ( x )$ ; confidence 0.977 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150162.png ; $f _ { i } : \Theta \rightarrow [ 0,1 ]$ ; confidence 0.977 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070214.png ; $\mathfrak { D } ( P , x )$ ; confidence 0.977 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010021.png ; $P \mapsto P ( z ) , P \in P$ ; confidence 0.977 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002010.png ; $X \times X \rightarrow X$ ; confidence 0.977 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012030.png ; $z \in \Sigma ^ { * }$ ; confidence 0.977 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004089.png ; $U \subset \Omega$ ; confidence 0.977 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020012.png ; $\left( \begin{array} { c c c } { A _ { 1 } } & { \square } & { * } \\ { \square } & { \ddots } & { \square } \\ { 0 } & { \square } & { A _ { n } } \end{array} \right)$ ; confidence 0.977 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002010.png ; $\{ G ; \vee , \wedge \}$ ; confidence 0.977 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005029.png ; $B \subset U$ ; confidence 0.977 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029024.png ; $u ( 0 , t ) \in L _ { 0 }$ ; confidence 0.977 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006028.png ; $\mu _ { 1 } = 0 < \ldots < \mu _ { N }$ ; confidence 0.977 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007048.png ; $( u , B ( x , y ) ) _ { + } = ( u , A ^ { - 1 } B ) = u ( y )$ ; confidence 0.977 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016079.png ; $1 / ( 1 - \lambda )$ ; confidence 0.977 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011011.png ; $P \cap P ^ { - 1 } = \{ e \}$ ; confidence 0.977 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602044.png ; $\| R C ( 1 - P C ) ^ { - 1 } \| _ { \infty } < 1$ ; confidence 0.977 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840390.png ; $K = L _ { 2 } \oplus K _ { 1 }$ ; confidence 0.977 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029064.png ; $f _ { L } ^ { \leftarrow } : L ^ { Y } \rightarrow L ^ { X }$ ; confidence 0.977 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130133.png ; $L _ { 0 } = 0$ ; confidence 0.977 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202007.png ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010514.png ; $( y _ { t } )$ ; confidence 0.977 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001088.png ; $\beta _ { p q } = \beta _ { q p }$ ; confidence 0.977 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006013.png ; $V ( C , U )$ ; confidence 0.977 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008010.png ; $\theta _ { i } = \kappa _ { i } + \omega _ { i } + \hat { \theta } _ { i }$ ; confidence 0.977 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008016.png ; $y = r \operatorname { sin } \theta$ ; confidence 0.977 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024017.png ; $K ( L ) \subset K ( L ^ { \prime } )$ ; confidence 0.977 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010041.png ; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022012.png ; $h ( X )$ ; confidence 0.977 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201605.png ; $L _ { 1 / 2 } ^ { 2 }$ ; confidence 0.977 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120119.png ; $\partial _ { \infty }$ ; confidence 0.977 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023087.png ; $D = L _ { K } + i _ { L }$ ; confidence 0.977 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002041.png ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045049.png ; $( X _ { 3 } , Y _ { 3 } )$ ; confidence 0.977 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016081.png ; $A V i / P = x$ ; confidence 0.977 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040183.png ; $x ^ { * } \in L _ { \infty }$ ; confidence 0.977 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006018.png ; $\operatorname { ldim } ( P ) \leq \operatorname { dim } ( P )$ ; confidence 0.977 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090208.png ; $L ( k ^ { \prime } )$ ; confidence 0.977 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022013.png ; $0 \leq p \leq \operatorname { dim } M$ ; confidence 0.977 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060118.png ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202608.png ; $L ^ { 2 } ( R , d t )$ ; confidence 0.977 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005064.png ; $H = H _ { k }$ ; confidence 0.977 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/d/d120/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016028.png ; $C ( S ) + C ( T )$ ; confidence 0.977 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003059.png ; $K ^ { 0 } ( B )$ ; confidence 0.977 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014042.png ; $X \geq 3$ ; confidence 0.977 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452045.png ; $x ( . )$ ; confidence 0.977 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016048.png ; $g ( W )$ ; confidence 0.977 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017024.png ; $* A$ ; confidence 0.977 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003048.png ; $L ( E )$ ; confidence 0.977 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007091.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060181.png ; $y \geq 2 a$ ; confidence 0.977 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020209.png ; $L ^ { 1 } ( I )$ ; confidence 0.977 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016043.png ; $L = DSP$ ; confidence 0.977 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png ; $A _ { 1 }$ ; confidence 0.977 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008021.png ; $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$ ; confidence 0.977 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080165.png ; $\Pi _ { 1 } ( \Sigma _ { g } , z _ { 0 } )$ ; confidence 0.977 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060180.png ; $( \xi _ { 1 } \frac { \partial } { \partial t _ { 1 } } + \xi _ { 2 } \frac { \partial } { \partial t _ { 2 } } ) \langle f , f \rangle _ { H } =$ ; confidence 0.977 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008087.png ; $\infty +$ ; confidence 0.977 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png ; $M ( k )$ ; confidence 0.977 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840262.png ; $\Delta \in R _ { A }$ ; confidence 0.977 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005029.png ; $\mu ( r )$ ; confidence 0.977 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018012.png ; $1$ ; confidence 0.977 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009013.png ; $p ( u , t ) = 1 + \alpha _ { 1 } ( t ) u + \alpha _ { 2 } ( t ) u ^ { 2 } +$ ; confidence 0.976 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012510/a0125102.png ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.976 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004040.png ; $w = w ( z , \zeta )$ ; confidence 0.976 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018054.png ; $u \neq x$ ; confidence 0.976 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018052.png ; $\beta > 0$ ; confidence 0.976 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060121.png ; $k = k _ { n } > 0$ ; confidence 0.976 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080109.png ; $T _ { n } = \delta _ { n , 1 }$ ; confidence 0.976 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016047.png ; $J ^ { \prime } = \left( \begin{array} { c c } { f \omega ^ { 2 } - f ^ { - 1 } r ^ { 2 } } & { - f \omega } \\ { - f \omega } & { f } \end{array} \right)$ ; confidence 0.976 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007064.png ; $b \mapsto b$ ; confidence 0.976 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019020.png ; $t ( k , r ) \leq ( \frac { r - 1 } { k - 1 } ) ^ { r - 1 }$ ; confidence 0.976 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140123.png ; $\phi$ ; confidence 0.976 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015630/b01563012.png ; $m \rightarrow \infty$ ; confidence 0.976 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005023.png ; $a ( k )$ ; confidence 0.976 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007057.png ; $( D , X )$ ; confidence 0.976 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016099.png ; $w \in \Sigma ^ { * }$ ; confidence 0.976 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022070.png ; $\rho = \operatorname { max } _ { T } \rho ( T )$ ; confidence 0.976 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200185.png ; $L ( \Lambda )$ ; confidence 0.976 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009017.png ; $1 + r _ { 2 } ( k )$ ; confidence 0.976 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010115.png ; $( R )$ ; confidence 0.976 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012080.png ; $\Sigma = R$ ; confidence 0.976 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016034.png ; $L ( n + t )$ ; confidence 0.976 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019066.png ; $m \neq b \neq a$ ; confidence 0.976 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301002.png ; $m : A \rightarrow [ 0 , \infty ]$ ; confidence 0.976 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018051.png ; $W ^ { ( 2 ) } ( t )$ ; confidence 0.976 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003039.png ; $V ^ { \sigma }$ ; confidence 0.976 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001014.png ; $\sum _ { i } R _ { j i } ( g ^ { - 1 } ) \varphi _ { i } ( g [ f ] )$ ; confidence 0.976 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024073.png ; $p \equiv 3$ ; confidence 0.976 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006072.png ; $( q , r )$ ; confidence 0.976 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006055.png ; $\partial ( I )$ ; confidence 0.976 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003069.png ; $N = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in E _ { M }$ ; confidence 0.976 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033013.png ; $1 \leq j \leq n$ ; confidence 0.976 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003022.png ; $( N , h )$ ; confidence 0.976 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045057.png ; $( X _ { 3 } , Y _ { 2 } )$ ; confidence 0.976 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440110.png ; $C _ { G } ( D ) \subseteq H$ ; confidence 0.976 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310101.png ; $f \in L ^ { 1 }$ ; confidence 0.976 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001010.png ; $z x \leq y z$ ; confidence 0.976 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004021.png ; $\psi _ { p - 2 } ( z ) f ( z ) + \phi _ { p - 1 } ( z ) g _ { k } ( z )$ ; confidence 0.976 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014063.png ; $U _ { \rho }$ ; confidence 0.976 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204006.png ; $E _ { m } = \pi ^ { - 1 } ( m )$ ; confidence 0.976 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080181.png ; $( \kappa \partial + L ) \psi = 0$ ; confidence 0.976 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180116.png ; $\gamma ( x ) \vee x$ ; confidence 0.976 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450249.png ; $\epsilon \in R$ ; confidence 0.976 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030030.png ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008085.png ; $E _ { z _ { 0 } } ( x , R )$ ; confidence 0.976 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130040/f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022031.png ; $Q ( f ) = M _ { f } - f$ ; confidence 0.976 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120108.png ; $\operatorname { log } \int f ( \theta ^ { ( t + 1 ) } , \phi ) d \phi \geq \operatorname { log } \int f ( \theta ^ { ( t ) } , \phi ) d \phi$ ; confidence 0.976 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900119.png ; $P \sim Q$ ; confidence 0.976 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014068.png ; $\lambda \geq \frac { Q + 1 } { Q - 1 }$ ; confidence 0.976 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029038.png ; $\sum _ { q = 1 } ^ { \infty } ( \varphi ( q ) f ( q ) ) ^ { k }$ ; confidence 0.976 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650213.png ; $\xi$ ; confidence 0.976 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004074.png ; $L _ { 1 } = L _ { 1 } ( \mu )$ ; confidence 0.976 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001046.png ; $I - C T ^ { - 1 }$ ; confidence 0.976 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002040.png ; $w \mapsto i \frac { 1 - w } { 1 + w }$ ; confidence 0.976 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013059.png ; $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ ; confidence 0.976 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300708.png ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340203.png ; $SH ^ { * } ( M , \omega )$ ; confidence 0.976 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293050.png ; $u ( x )$ ; confidence 0.976 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d1302104.png ; $G ( x , \alpha )$ ; confidence 0.976 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005032.png ; $\Gamma = G H$ ; confidence 0.976 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005020.png ; $1 \geq k + 1$ ; confidence 0.976 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002033.png ; $f _ { i } ( w ) \in K$ ; confidence 0.976 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018023.png ; $\lambda | > 1$ ; confidence 0.976 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r1301208.png ; $( E , C )$ ; confidence 0.976 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070140.png ; $k [ C ]$ ; confidence 0.976 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017032.png ; $< 0$ ; confidence 0.976 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520378.png ; $( Q , \Lambda ) \equiv q _ { 1 } \lambda _ { 1 } + \ldots + q _ { n } \lambda _ { n } = 0$ ; confidence 0.976 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520144.png ; $\phi ( T )$ ; confidence 0.976 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003015.png ; $\operatorname { Tr } ( X Y )$ ; confidence 0.976 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014028.png ; $f _ { \rho } ( x )$ ; confidence 0.976 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004092.png ; $X \neq L$ ; confidence 0.976 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110163.png ; $\xi _ { 0 } x < 0$ ; confidence 0.976 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011016.png ; $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$ ; confidence 0.976 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/s/s130/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059036.png ; $Q _ { 0 } ( z ) = 1$ ; confidence 0.976 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006051.png ; $G _ { i } ( A )$ ; confidence 0.976 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014060.png ; $r < | \zeta | < R$ ; confidence 0.976 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027019.png ; $\omega = 1$ ; confidence 0.976 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032064.png ; $F ( r , F ( s , t ) ) = \| r x + \| s y + t z \| z \| =$ ; confidence 0.976 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014058.png ; $( E )$ ; confidence 0.976 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004061.png ; $h ( \varphi )$ ; confidence 0.976 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016090.png ; $f : \Sigma ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.976 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002018.png ; $| b ( u , u ) | \geq \gamma \| u \| ^ { 2 }$ ; confidence 0.976 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301303.png ; $r = ( x , y , z )$ ; confidence 0.976 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001031.png ; $J Z = 0$ ; confidence 0.976 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005015.png ; $\mu _ { 0 } ( k , R ) \in C$ ; confidence 0.976 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012021.png ; $F _ { p } ( ( t ) )$ ; confidence 0.976 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034034.png ; $H ^ { * } ( L ; Z )$ ; confidence 0.976 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/t/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050132.png ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003052.png ; $\Gamma _ { F }$ ; confidence 0.975 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277019.png ; $L _ { 2 } ( \sigma )$ ; confidence 0.975 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008087.png ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001023.png ; $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$ ; confidence 0.975 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040104.png ; $X ^ { \prime \prime } = X$ ; confidence 0.975 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620224.png ; $n = \operatorname { dim } T$ ; confidence 0.975 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002012.png ; $P , Q \in R [ X ]$ ; confidence 0.975 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240186.png ; $b$ ; confidence 0.975 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008010.png ; $\sigma _ { \mathfrak { P } } = [ \frac { L / K } { \mathfrak { P } } ]$ ; confidence 0.975 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054091.png ; $K _ { 2 } R$ ; confidence 0.975 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150133.png ; $d : \Omega \rightarrow R$ ; confidence 0.975 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005028.png ; $\Sigma ^ { i , j } ( f )$ ; confidence 0.975 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008012.png ; $h ( x ) \in L ^ { 2 } ( R _ { + } )$ ; confidence 0.975 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029013.png ; $P _ { Y } \times R \rightarrow Y \times R$ ; confidence 0.975 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024068.png ; $J _ { t } = [ - h ( t ) , - g ( t ) ] \subset ( - \infty , 0 ]$ ; confidence 0.975 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310115.png ; $G$ ; confidence 0.975 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014039.png ; $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$ ; confidence 0.975 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100162.png ; $d \theta$ ; confidence 0.975 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/w/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017038.png ; $\omega ^ { \prime \prime } ( G )$ ; confidence 0.975 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011056.png ; $G _ { k } ( \zeta )$ ; confidence 0.975 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022019.png ; $| \alpha | = \sum _ { j = 1 } ^ { N } \alpha _ { j }$ ; confidence 0.975 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150013.png ; $\theta$ ; confidence 0.975 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231608.png ; $A \otimes A \rightarrow A$ ; confidence 0.975 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030049.png ; $\beta = 1 + ( m - 1 ) 2 ^ { m }$ ; confidence 0.975 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029042.png ; $L _ { 0 } \subset M ( P )$ ; confidence 0.975 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025010.png ; $( A , \partial , \circ )$ ; confidence 0.975 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027020.png ; $W _ { P } ( \rho ) = 1$ ; confidence 0.975 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022043.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , w + 1 - s )$ ; confidence 0.975 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210121.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( 0 , \Gamma ( \theta ) )$ ; confidence 0.975 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017016.png ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017027.png ; $V _ { t } = \phi _ { t } S _ { t } + \psi _ { t } B _ { t }$ ; confidence 0.975 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001020.png ; $\frac { d u } { d t } - i \frac { d v } { d t } = 2 e ^ { i \lambda } \operatorname { sin } ( \frac { 1 } { 2 } ( u + i v ) )$ ; confidence 0.975 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240167.png ; $\sum \alpha _ { i } = 0$ ; confidence 0.975 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032084.png ; $i \in N$ ; confidence 0.975 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055170/k0551702.png ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010041.png ; $\Omega _ { \infty }$ ; confidence 0.975 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014025.png ; $p ( t ) , q ( t ) \in F [ t ]$ ; confidence 0.975 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003095.png ; $H ^ { * } E X$ ; confidence 0.975 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050187.png ; $M _ { G }$ ; confidence 0.975 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040121.png ; $\lambda \nmid \mu$ ; confidence 0.975 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008093.png ; $n < 2 N$ ; confidence 0.975 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005028.png ; $f \in C ( [ 0 , T ] ; D ( A ( 0 ) )$ ; confidence 0.975 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034067.png ; $H : S ^ { 1 } \times M \rightarrow R$ ; confidence 0.975 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140148.png ; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038091.png ; $n = 0$ ; confidence 0.975 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002012.png ; $D _ { A } \phi$ ; confidence 0.975 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024051.png ; $\varepsilon _ { i } \rightarrow 0$ ; confidence 0.975 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028015.png ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006027.png ; $D \cap D ^ { \prime }$ ; confidence 0.975 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510140.png ; $L \neq Z ^ { 0 }$ ; confidence 0.975 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019046.png ; $X = R ^ { n }$ ; confidence 0.975 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032075.png ; $M = A ^ { p } | q$ ; confidence 0.975 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024038.png ; $h ( t ) \equiv \infty$ ; confidence 0.975 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013053.png ; $\square _ { \infty }$ ; confidence 0.975 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302506.png ; $\langle f u , \varphi \rangle = \langle u , f \varphi \rangle$ ; confidence 0.975 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003023.png ; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006038.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0$ ; confidence 0.975 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007035.png ; $r = s = 0$ ; confidence 0.975 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005042.png ; $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ ; confidence 0.975 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557805.png ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060147.png ; $0 \leq b < 1$ ; confidence 0.975 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006021.png ; $H ^ { ( i ) }$ ; confidence 0.975 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010036.png ; $\exists x ( \forall y ( \neg y \in x ) \wedge x \in z )$ ; confidence 0.975 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007095.png ; $\operatorname { sup } _ { \alpha ^ { \prime } \in S ^ { 2 } } | A _ { \delta } ( \alpha ^ { \prime } , \alpha ) - A ( \alpha ^ { \prime } , \alpha ) | < \delta$ ; confidence 0.975 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.975 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201305.png ; $d N / d t = f ( N )$ ; confidence 0.975 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085083.png ; $K = C$ ; confidence 0.975 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t1201304.png ; $\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$ ; confidence 0.975 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008093.png ; $m = \frac { \operatorname { sinh } ( \frac { H } { k _ { B } T } ) } { [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 } }$ ; confidence 0.975 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002038.png ; $( m , u ) \mapsto u ^ { * } m u$ ; confidence 0.975 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970109.png ; $2 \pi / n$ ; confidence 0.975 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007056.png ; $k q ^ { \prime } s \frac { d } { d s } [ q ^ { \prime } s \frac { d \theta } { d s } ] + \operatorname { cos } \theta - q ^ { \prime } = 0$ ; confidence 0.975 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290162.png ; $( f , \phi ) : ( X , L , T ) \rightarrow ( Y , M , S )$ ; confidence 0.975 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058017.png ; $V = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { sin } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.975 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032014.png ; $[ x , ]$ ; confidence 0.975 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302406.png ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006078.png ; $1 > 1$ ; confidence 0.975 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201707.png ; $\gamma _ { i j } = \int z ^ { i } z ^ { j } d \mu , 0 \leq i + j \leq 2 n$ ; confidence 0.975 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009036.png ; $\operatorname { Re } p _ { 3 } ( \xi , \tau ) > 0$ ; confidence 0.975 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026030.png ; $\sum _ { x \in f ^ { - 1 } ( y ) } \operatorname { sign } \operatorname { det } f ^ { \prime } ( x )$ ; confidence 0.975 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i052800348.png ; $r > 3$ ; confidence 0.975 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010030.png ; $( X , Y )$ ; confidence 0.975 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012011.png ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011052.png ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007038.png ; $< 6232$ ; confidence 0.975 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004022.png ; $P _ { L } ( v , z ) = P _ { L } ( - v , - z ) = ( - 1 ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( - v , z )$ ; confidence 0.974 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006070.png ; $\kappa _ { M } : T T M \rightarrow T T M$ ; confidence 0.974 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006056.png ; $= 2 \pi i | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.974 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027095.png ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301508.png ; $D ( \Omega ) \rightarrow C$ ; confidence 0.974 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232071.png ; $0 \leq a \leq b + c$ ; confidence 0.974 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023035.png ; $O ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}$ ; confidence 0.974 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051065.png ; $u \in V$ ; confidence 0.974 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055012.png ; $t - d ( x , \gamma ( t ) )$ ; confidence 0.974 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300807.png ; $\rho \leq 1$ ; confidence 0.974 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c12022013.png ; $[ x _ { 0 } , x ]$ ; confidence 0.974 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005033.png ; $A _ { \pm } ( x , y )$ ; confidence 0.974 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026010.png ; $X _ { n } ( t ) \Rightarrow w ( t )$ ; confidence 0.974 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023051.png ; $d f _ { t } ( x ) = 0 \Leftrightarrow \partial f ( x ) \ni 0 \Leftrightarrow f _ { t } ( x ) = f ( x )$ ; confidence 0.974 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034040.png ; $z _ { 0 } \in D$ ; confidence 0.974 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840238.png ; $[ p ( A ) x , x ] \geq 0$ ; confidence 0.974 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201308.png ; $3.2 ^ { i - 1 } ( n + 1 ) - 2$ ; confidence 0.974 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024051.png ; $y _ { K }$ ; confidence 0.974 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m1302206.png ; $V = V _ { - 1 } \oplus V _ { 1 } \oplus V _ { 2 } \oplus \ldots$ ; confidence 0.974 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557804.png ; $x = x _ { 0 } > 0$ ; confidence 0.974 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245203.png ; $f _ { t }$ ; confidence 0.974 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013092.png ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon ) } \end{array} \right.$ ; confidence 0.974 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/e/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e1100501.png ; $f : N \rightarrow C$ ; confidence 0.974 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011020.png ; $w ( z ) = U _ { x } - i U _ { y } = \frac { d \Phi } { d z } , z = x + i y$ ; confidence 0.974 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070250.png ; $T \cap k ( C _ { 2 } ) = \phi ( T \cap k ( C _ { 1 } ) )$ ; confidence 0.974 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005017.png ; $\lambda = n ^ { - 1 } c = ( \pi \sigma ^ { 2 } N ) ^ { - 1 }$ ; confidence 0.974 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004048.png ; $\chi _ { T } ( G )$ ; confidence 0.974 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/f/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029027.png ; $\tau \subset L ^ { X }$ ; confidence 0.974 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507049.png ; $\operatorname { Ric } _ { g }$ ; confidence 0.974 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060126.png ; $S ( k )$ ; confidence 0.974 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301305.png ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050124.png ; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011021.png ; $P = D - E , M = B - H$ ; confidence 0.974 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960309.png ; $\tau = t / \mu$ ; confidence 0.974 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png ; $F _ { j k }$ ; confidence 0.974 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005021.png ; $\Gamma$ ; confidence 0.974 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006010.png ; $f ( x , k ) = e ^ { i k x } + o ( 1 )$ ; confidence 0.974 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r0822902.png ; $x , y , z \in X$ ; confidence 0.974 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032029.png ; $y ^ { \prime } = \lambda y$ ; confidence 0.974 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016077.png ; $A V$ ; confidence 0.974 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022049.png ; $W _ { p } ^ { m } ( T )$ ; confidence 0.974 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021076.png ; $\pm x _ { i }$ ; confidence 0.974 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003049.png ; $\lambda _ { X } : T _ { E } H ^ { * } X \rightarrow H ^ { * } \operatorname { Map } ( B E , X )$ ; confidence 0.974 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065037.png ; $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$ ; confidence 0.974 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840257.png ; $R _ { A }$ ; confidence 0.974 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520314.png ; $\{ \alpha ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.974 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037054.png ; $D _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.974 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023076.png ; $Q X$ ; confidence 0.974 |
Revision as of 00:10, 13 February 2020
List
1. ; $\rho \geq 0$ ; confidence 0.977
2. ; $( - 1 ) ^ { p ( x ) p ( y ) }$ ; confidence 0.977
3. ; $\operatorname { Tr } ( x ^ { 2 } )$ ; confidence 0.977
4. ; $L ( x ) = x \operatorname { ln } 2 - \frac { 1 } { 2 } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \frac { \operatorname { sin } 2 k x } { k ^ { 2 } }$ ; confidence 0.977
5. ; $< 1$ ; confidence 0.977
6. ; $\nabla \times H - \frac { 1 } { c } \frac { \partial D } { \partial t } = \frac { 1 } { c } J$ ; confidence 0.977
7. ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977
8. ; $x = F ( x )$ ; confidence 0.977
9. ; $f _ { i } : \Theta \rightarrow [ 0,1 ]$ ; confidence 0.977
10. ; $\mathfrak { D } ( P , x )$ ; confidence 0.977
11. ; $P \mapsto P ( z ) , P \in P$ ; confidence 0.977
12. ; $X \times X \rightarrow X$ ; confidence 0.977
13. ; $z \in \Sigma ^ { * }$ ; confidence 0.977
14. ; $U \subset \Omega$ ; confidence 0.977
15. ; $\left( \begin{array} { c c c } { A _ { 1 } } & { \square } & { * } \\ { \square } & { \ddots } & { \square } \\ { 0 } & { \square } & { A _ { n } } \end{array} \right)$ ; confidence 0.977
16. ; $\{ G ; \vee , \wedge \}$ ; confidence 0.977
17. ; $B \subset U$ ; confidence 0.977
18. ; $u ( 0 , t ) \in L _ { 0 }$ ; confidence 0.977
19. ; $\mu _ { 1 } = 0 < \ldots < \mu _ { N }$ ; confidence 0.977
20. ; $( u , B ( x , y ) ) _ { + } = ( u , A ^ { - 1 } B ) = u ( y )$ ; confidence 0.977
21. ; $1 / ( 1 - \lambda )$ ; confidence 0.977
22. ; $E = \emptyset$ ; confidence 0.977
23. ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
24. ; $Q = U U ^ { * }$ ; confidence 0.977
25. ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
26. ; $P \cap P ^ { - 1 } = \{ e \}$ ; confidence 0.977
27. ; $\| R C ( 1 - P C ) ^ { - 1 } \| _ { \infty } < 1$ ; confidence 0.977
28. ; $K = L _ { 2 } \oplus K _ { 1 }$ ; confidence 0.977
29. ; $f _ { L } ^ { \leftarrow } : L ^ { Y } \rightarrow L ^ { X }$ ; confidence 0.977
30. ; $L _ { 0 } = 0$ ; confidence 0.977
31. ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977
32. ; $( y _ { t } )$ ; confidence 0.977
33. ; $\beta _ { p q } = \beta _ { q p }$ ; confidence 0.977
34. ; $V ( C , U )$ ; confidence 0.977
35. ; $\theta _ { i } = \kappa _ { i } + \omega _ { i } + \hat { \theta } _ { i }$ ; confidence 0.977
36. ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
37. ; $y = r \operatorname { sin } \theta$ ; confidence 0.977
38. ; $K ( L ) \subset K ( L ^ { \prime } )$ ; confidence 0.977
39. ; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977
40. ; $h ( X )$ ; confidence 0.977
41. ; $L _ { 1 / 2 } ^ { 2 }$ ; confidence 0.977
42. ; $\partial _ { \infty }$ ; confidence 0.977
43. ; $D = L _ { K } + i _ { L }$ ; confidence 0.977
44. ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977
45. ; $( X _ { 3 } , Y _ { 3 } )$ ; confidence 0.977
46. ; $A V i / P = x$ ; confidence 0.977
47. ; $x ^ { * } \in L _ { \infty }$ ; confidence 0.977
48. ; $\operatorname { ldim } ( P ) \leq \operatorname { dim } ( P )$ ; confidence 0.977
49. ; $L ( k ^ { \prime } )$ ; confidence 0.977
50. ; $0 \leq p \leq \operatorname { dim } M$ ; confidence 0.977
51. ; $Z _ { G } ( y ) = \sum _ { r = 0 } ^ { \infty } G ^ { \# } ( r ) y ^ { r }$ ; confidence 0.977
52. ; $L ^ { 2 } ( R , d t )$ ; confidence 0.977
53. ; $H = H _ { k }$ ; confidence 0.977
54. ; $C ( S ) + C ( T )$ ; confidence 0.977
55. ; $K ^ { 0 } ( B )$ ; confidence 0.977
56. ; $X \geq 3$ ; confidence 0.977
57. ; $x ( . )$ ; confidence 0.977
58. ; $g ( W )$ ; confidence 0.977
59. ; $* A$ ; confidence 0.977
60. ; $L ( E )$ ; confidence 0.977
61. ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } \frac { d A ( t ) ^ { - 1 } } { d t } +$ ; confidence 0.977
62. ; $y \geq 2 a$ ; confidence 0.977
63. ; $L ^ { 1 } ( I )$ ; confidence 0.977
64. ; $L = DSP$ ; confidence 0.977
65. ; $A _ { 1 }$ ; confidence 0.977
66. ; $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$ ; confidence 0.977
67. ; $\Pi _ { 1 } ( \Sigma _ { g } , z _ { 0 } )$ ; confidence 0.977
68. ; $( \xi _ { 1 } \frac { \partial } { \partial t _ { 1 } } + \xi _ { 2 } \frac { \partial } { \partial t _ { 2 } } ) \langle f , f \rangle _ { H } =$ ; confidence 0.977
69. ; $\infty +$ ; confidence 0.977
70. ; $M ( k )$ ; confidence 0.977
71. ; $\Delta \in R _ { A }$ ; confidence 0.977
72. ; $\mu ( r )$ ; confidence 0.977
73. ; $1$ ; confidence 0.977
74. ; $p ( u , t ) = 1 + \alpha _ { 1 } ( t ) u + \alpha _ { 2 } ( t ) u ^ { 2 } +$ ; confidence 0.976
75. ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.976
76. ; $w = w ( z , \zeta )$ ; confidence 0.976
77. ; $u \neq x$ ; confidence 0.976
78. ; $\beta > 0$ ; confidence 0.976
79. ; $k = k _ { n } > 0$ ; confidence 0.976
80. ; $T _ { n } = \delta _ { n , 1 }$ ; confidence 0.976
81. ; $J ^ { \prime } = \left( \begin{array} { c c } { f \omega ^ { 2 } - f ^ { - 1 } r ^ { 2 } } & { - f \omega } \\ { - f \omega } & { f } \end{array} \right)$ ; confidence 0.976
82. ; $b \mapsto b$ ; confidence 0.976
83. ; $t ( k , r ) \leq ( \frac { r - 1 } { k - 1 } ) ^ { r - 1 }$ ; confidence 0.976
84. ; $\phi$ ; confidence 0.976
85. ; $m \rightarrow \infty$ ; confidence 0.976
86. ; $a ( k )$ ; confidence 0.976
87. ; $( D , X )$ ; confidence 0.976
88. ; $w \in \Sigma ^ { * }$ ; confidence 0.976
89. ; $\rho = \operatorname { max } _ { T } \rho ( T )$ ; confidence 0.976
90. ; $L ( \Lambda )$ ; confidence 0.976
91. ; $1 + r _ { 2 } ( k )$ ; confidence 0.976
92. ; $( R )$ ; confidence 0.976
93. ; $\Sigma = R$ ; confidence 0.976
94. ; $L ( n + t )$ ; confidence 0.976
95. ; $m \neq b \neq a$ ; confidence 0.976
96. ; $m : A \rightarrow [ 0 , \infty ]$ ; confidence 0.976
97. ; $W ^ { ( 2 ) } ( t )$ ; confidence 0.976
98. ; $V ^ { \sigma }$ ; confidence 0.976
99. ; $\sum _ { i } R _ { j i } ( g ^ { - 1 } ) \varphi _ { i } ( g [ f ] )$ ; confidence 0.976
100. ; $p \equiv 3$ ; confidence 0.976
101. ; $X = \Gamma \backslash H$ ; confidence 0.976
102. ; $( q , r )$ ; confidence 0.976
103. ; $\partial ( I )$ ; confidence 0.976
104. ; $N = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in E _ { M }$ ; confidence 0.976
105. ; $1 \leq j \leq n$ ; confidence 0.976
106. ; $( N , h )$ ; confidence 0.976
107. ; $( X _ { 3 } , Y _ { 2 } )$ ; confidence 0.976
108. ; $C _ { G } ( D ) \subseteq H$ ; confidence 0.976
109. ; $f \in L ^ { 1 }$ ; confidence 0.976
110. ; $z x \leq y z$ ; confidence 0.976
111. ; $\psi _ { p - 2 } ( z ) f ( z ) + \phi _ { p - 1 } ( z ) g _ { k } ( z )$ ; confidence 0.976
112. ; $U _ { \rho }$ ; confidence 0.976
113. ; $E _ { m } = \pi ^ { - 1 } ( m )$ ; confidence 0.976
114. ; $( \kappa \partial + L ) \psi = 0$ ; confidence 0.976
115. ; $\gamma ( x ) \vee x$ ; confidence 0.976
116. ; $\epsilon \in R$ ; confidence 0.976
117. ; $\operatorname { deg } v _ { \alpha } = n ^ { \alpha }$ ; confidence 0.976
118. ; $E _ { z _ { 0 } } ( x , R )$ ; confidence 0.976
119. ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
120. ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976
121. ; $Q ( f ) = M _ { f } - f$ ; confidence 0.976
122. ; $\operatorname { log } \int f ( \theta ^ { ( t + 1 ) } , \phi ) d \phi \geq \operatorname { log } \int f ( \theta ^ { ( t ) } , \phi ) d \phi$ ; confidence 0.976
123. ; $P \sim Q$ ; confidence 0.976
124. ; $\lambda \geq \frac { Q + 1 } { Q - 1 }$ ; confidence 0.976
125. ; $\sum _ { q = 1 } ^ { \infty } ( \varphi ( q ) f ( q ) ) ^ { k }$ ; confidence 0.976
126. ; $\xi$ ; confidence 0.976
127. ; $L _ { 1 } = L _ { 1 } ( \mu )$ ; confidence 0.976
128. ; $I - C T ^ { - 1 }$ ; confidence 0.976
129. ; $w \mapsto i \frac { 1 - w } { 1 + w }$ ; confidence 0.976
130. ; $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ ; confidence 0.976
131. ; $\sigma ( n ) \geq 2 n$ ; confidence 0.976
132. ; $SH ^ { * } ( M , \omega )$ ; confidence 0.976
133. ; $u ( x )$ ; confidence 0.976
134. ; $G ( x , \alpha )$ ; confidence 0.976
135. ; $\Gamma = G H$ ; confidence 0.976
136. ; $1 \geq k + 1$ ; confidence 0.976
137. ; $f _ { i } ( w ) \in K$ ; confidence 0.976
138. ; $\lambda | > 1$ ; confidence 0.976
139. ; $( E , C )$ ; confidence 0.976
140. ; $k [ C ]$ ; confidence 0.976
141. ; $< 0$ ; confidence 0.976
142. ; $( Q , \Lambda ) \equiv q _ { 1 } \lambda _ { 1 } + \ldots + q _ { n } \lambda _ { n } = 0$ ; confidence 0.976
143. ; $\phi ( T )$ ; confidence 0.976
144. ; $\operatorname { Tr } ( X Y )$ ; confidence 0.976
145. ; $f _ { \rho } ( x )$ ; confidence 0.976
146. ; $X \neq L$ ; confidence 0.976
147. ; $\xi _ { 0 } x < 0$ ; confidence 0.976
148. ; $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$ ; confidence 0.976
149. ; $Q _ { 0 } ( z ) = 1$ ; confidence 0.976
150. ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976
151. ; $G _ { i } ( A )$ ; confidence 0.976
152. ; $r < | \zeta | < R$ ; confidence 0.976
153. ; $\omega = 1$ ; confidence 0.976
154. ; $F ( r , F ( s , t ) ) = \| r x + \| s y + t z \| z \| =$ ; confidence 0.976
155. ; $( E )$ ; confidence 0.976
156. ; $h ( \varphi )$ ; confidence 0.976
157. ; $f : \Sigma ^ { * } \rightarrow \Sigma ^ { * }$ ; confidence 0.976
158. ; $| b ( u , u ) | \geq \gamma \| u \| ^ { 2 }$ ; confidence 0.976
159. ; $r = ( x , y , z )$ ; confidence 0.976
160. ; $J Z = 0$ ; confidence 0.976
161. ; $\mu _ { 0 } ( k , R ) \in C$ ; confidence 0.976
162. ; $F _ { p } ( ( t ) )$ ; confidence 0.976
163. ; $H ^ { * } ( L ; Z )$ ; confidence 0.976
164. ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975
165. ; $\Gamma _ { F }$ ; confidence 0.975
166. ; $L _ { 2 } ( \sigma )$ ; confidence 0.975
167. ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975
168. ; $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$ ; confidence 0.975
169. ; $X ^ { \prime \prime } = X$ ; confidence 0.975
170. ; $n = \operatorname { dim } T$ ; confidence 0.975
171. ; $P , Q \in R [ X ]$ ; confidence 0.975
172. ; $b$ ; confidence 0.975
173. ; $\sigma _ { \mathfrak { P } } = [ \frac { L / K } { \mathfrak { P } } ]$ ; confidence 0.975
174. ; $K _ { 2 } R$ ; confidence 0.975
175. ; $d : \Omega \rightarrow R$ ; confidence 0.975
176. ; $\Sigma ^ { i , j } ( f )$ ; confidence 0.975
177. ; $h ( x ) \in L ^ { 2 } ( R _ { + } )$ ; confidence 0.975
178. ; $P _ { Y } \times R \rightarrow Y \times R$ ; confidence 0.975
179. ; $J _ { t } = [ - h ( t ) , - g ( t ) ] \subset ( - \infty , 0 ]$ ; confidence 0.975
180. ; $G$ ; confidence 0.975
181. ; $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$ ; confidence 0.975
182. ; $d \theta$ ; confidence 0.975
183. ; $\omega ^ { \prime \prime } ( G )$ ; confidence 0.975
184. ; $G _ { k } ( \zeta )$ ; confidence 0.975
185. ; $| \alpha | = \sum _ { j = 1 } ^ { N } \alpha _ { j }$ ; confidence 0.975
186. ; $\theta$ ; confidence 0.975
187. ; $A \otimes A \rightarrow A$ ; confidence 0.975
188. ; $\beta = 1 + ( m - 1 ) 2 ^ { m }$ ; confidence 0.975
189. ; $L _ { 0 } \subset M ( P )$ ; confidence 0.975
190. ; $( A , \partial , \circ )$ ; confidence 0.975
191. ; $W _ { P } ( \rho ) = 1$ ; confidence 0.975
192. ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , w + 1 - s )$ ; confidence 0.975
193. ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( 0 , \Gamma ( \theta ) )$ ; confidence 0.975
194. ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975
195. ; $V _ { t } = \phi _ { t } S _ { t } + \psi _ { t } B _ { t }$ ; confidence 0.975
196. ; $\frac { d u } { d t } - i \frac { d v } { d t } = 2 e ^ { i \lambda } \operatorname { sin } ( \frac { 1 } { 2 } ( u + i v ) )$ ; confidence 0.975
197. ; $\sum \alpha _ { i } = 0$ ; confidence 0.975
198. ; $i \in N$ ; confidence 0.975
199. ; $\{ z \in C : | z | < 1 \}$ ; confidence 0.975
200. ; $\Omega _ { \infty }$ ; confidence 0.975
201. ; $p ( t ) , q ( t ) \in F [ t ]$ ; confidence 0.975
202. ; $H ^ { * } E X$ ; confidence 0.975
203. ; $M _ { G }$ ; confidence 0.975
204. ; $\lambda \nmid \mu$ ; confidence 0.975
205. ; $n < 2 N$ ; confidence 0.975
206. ; $f \in C ( [ 0 , T ] ; D ( A ( 0 ) )$ ; confidence 0.975
207. ; $H : S ^ { 1 } \times M \rightarrow R$ ; confidence 0.975
208. ; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975
209. ; $n = 0$ ; confidence 0.975
210. ; $D _ { A } \phi$ ; confidence 0.975
211. ; $\varepsilon _ { i } \rightarrow 0$ ; confidence 0.975
212. ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975
213. ; $D \cap D ^ { \prime }$ ; confidence 0.975
214. ; $L \neq Z ^ { 0 }$ ; confidence 0.975
215. ; $X = R ^ { n }$ ; confidence 0.975
216. ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
217. ; $M = A ^ { p } | q$ ; confidence 0.975
218. ; $h ( t ) \equiv \infty$ ; confidence 0.975
219. ; $\square _ { \infty }$ ; confidence 0.975
220. ; $\langle f u , \varphi \rangle = \langle u , f \varphi \rangle$ ; confidence 0.975
221. ; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975
222. ; $h ^ { i } ( K _ { X } \otimes L ) = 0$ ; confidence 0.975
223. ; $r = s = 0$ ; confidence 0.975
224. ; $\Lambda = \oplus _ { k = 1 } ^ { n } \Lambda ^ { k }$ ; confidence 0.975
225. ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975
226. ; $0 \leq b < 1$ ; confidence 0.975
227. ; $H ^ { ( i ) }$ ; confidence 0.975
228. ; $\exists x ( \forall y ( \neg y \in x ) \wedge x \in z )$ ; confidence 0.975
229. ; $\operatorname { sup } _ { \alpha ^ { \prime } \in S ^ { 2 } } | A _ { \delta } ( \alpha ^ { \prime } , \alpha ) - A ( \alpha ^ { \prime } , \alpha ) | < \delta$ ; confidence 0.975
230. ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.975
231. ; $d N / d t = f ( N )$ ; confidence 0.975
232. ; $K = C$ ; confidence 0.975
233. ; $\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$ ; confidence 0.975
234. ; $m = \frac { \operatorname { sinh } ( \frac { H } { k _ { B } T } ) } { [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 } }$ ; confidence 0.975
235. ; $( m , u ) \mapsto u ^ { * } m u$ ; confidence 0.975
236. ; $2 \pi / n$ ; confidence 0.975
237. ; $k q ^ { \prime } s \frac { d } { d s } [ q ^ { \prime } s \frac { d \theta } { d s } ] + \operatorname { cos } \theta - q ^ { \prime } = 0$ ; confidence 0.975
238. ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975
239. ; $( f , \phi ) : ( X , L , T ) \rightarrow ( Y , M , S )$ ; confidence 0.975
240. ; $V = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { sin } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.975
241. ; $[ x , ]$ ; confidence 0.975
242. ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975
243. ; $1 > 1$ ; confidence 0.975
244. ; $\gamma _ { i j } = \int z ^ { i } z ^ { j } d \mu , 0 \leq i + j \leq 2 n$ ; confidence 0.975
245. ; $\operatorname { Re } p _ { 3 } ( \xi , \tau ) > 0$ ; confidence 0.975
246. ; $\sum _ { x \in f ^ { - 1 } ( y ) } \operatorname { sign } \operatorname { det } f ^ { \prime } ( x )$ ; confidence 0.975
247. ; $r > 3$ ; confidence 0.975
248. ; $( X , Y )$ ; confidence 0.975
249. ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975
250. ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975
251. ; $< 6232$ ; confidence 0.975
252. ; $P _ { L } ( v , z ) = P _ { L } ( - v , - z ) = ( - 1 ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( - v , z )$ ; confidence 0.974
253. ; $\kappa _ { M } : T T M \rightarrow T T M$ ; confidence 0.974
254. ; $= 2 \pi i | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.974
255. ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974
256. ; $D ( \Omega ) \rightarrow C$ ; confidence 0.974
257. ; $0 \leq a \leq b + c$ ; confidence 0.974
258. ; $O ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}$ ; confidence 0.974
259. ; $u \in V$ ; confidence 0.974
260. ; $t - d ( x , \gamma ( t ) )$ ; confidence 0.974
261. ; $\rho \leq 1$ ; confidence 0.974
262. ; $[ x _ { 0 } , x ]$ ; confidence 0.974
263. ; $A _ { \pm } ( x , y )$ ; confidence 0.974
264. ; $X _ { n } ( t ) \Rightarrow w ( t )$ ; confidence 0.974
265. ; $d f _ { t } ( x ) = 0 \Leftrightarrow \partial f ( x ) \ni 0 \Leftrightarrow f _ { t } ( x ) = f ( x )$ ; confidence 0.974
266. ; $z _ { 0 } \in D$ ; confidence 0.974
267. ; $[ p ( A ) x , x ] \geq 0$ ; confidence 0.974
268. ; $3.2 ^ { i - 1 } ( n + 1 ) - 2$ ; confidence 0.974
269. ; $y _ { K }$ ; confidence 0.974
270. ; $V = V _ { - 1 } \oplus V _ { 1 } \oplus V _ { 2 } \oplus \ldots$ ; confidence 0.974
271. ; $x = x _ { 0 } > 0$ ; confidence 0.974
272. ; $f _ { t }$ ; confidence 0.974
273. ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon ) } \end{array} \right.$ ; confidence 0.974
274. ; $f : N \rightarrow C$ ; confidence 0.974
275. ; $w ( z ) = U _ { x } - i U _ { y } = \frac { d \Phi } { d z } , z = x + i y$ ; confidence 0.974
276. ; $T \cap k ( C _ { 2 } ) = \phi ( T \cap k ( C _ { 1 } ) )$ ; confidence 0.974
277. ; $\lambda = n ^ { - 1 } c = ( \pi \sigma ^ { 2 } N ) ^ { - 1 }$ ; confidence 0.974
278. ; $\chi _ { T } ( G )$ ; confidence 0.974
279. ; $\tau \subset L ^ { X }$ ; confidence 0.974
280. ; $\operatorname { Ric } _ { g }$ ; confidence 0.974
281. ; $S ( k )$ ; confidence 0.974
282. ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974
283. ; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974
284. ; $P = D - E , M = B - H$ ; confidence 0.974
285. ; $\tau = t / \mu$ ; confidence 0.974
286. ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974
287. ; $F _ { j k }$ ; confidence 0.974
288. ; $\Gamma$ ; confidence 0.974
289. ; $f ( x , k ) = e ^ { i k x } + o ( 1 )$ ; confidence 0.974
290. ; $x , y , z \in X$ ; confidence 0.974
291. ; $y ^ { \prime } = \lambda y$ ; confidence 0.974
292. ; $A V$ ; confidence 0.974
293. ; $W _ { p } ^ { m } ( T )$ ; confidence 0.974
294. ; $\pm x _ { i }$ ; confidence 0.974
295. ; $\lambda _ { X } : T _ { E } H ^ { * } X \rightarrow H ^ { * } \operatorname { Map } ( B E , X )$ ; confidence 0.974
296. ; $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$ ; confidence 0.974
297. ; $R _ { A }$ ; confidence 0.974
298. ; $\{ \alpha ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.974
299. ; $D _ { \Omega ^ { \prime } } ( f )$ ; confidence 0.974
300. ; $Q X$ ; confidence 0.974
Maximilian Janisch/latexlist/latex/NoNroff/22. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/22&oldid=44510