Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/21"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 21 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 21 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
+
1. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006068.png ; $s : M \rightarrow Y$ ; confidence 0.980
  
2. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001069.png ; $f ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.476
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022015.png ; $r : B \rightarrow A$ ; confidence 0.980
  
3. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001062.png ; $L _ { 0 } = \langle e _ { i } : i \geq 0 \rangle$ ; confidence 0.806
+
3. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105068.png ; $\Omega \times T$ ; confidence 0.980
  
4. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001072.png ; $\psi : O _ { 1 } ( m ) \rightarrow O _ { 1 } ( m )$ ; confidence 0.997
+
4. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301108.png ; $\frac { b } { h } = \frac { 1 } { \pi } \operatorname { cosh } ^ { - 1 } \sqrt { 2 } \approx 0.2806$ ; confidence 0.980
  
5. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007063.png ; $U \in SGL _ { 6 } ( Z ( C _ { 6 } \times C _ { 6 } ) )$ ; confidence 0.648
+
5. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012021.png ; $C _ { A B }$ ; confidence 0.980
  
6. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011026.png ; $f ( 1 , n ) \geq \ldots \geq f ( \mu _ { n } , n )$ ; confidence 0.865
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029021.png ; $\sum _ { q = 1 } ^ { \infty } q f ( q )$ ; confidence 0.980
  
7. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011072.png ; $\mu _ { \gamma } ( x ) \nmid \mu _ { \gamma }$ ; confidence 0.095
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015087.png ; $\operatorname { dim } D = 2 ^ { x }$ ; confidence 0.980
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013017.png ; $S ( V )$ ; confidence 0.980
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b11004034.png ; $\Theta _ { 0 }$ ; confidence 0.980
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240374.png ; $F = Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.929
+
11. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520129.png ; $f = \lambda ^ { p } + \alpha _ { 1 } \lambda ^ { p - 1 } + \ldots + \alpha _ { p }$ ; confidence 0.980
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040380.png ; $\Omega h ^ { - 1 } ( F ) = h ^ { - 1 } ( \Omega F )$ ; confidence 0.961
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060126.png ; $[ 0 , Z ]$ ; confidence 0.980
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014047.png ; $a ( z ) = S ( z )$ ; confidence 0.980
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040385.png ; $\Omega \cup F = \cup _ { F \in F } \Omega F$ ; confidence 0.806
+
14. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000132.png ; $\epsilon ^ { 2 } = \sum _ { i = 1 } ^ { \infty } \operatorname { min } \{ \lambda _ { i } , f ( \epsilon ) \}$ ; confidence 0.980
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040400.png ; $Mod ^ { * } S _ { D } = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.256
+
15. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008026.png ; $E [ 0 , \sigma ]$ ; confidence 0.980
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004024.png ; $\Delta \operatorname { log } \varphi$ ; confidence 0.232
+
16. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002018.png ; $M _ { 21 } ( q ) \ddot { q } _ { 1 } + M _ { 22 } ( q ) \ddot { q } _ { 2 } + F _ { 2 } ( q , \dot { q } ) = 0$ ; confidence 0.980
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005083.png ; $\rho ( A ( t ) ) \supset ( \beta , \infty )$ ; confidence 0.999
+
17. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014071.png ; $d \mu = d \sigma _ { 1 } - \delta _ { 0 }$ ; confidence 0.980
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006033.png ; $\frac { d u } { d t } + A u = f ( t ) , t \in [ 0 , T ]$ ; confidence 0.989
+
18. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130040/n1300409.png ; $O ( n ^ { 4 } )$ ; confidence 0.980
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007090.png ; $- 1 \leq \alpha _ { i } < \beta _ { i } \leq 1$ ; confidence 0.997
+
19. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377021.png ; $a _ { i } \in [ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.980
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007017.png ; $u ( 0 ) = u _ { 0 } \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.976
+
20. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006016.png ; $\Delta ( z ) = ( 2 \pi ) ^ { 12 } \sum _ { m = 1 } ^ { \infty } \tau ( m ) q ^ { m } ( z ) \in M ( 12 )$ ; confidence 0.980
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070121.png ; $n \equiv a ( \operatorname { mod } b )$ ; confidence 0.605
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894
+
22. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014027.png ; $q ( T ) p ( T ) \leq \operatorname { dim } \operatorname { ker } q ( T ) + \operatorname { dim } \operatorname { ker } p ( T )$ ; confidence 0.980
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012077.png ; $\langle x _ { t } , y _ { t } , c _ { t } \rangle$ ; confidence 0.584
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024015.png ; $n > m$ ; confidence 0.980
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240220.png ; $n \times n$ ; confidence 0.980
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032010.png ; $u _ { m } + 1 = R _ { 0 } ^ { ( s + 1 ) } ( h T ) u _ { m } +$ ; confidence 0.159
+
26. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013039.png ; $\sqrt { n } ( \theta _ { n } - \theta ^ { * } )$ ; confidence 0.999
+
27. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020174.png ; $( US )$ ; confidence 0.980
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201508.png ; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444
+
28. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023028.png ; $f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { 1 } f$ ; confidence 0.568
+
29. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032058.png ; $S ( L )$ ; confidence 0.980
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028018.png ; $r ^ { 2 } = \operatorname { cos } ( 2 \phi )$ ; confidence 0.999
+
30. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h0482005.png ; $Z = 1$ ; confidence 0.980
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270122.png ; $| G | ^ { - 1 } \sum _ { g \in G } \chi ( g ^ { 2 } )$ ; confidence 0.980
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022045.png ; $\gamma \in K$ ; confidence 0.980
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028010.png ; $x ( n ) = \int _ { T ^ { 2 } } ^ { n } U _ { z } ( x ) d z$ ; confidence 0.074
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028080.png ; $K ( z , \zeta )$ ; confidence 0.980
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029013.png ; $P _ { Y } \times R \rightarrow Y \times R$ ; confidence 0.975
+
33. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320104.png ; $\operatorname { dim } ( \wedge ^ { n } V ) = 1$ ; confidence 0.980
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029044.png ; $HF _ { * } ^ { symp } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.485
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150156.png ; $p _ { i } = p _ { j }$ ; confidence 0.980
  
35. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501017.png ; $\phi _ { r } : B _ { r } \rightarrow B O _ { r }$ ; confidence 0.970
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270122.png ; $| G | ^ { - 1 } \sum _ { g \in G } \chi ( g ^ { 2 } )$ ; confidence 0.980
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150102.png ; $\phi _ { n } : B _ { n } \rightarrow B O _ { n }$ ; confidence 0.995
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501014.png ; $\xi ^ { * \prime } : X \rightarrow B _ { n }$ ; confidence 0.800
+
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017087.png ; $\iota \omega ( G ) = \omega ( G )$ ; confidence 0.980
  
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002037.png ; $_ { l ^ { \prime } } F = n ^ { 1 / 2 } ( F _ { n } - F )$ ; confidence 0.078
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070128.png ; $k > 8$ ; confidence 0.980
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040152.png ; $X ^ { 1 / 2 } ( X ^ { \prime } ) ^ { 1 / 2 } = L _ { 2 }$ ; confidence 0.999
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050236.png ; $q > 1$ ; confidence 0.980
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005070.png ; $( \beta N \backslash N ) \times \Delta$ ; confidence 0.994
+
40. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013013.png ; $L ^ { 2 } [ D ]$ ; confidence 0.980
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009060.png ; $h ( z ) = 1 + c _ { 1 } z + c _ { 2 } z ^ { 2 } + \ldots$ ; confidence 0.580
+
41. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005050.png ; $( x ^ { 0 } ) ^ { 2 } - \sum _ { t } ( x ^ { t } ) ^ { 2 } = 1 , \quad t > 0$ ; confidence 0.980
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010035.png ; $k _ { z } ( w ) = ( 1 - | z | ^ { 2 } ) / ( 1 - z w ) ^ { 2 }$ ; confidence 0.995
+
42. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110195.png ; $\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + | y | + 1 } { \varepsilon } \}$ ; confidence 0.980
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { w } ^ { p }$ ; confidence 0.203
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070038.png ; $p \geq 2$ ; confidence 0.980
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017044.png ; $L _ { \alpha } ^ { p } = F _ { \alpha } ^ { p , 2 }$ ; confidence 0.950
+
44. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020143.png ; $Y _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } Y _ { t }$ ; confidence 0.980
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022073.png ; $\eta ( u ) = \int H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.998
+
45. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003077.png ; $( \vec { x } , y )$ ; confidence 0.980
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022069.png ; $u _ { f } \equiv \int f ( \xi ) d \xi - k \in U$ ; confidence 0.888
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023064.png ; $u | = n$ ; confidence 0.980
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022058.png ; $\forall u \in U : M ( u , \xi ) \in D _ { \xi }$ ; confidence 0.932
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( 2 ) }$ ; confidence 0.199
+
48. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004094.png ; $p _ { R } = 0.1$ ; confidence 0.980
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029029.png ; $z \mapsto \varepsilon _ { z } ^ { C U } ( f )$ ; confidence 0.684
+
49. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026017.png ; $[ D _ { t } , D _ { s } ^ { * } ] = \delta ( t - s ) , [ D _ { t } , D _ { s } ] = [ D _ { t } ^ { * } , D _ { s } ^ { * } ] = 0$ ; confidence 0.980
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029024.png ; $x \mapsto \varepsilon _ { X } ^ { C U } ( f )$ ; confidence 0.659
+
50. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009029.png ; $C _ { j } ( x _ { i } ) = \delta _ { i , j }$ ; confidence 0.980
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030074.png ; $\{ e ^ { i \eta , y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449
+
51. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008069.png ; $p ( x ) \equiv 0$ ; confidence 0.980
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031051.png ; $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ ; confidence 0.679
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016049.png ; $( M _ { s } f ) ( t )$ ; confidence 0.980
  
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031024.png ; $( 1 - 2 \delta ) / 4 < 1 / p < ( 3 + 2 \delta ) / 4$ ; confidence 1.000
+
53. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i1201003.png ; $\{ X , Y \}$ ; confidence 0.980
  
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032028.png ; $\| x \| ^ { p } + \| y \| ^ { p } = \| x + y \| ^ { p }$ ; confidence 0.405
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032065.png ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + z \| =$ ; confidence 0.793
+
55. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002025.png ; $\nabla _ { A } F _ { A } = 0$ ; confidence 0.980
  
56. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034072.png ; $\| f \| = | f ( z _ { 0 } ) | + \| f - f ( z _ { 0 } ) \|$ ; confidence 0.967
+
56. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017061.png ; $\| \delta _ { A } ( X _ { n } ) \| \rightarrow 0$ ; confidence 0.980
  
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301904.png ; $e ( x ) = \operatorname { exp } ( 2 \pi i x )$ ; confidence 0.989
+
57. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300107.png ; $x _ { 0 } = 1 / f$ ; confidence 0.980
  
58. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200158.png ; $r : b ^ { e ^ { x } } \rightarrow b ^ { e ^ { x } }$ ; confidence 0.165
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980
  
59. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040077.png ; $\langle \alpha , h ^ { * } \rangle \geq 0$ ; confidence 0.768
+
59. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007086.png ; $u | _ { E } = - \infty$ ; confidence 0.980
  
60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400105.png ; $\varrho = e ^ { p } : B \rightarrow C ^ { * }$ ; confidence 0.578
+
60. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013039.png ; $S ^ { \prime }$ ; confidence 0.980
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043040.png ; $\Delta x = x \otimes 1 + 1 \varnothing x$ ; confidence 0.232
+
61. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003045.png ; $\{ x y z \} = ( x y ^ { * } z + z y ^ { * } x ) / 2$ ; confidence 0.980
  
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430114.png ; $\alpha \delta - q ^ { 2 } \gamma \beta = 1$ ; confidence 0.999
+
62. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211042.png ; $p _ { i } ( \theta ) > 0$ ; confidence 0.980
  
63. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b1204302.png ; $\therefore B \otimes B \rightarrow B$ ; confidence 0.690
+
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011025.png ; $( X ( T _ { A } ) , Y ( T _ { A } ) )$ ; confidence 0.980
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302205.png ; $P _ { k - 1 } \subset P _ { K } \subset P _ { k }$ ; confidence 0.932
+
64. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006063.png ; $q : Q \rightarrow B$ ; confidence 0.980
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044028.png ; $R G = B _ { 1 } \oplus \ldots \oplus B _ { n }$ ; confidence 0.392
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221104.png ; $p _ { 1 } + \ldots + p _ { k } = 1$ ; confidence 0.980
  
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044067.png ; $T _ { H } ^ { G } : B ^ { H } \rightarrow B ^ { G }$ ; confidence 0.985
+
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021031.png ; $t ( M _ { 1 } \oplus M _ { 2 } ) = t ( M _ { 1 } ) t ( M _ { 2 } )$ ; confidence 0.980
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051091.png ; $\alpha = s _ { x } ^ { T } - 1 d / y _ { x } ^ { T } - 1$ ; confidence 0.133
+
67. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007048.png ; $D ^ { k + 1 } \{ ( c z + d ) ^ { k } F ( M z ) \} =$ ; confidence 0.980
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052070.png ; $G ( x ) = F ^ { \prime } ( x _ { 0 } ) ^ { - 1 } F ( x )$ ; confidence 0.991
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290209.png ; $H _ { m } ^ { i } ( R ) = [ H _ { m } ^ { i } ( R ) ] _ { 0 }$ ; confidence 0.175
+
69. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759045.png ; $E ( Q )$ ; confidence 0.980
  
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053021.png ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001039.png ; $\sigma _ { 1 } \prec \sigma _ { 2 }$ ; confidence 0.980
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056014.png ; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }$ ; confidence 0.972
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081080.png ; $n - k$ ; confidence 0.980
  
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002066.png ; $x = ( x ^ { \prime } , x ^ { \prime \prime } )$ ; confidence 0.962
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012015.png ; $t > 4$ ; confidence 0.980
  
73. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300404.png ; $\cong 0.915965594177219015 \ldots$ ; confidence 0.679
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016054.png ; $x _ { i } ^ { \prime }$ ; confidence 0.980
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070262.png ; $V = \nu _ { 1 } V _ { 1 } - \mathfrak { D } _ { 1 }$ ; confidence 0.984
+
74. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210102.png ; $L ( u ( z , \lambda ) ) =$ ; confidence 0.980
  
75. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211011.png ; $X ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.719
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230145.png ; $R = L D ^ { - 1 } L ^ { * }$ ; confidence 0.980
  
76. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010045.png ; $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ ; confidence 0.960
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022028.png ; $L _ { \infty } ( M , s ) = L _ { \infty } ( h ^ { i } ( X ) , s )$ ; confidence 0.980
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010032.png ; $\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f$ ; confidence 0.509
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026062.png ; $A \rightarrow A ^ { * }$ ; confidence 0.980
  
78. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017012.png ; $\gamma = ( \gamma _ { i j } ) _ { i , j \geq 0 }$ ; confidence 0.948
+
78. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005055.png ; $A X = X A$ ; confidence 0.980
  
79. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983
+
79. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062076.png ; $\mu = d \rho _ { 0 }$ ; confidence 0.980
  
80. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180156.png ; $\gamma ^ { - 1 } : E \rightarrow E \times$ ; confidence 0.430
+
80. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025310/c02531012.png ; $\square$ ; confidence 0.980
  
81. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180362.png ; $( W ( g ) \otimes \ldots \otimes W ( g ) ) =$ ; confidence 0.453
+
81. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683019.png ; $\epsilon \rightarrow 0$ ; confidence 0.980
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180158.png ; $g ^ { - 1 } : \otimes ^ { 2 } E \rightarrow R$ ; confidence 0.938
+
82. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003015.png ; $X f ( 1 )$ ; confidence 0.979
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025046.png ; $h \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta }$ ; confidence 0.773
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030061.png ; $B _ { i } = \otimes _ { k } \geq - i M _ { N } ( C )$ ; confidence 0.602
+
84. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009020.png ; $U _ { m } ( x )$ ; confidence 0.979
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203104.png ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x$ ; confidence 0.607
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e1201809.png ; $\operatorname { Re } ( s )$ ; confidence 0.979
  
86. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203102.png ; $\mathfrak { c } _ { \mathfrak { z } } \in R$ ; confidence 0.194
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010043.png ; $X _ { i } ( 0 , x _ { i } ) = x _ { i }$ ; confidence 0.979
  
87. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300609.png ; $\{ t > 0 , \square - \infty < x < \infty \}$ ; confidence 0.995
+
87. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023052.png ; $J \Theta ^ { * } = J$ ; confidence 0.979
  
88. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200603.png ; $- \psi _ { X X } + u ( x ) \psi = \lambda \psi$ ; confidence 0.544
+
88. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190188.png ; $\Phi _ { 1 } , \Phi _ { 2 } \in \Gamma$ ; confidence 0.979
  
89. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d0303303.png ; $E ^ { * } ( M ) = \sum _ { p = 0 } ^ { n } E ^ { p } ( M )$ ; confidence 0.893
+
89. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012013.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \varepsilon$ ; confidence 0.979
  
90. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d1300606.png ; $\operatorname { Bel } ( \emptyset ) = 0$ ; confidence 0.402
+
90. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005077.png ; $\omega \in V$ ; confidence 0.979
  
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012042.png ; $\alpha = ( \alpha _ { 1 } , \dots , a _ { n } )$ ; confidence 0.124
+
91. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011043.png ; $E : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow Z \rightarrow \{ 1 \}$ ; confidence 0.979
  
92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013035.png ; $\rho : W \rightarrow Q _ { 2 } \kappa ( R )$ ; confidence 0.317
+
92. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e0350007.png ; $H _ { \epsilon } ( C , X ) = \operatorname { log } _ { 2 } N _ { \epsilon } ( C , X )$ ; confidence 0.979
  
93. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202009.png ; $\lambda _ { m } = \operatorname { log } n$ ; confidence 0.913
+
93. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637030.png ; $M _ { f }$ ; confidence 0.979
  
94. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022051.png ; $( p y ^ { \prime } ) ^ { \prime } + q y = 0 , p > 0$ ; confidence 0.998
+
94. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017077.png ; $\iota \omega ( G )$ ; confidence 0.979
  
95. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028027.png ; $\overline { C } \backslash D \subset Q$ ; confidence 0.550
+
95. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010150.png ; $( W ; T ^ { 4 } , T ^ { 4 } )$ ; confidence 0.979
  
96. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280126.png ; $g \in H ^ { n , n - 1 } ( C ^ { n } \backslash D )$ ; confidence 0.246
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300108.png ; $h ( x , y ) = F ( \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y ) )$ ; confidence 0.979
  
97. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010121.png ; $S = ( f _ { i } : B \rightarrow A _ { i } ) _ { I }$ ; confidence 0.841
+
97. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200506.png ; $\mu ( S ) \leq C h$ ; confidence 0.979
  
98. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010120.png ; $M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973
+
98. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110223.png ; $\langle \xi \rangle = 1 + | \xi |$ ; confidence 0.979
  
99. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300207.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981
+
99. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005040.png ; $k + 2$ ; confidence 0.979
  
100. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007084.png ; $p _ { M } = p | _ { - k } ^ { V } M - p , M \in \Gamma$ ; confidence 0.127
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025040.png ; $k \geq n + 4$ ; confidence 0.979
  
101. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982
+
101. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190167.png ; $\{ W ^ { + } \cup h _ { 1 } \cup h _ { 2 } \}$ ; confidence 0.979
  
102. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003023.png ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } )$ ; confidence 0.831
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002044.png ; $g ( u _ { 1 } ) =$ ; confidence 0.979
  
103. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004054.png ; $( \Omega _ { + } - 1 ) g _ { D } P _ { + } \psi ( t )$ ; confidence 0.290
+
103. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023061.png ; $g \circ \phi = f$ ; confidence 0.979
  
104. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014015.png ; $\langle A , \tilde { f } \} _ { f \in \Phi }$ ; confidence 0.286
+
104. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469017.png ; $g \in G$ ; confidence 0.979
  
105. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014028.png ; $t \uparrow , \dots , t _ { \rho } ( f ) \in T$ ; confidence 0.067
+
105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180236.png ; $W ( g ) \otimes \ldots \otimes W ( g ) \in \otimes ^ { 4 m } E$ ; confidence 0.979
  
106. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023079.png ; $E ( L ) = ( E ^ { 1 } ( L ) , \ldots , E ^ { m } ( L ) )$ ; confidence 0.658
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002028.png ; $t \in A = \{ 2010213,2111213,2212213,2313213$ ; confidence 0.979
  
107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691
+
107. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008011.png ; $\rho _ { i } = ( 1 - S _ { i } ) / 2$ ; confidence 0.979
  
108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055017.png ; $b _ { \gamma } ^ { - 1 } ( t )$ ; confidence 0.979
  
109. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110129.png ; $\operatorname { exp } e ^ { \zeta ^ { 2 } }$ ; confidence 0.855
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058016.png ; $U = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { cos } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.979
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011024.png ; $\operatorname { Im } z \in \Gamma _ { j }$ ; confidence 0.959
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037086.png ; $k \leq n ^ { 1 / 4 }$ ; confidence 0.979
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110137.png ; $\{ f _ { \Delta _ { k } } , e ^ { - i x \zeta } \}$ ; confidence 0.716
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011067.png ; $D ^ { n } = R ^ { n } \cup S _ { \infty } ^ { n - 1 }$ ; confidence 0.824
+
112. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301608.png ; $w \in S$ ; confidence 0.979
  
113. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014046.png ; $\frac { 1 } { \lambda } \geq | 1 - \alpha |$ ; confidence 0.999
+
113. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005044.png ; $Y ( u , x ) v$ ; confidence 0.979
  
114. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023056.png ; $i ( [ K , L ] ^ { \wedge } ) = [ i _ { K } , i _ { L } ]$ ; confidence 0.990
+
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022096.png ; $u ^ { n + 1 } ( x )$ ; confidence 0.979
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023076.png ; $\operatorname { Der } _ { 1 } \Omega ( M )$ ; confidence 0.891
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300905.png ; $U _ { - n } ( x ) = ( - 1 ) ^ { n - 1 } U _ { n } ( x )$ ; confidence 0.979
  
116. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023010.png ; $[ \varphi \otimes x , \psi \otimes Y ] =$ ; confidence 0.504
+
116. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011061.png ; $1 / x ( x + 1 )$ ; confidence 0.979
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023031.png ; $D : \Omega ( M ) \rightarrow \Omega ( M )$ ; confidence 0.999
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360318.png ; $5$ ; confidence 0.979
  
118. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023029.png ; $\operatorname { ser } _ { k } \Omega ( M )$ ; confidence 0.509
+
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018042.png ; $( A , P ^ { A } )$ ; confidence 0.979
  
119. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029049.png ; $\forall \{ u ; : j \in J \} \subset L ^ { X }$ ; confidence 0.522
+
119. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020153.png ; $N _ { K } ( F ) \subset X$ ; confidence 0.979
  
120. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570
+
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303405.png ; $L _ { + } = q L _ { 0 }$ ; confidence 0.979
  
121. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002021.png ; $( \alpha , b ) \in ( Q \backslash Z ) ^ { 2 }$ ; confidence 0.548
+
121. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120101.png ; $= Q ( \theta | \theta ^ { ( t ) } ) - \int \operatorname { log } f ( \phi | \theta ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.979
  
122. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003028.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.992
+
122. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025067.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } ( u ^ { * } \rho _ { \varepsilon } ) ( v ^ { * } \sigma _ { \varepsilon } )$ ; confidence 0.979
  
123. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006084.png ; $l _ { \mathfrak { M } + 1 } = \mathfrak { j }$ ; confidence 0.055
+
123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016052.png ; $X : = M + r A U B ^ { \prime }$ ; confidence 0.979
  
124. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005025.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) = 0$ ; confidence 0.952
+
124. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001011.png ; $\Gamma u = u _ { N } + h ( s ) u$ ; confidence 0.979
  
125. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005022.png ; $\operatorname { Re } \mu _ { 0 } ( k , R ) < 0$ ; confidence 0.919
+
125. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500012.png ; $H _ { \epsilon } ( C , X )$ ; confidence 0.979
  
126. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005012.png ; $u ( y ; t ) = 0 \text { for } y \in C _ { D } , t > 0$ ; confidence 0.921
+
126. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002039.png ; $G , G _ { \tau } \subset P$ ; confidence 0.979
  
127. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007051.png ; $R _ { N } - 1 : = k [ X _ { 1 } , \dots , X _ { N } - 1 ]$ ; confidence 0.053
+
127. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006024.png ; $( C , B , m )$ ; confidence 0.979
  
128. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012020.png ; $D ( \phi ) = d \gamma \phi + \phi d \gamma$ ; confidence 0.927
+
128. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011052.png ; $\{ \mu _ { n } ( k ) \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.979
  
129. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012071.png ; $\operatorname { im } ( \pi ^ { \prime } )$ ; confidence 0.913
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020013.png ; $e _ { i } , f _ { i } , h _ { i }$ ; confidence 0.979
  
130. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301308.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { N } x _ { N }$ ; confidence 0.144
+
130. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
  
131. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301305.png ; $\sum _ { k } \mathfrak { q } _ { k } e ^ { i k x }$ ; confidence 0.118
+
131. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005023.png ; $N \rightarrow \infty , \sigma \rightarrow 0 , \frac { 1 } { \lambda } = \operatorname { lim } ( \pi \sigma ^ { 2 } N ) \in ] 0 , \infty$ ; confidence 0.979
  
132. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001046.png ; $\chi _ { \lambda } \preceq \chi _ { \mu }$ ; confidence 0.988
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051088.png ; $H _ { 0 } ^ { - 1 }$ ; confidence 0.979
  
133. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005017.png ; $lu _ { + } - \dot { k } ^ { 2 } u _ { + } = 0 , x \in R$ ; confidence 0.444
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979
  
134. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005035.png ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k )$ ; confidence 0.508
+
134. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007070.png ; $\forall x , y \in P$ ; confidence 0.979
  
135. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006030.png ; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455
+
135. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016062.png ; $L _ { p } ( S ) + L _ { p } ( T )$ ; confidence 0.979
  
136. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006053.png ; $\overline { S ( k ) } = S ( - k ) = S ^ { - 1 } ( k )$ ; confidence 0.961
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
  
137. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060100.png ; $\varphi + ( k ) = S ( - k ) \varphi _ { - } ( k )$ ; confidence 0.903
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $0 < c < 1$ ; confidence 0.979
  
138. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007071.png ; $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.869
+
138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301005.png ; $\square _ { H } T$ ; confidence 0.979
  
139. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007041.png ; $v ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.997
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040141.png ; $X _ { \theta } = X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta }$ ; confidence 0.979
  
140. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N } _ { + }$ ; confidence 0.446
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013013.png ; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.979
  
141. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080129.png ; $v = \operatorname { tanh } ( J / k _ { B } T )$ ; confidence 0.923
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016039.png ; $b A$ ; confidence 0.979
  
142. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080107.png ; $m _ { s } \propto ( 1 - T / T _ { c } ) ^ { \beta }$ ; confidence 0.543
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000145.png ; $\overline { \partial } u = f$ ; confidence 0.979
  
143. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001011.png ; $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ ; confidence 0.680
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007032.png ; $\{ \Gamma , k , v \}$ ; confidence 0.979
  
144. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020172.png ; $U _ { t } = \operatorname { Re } f ( B _ { t } )$ ; confidence 0.996
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c11033034.png ; $O ( n ^ { 2 } )$ ; confidence 0.979
  
145. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002036.png ; $\varphi _ { 1 } + \tilde { \varphi } _ { 2 }$ ; confidence 0.916
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200192.png ; $\epsilon ( s ) = ( - 1 ) ^ { m }$ ; confidence 0.979
  
146. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006014.png ; $\mathfrak { c } _ { 1 } ( \underline { L } )$ ; confidence 0.085
+
146. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584040.png ; $[ x , y ] = ( J x , y ) , \quad x , y \in K$ ; confidence 0.979
  
147. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006020.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0 , \quad i > 0$ ; confidence 0.458
+
147. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230123.png ; $\operatorname { cov } ( X ) = V \otimes I _ { n }$ ; confidence 0.979
  
148. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006046.png ; $D = \sum _ { k = 1 } ^ { \gamma } a _ { k } D _ { k }$ ; confidence 0.440
+
148. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050104.png ; $a , b , x \in T$ ; confidence 0.979
  
149. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002043.png ; $\operatorname { ign } ( X _ { 1 } - X _ { 2 } )$ ; confidence 0.940
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004029.png ; $L _ { \infty } ( \mu ) \subset X \subset L _ { 1 } ( \mu )$ ; confidence 0.979
  
150. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008029.png ; $Q ( \partial / \partial x ) ( f ) \equiv 0$ ; confidence 0.886
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009014.png ; $P _ { N } u = \sum _ { j = 0 } ^ { N } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.979
  
151. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840352.png ; $\operatorname { Im } \sigma ( Z ) \geq 0$ ; confidence 0.815
+
151. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007052.png ; $F ( E ( k , \omega ) ) \subseteq E ( d ( \omega ) k , \eta )$ ; confidence 0.979
  
152. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840170.png ; $A | _ { R } \langle E _ { \lambda } \rangle$ ; confidence 0.436
+
152. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010040.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \varphi ( \xi ) \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.979
  
153. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013026.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748
+
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021025.png ; $P _ { n } ^ { \prime } ( A ) = 0$ ; confidence 0.979
  
154. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700058.png ; $F \equiv ( \lambda x ( \lambda y ( y x ) ) )$ ; confidence 0.998
+
154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002052.png ; $u _ { 1 } = u _ { 1 } ^ { * }$ ; confidence 0.979
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003034.png ; $( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.993
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005026.png ; $F = F _ { q }$ ; confidence 0.979
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004040.png ; $c = \alpha \frac { \Delta t } { \Delta x }$ ; confidence 0.283
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201006.png ; $\frac { d } { d t } F ( t ) = - L F ( t ) + [ L , A ] F ( t )$ ; confidence 0.979
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001010.png ; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { N } x _ { N }$ ; confidence 0.376
+
157. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201108.png ; $L = \partial + u _ { - 1 } ( x ) \partial ^ { - 1 } + u _ { - 2 } ( x ) \partial ^ { - 2 } +$ ; confidence 0.979
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006056.png ; $= 2 \pi i | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.974
+
158. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026082.png ; $L ^ { 1 } ( \nu )$ ; confidence 0.979
  
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009070.png ; $M \times \mathfrak { g } \rightarrow M$ ; confidence 0.993
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120189.png ; $V _ { \text { simp } } ( M ) \neq \emptyset$ ; confidence 0.590
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420106.png ; $\phi : G \times G \times G \rightarrow k ^ { * }$ ; confidence 0.979
  
161. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301003.png ; $x \notin \overline { D } \subset R ^ { 2 }$ ; confidence 0.878
+
161. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500084.png ; $H _ { \epsilon } ^ { \prime } ( \xi )$ ; confidence 0.979
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170214.png ; $\pi _ { 1 } ( K ) \rightarrow \pi _ { 1 } ( L )$ ; confidence 0.652
+
162. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006055.png ; $S ( \infty ) = 1$ ; confidence 0.979
  
163. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200307.png ; $\prod _ { i = 1 } ^ { n } f _ { T _ { n } } ( x _ { i } )$ ; confidence 0.987
+
163. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190174.png ; $( h _ { 1 } ^ { \prime } , h _ { 2 } ^ { \prime } , p ^ { \prime } , W ^ { \prime } )$ ; confidence 0.979
  
164. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200306.png ; $T _ { N } = T _ { N } ( x _ { 1 } , \ldots , x _ { N } )$ ; confidence 0.320
+
164. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120119.png ; $B \in F$ ; confidence 0.979
  
165. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003068.png ; $y = \vec { x } ^ { \star } \vec { \theta } + e$ ; confidence 0.603
+
165. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203003.png ; $d X ( t ) = \alpha ( t , X ( t ) ) d t + b ( t , X ( t ) ) d B ( t )$ ; confidence 0.979
  
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003012.png ; $\sum _ { i = 1 } ^ { n } \rho ( x _ { i } , T _ { n } )$ ; confidence 0.962
+
166. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s1201702.png ; $F : X \times D \rightarrow 2 ^ { X } \backslash \{ \emptyset \}$ ; confidence 0.979
  
167. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013013.png ; $N ( t ) = \frac { K } { 1 + b e ^ { - \lambda t } }$ ; confidence 0.998
+
167. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004018.png ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { BM } ( \zeta , z )$ ; confidence 0.979
  
168. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015033.png ; $f _ { X } ( X ) = \int _ { Y } f _ { X , Y } ( X , Y ) d Y$ ; confidence 0.996
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107011.png ; $M _ { 1 }$ ; confidence 0.979
  
169. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019049.png ; $\phi _ { N } ( z ) = \kappa _ { X } f _ { X } ( z ) +$ ; confidence 0.441
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013980/a0139801.png ; $\{ X _ { t } \}$ ; confidence 0.979
  
170. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022019.png ; $o ( g ) \operatorname { gcd } ( 24 , o ( g ) )$ ; confidence 0.780
+
170. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020016.png ; $M _ { 6 } \geq \kappa > 0$ ; confidence 0.979
  
171. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022060.png ; $Z ( a g a ^ { - 1 } , a h a ^ { - 1 } ; z ) = Z ( g , h ; z )$ ; confidence 0.514
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022051.png ; $\partial _ { t } u + \sum _ { j = 1 } ^ { N } \frac { \partial } { \partial x _ { j } } F _ { j } ( u ) = 0$ ; confidence 0.979
  
172. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202302.png ; $f : H \rightarrow ( - \infty , + \infty ]$ ; confidence 0.994
+
172. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300705.png ; $A \rightarrow \infty$ ; confidence 0.979
  
173. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023040.png ; $R _ { t } ( x ) = ( I + t \partial f ) ^ { - 1 } ( x )$ ; confidence 0.964
+
173. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013018.png ; $[ a , b ] = [ - 1,1 ]$ ; confidence 0.979
  
174. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023046.png ; $v ^ { \prime } \in \overline { N E } ( X / S )$ ; confidence 0.476
+
174. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230159.png ; $G _ { 0 } = G$ ; confidence 0.979
  
175. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023098.png ; $B ^ { + } = ( \phi _ { * } ^ { + } ) ^ { - 1 } \phi * B$ ; confidence 0.599
+
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065011.png ; $\delta _ { \mu } = \operatorname { min } _ { H } \| H \| _ { \mu }$ ; confidence 0.979
  
176. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230140.png ; $( ( X _ { 0 } , B _ { 0 } ) , f _ { 0 } ) = ( ( X , B ) , f )$ ; confidence 0.993
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979
  
177. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025010.png ; $H : U ^ { \prime } \times I \rightarrow U$ ; confidence 0.997
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026086.png ; $g : B [ R ] \rightarrow B [ R ]$ ; confidence 0.979
  
178. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027031.png ; $\sum _ { \alpha \in Z _ { f } } R ( \alpha ) =$ ; confidence 0.538
+
178. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004034.png ; $z \in D$ ; confidence 0.979
  
179. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027039.png ; $z _ { 1 } ^ { ( 1 ) } , \dots , z _ { 1 } ^ { ( 1 - 1 ) }$ ; confidence 0.096
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510136.png ; $\gamma ^ { \prime } ( u ) \notin K$ ; confidence 0.979
  
180. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018075.png ; $P ( K )$ ; confidence 0.979
  
181. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260176.png ; $C M _ { n } = C _ { 0 } ( 10,1 ] ) \otimes M _ { n }$ ; confidence 0.823
+
181. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020131.png ; $B _ { p } ^ { 1 / p }$ ; confidence 0.979
  
182. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006032.png ; $\mu _ { k + 1 } \leq \lambda _ { k } , k = 1,2 ,$ ; confidence 0.294
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201605.png ; $1 \leq i , k , j \leq n$ ; confidence 0.979
  
183. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696015.png ; $\lambda = \sum _ { i = 1 } ^ { n } m _ { i } ^ { 2 }$ ; confidence 0.968
+
183. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201706.png ; $\delta _ { A , A } = \delta _ { A }$ ; confidence 0.979
  
184. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696027.png ; $P \{ X - Y \geq s \} = F _ { 2 s } ( x ; \lambda )$ ; confidence 0.585
+
184. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005011.png ; $w _ { 1 } = w _ { 2 } = w _ { 3 }$ ; confidence 0.979
  
185. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520349.png ; $\mu z ( f ( x _ { 1 } , \ldots , x _ { x } , z ) = 0 )$ ; confidence 0.409
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013021.png ; $L ^ { p } ( G )$ ; confidence 0.979
  
186. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o1300503.png ; $\operatorname { Im } T = ( T - T ^ { * } ) / 2 i$ ; confidence 0.918
+
186. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003015.png ; $A ( \Omega ) = B / I$ ; confidence 0.979
  
187. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006060.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) \neq 0$ ; confidence 0.771
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202807.png ; $X _ { \infty }$ ; confidence 0.979
  
188. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008010.png ; $( 1 _ { m } - k ^ { 2 } ) \varphi _ { m } ( x , k ) = 0$ ; confidence 0.770
+
188. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006046.png ; $= \cup _ { \beta ^ { \prime } } D \alpha D \beta ^ { \prime } = \cup _ { \alpha ^ { \prime } , \beta ^ { \prime } } D \alpha ^ { \prime } \beta ^ { \prime }$ ; confidence 0.979
  
189. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005012.png ; $S ( t ) : = \int _ { 0 } ^ { t } w ( s ) d s < \infty$ ; confidence 0.984
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022043.png ; $( M )$ ; confidence 0.979
  
190. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006066.png ; $W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )$ ; confidence 0.998
+
190. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008051.png ; $K _ { D } ( z , \zeta ) = \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( z ) \overline { \phi _ { j } ( \zeta ) }$ ; confidence 0.978
  
191. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070100.png ; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982
+
191. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021790/c0217902.png ; $\sigma ( x )$ ; confidence 0.978
  
192. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010020.png ; $z \in \hat { K } \leftrightarrow m _ { z }$ ; confidence 0.792
+
192. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005014.png ; $F [ T ]$ ; confidence 0.978
  
193. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017094.png ; $\exists a x - x c = 0 \text { and } b x - x d = 0$ ; confidence 0.120
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200214.png ; $G _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } P _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.978
  
194. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p120170113.png ; $( A + i B ) x = 0 \Leftrightarrow A x = 0 = B x$ ; confidence 0.698
+
194. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007031.png ; $p _ { k } > 1$ ; confidence 0.978
  
195. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002018.png ; $P | \phi \rangle / \| P | \phi \rangle \|$ ; confidence 0.659
+
195. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601084.png ; $\tau ^ { * } = \tau$ ; confidence 0.978
  
196. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005046.png ; $= - D f ( x ^ { k } ) H _ { k } D ^ { T } f ( x ^ { k } ) < 0$ ; confidence 0.996
+
196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978
  
197. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007048.png ; $( u , B ( x , y ) ) _ { + } = ( u , A ^ { - 1 } B ) = u ( y )$ ; confidence 0.977
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005031.png ; $L ( a ) = L _ { N } ( a )$ ; confidence 0.978
  
198. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013021.png ; $M = \operatorname { Im } ( P _ { \sigma } )$ ; confidence 0.989
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020076.png ; $[ \mathfrak { g } _ { + } , \mathfrak { g } _ { - } ] \subset \mathfrak { h }$ ; confidence 0.978
  
199. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011029.png ; $\varphi \in \operatorname { Aut } ( X )$ ; confidence 0.964
+
199. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020174.png ; $f _ { 1 } = u _ { 1 } + i v _ { 1 }$ ; confidence 0.978
  
200. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r1101105.png ; $x \preceq y \Rightarrow x z \preceq y z$ ; confidence 0.397
+
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080176.png ; $B _ { p } ( G ) \subset M A _ { p } ( G )$ ; confidence 0.978
  
201. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200206.png ; $\tau = ( \tau _ { 1 } , \ldots , \tau _ { N } )$ ; confidence 0.611
+
201. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018085.png ; $R ^ { N } \backslash \{ 0 \}$ ; confidence 0.978
  
202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
+
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034077.png ; $f ( z _ { 0 } ) > 0$ ; confidence 0.978
  
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022068.png ; $C \times ( C \backslash ( - \infty , 0 ) )$ ; confidence 0.696
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030062.png ; $T : E \rightarrow F$ ; confidence 0.978
  
204. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304708.png ; $\lambda \mapsto ( T - \lambda I ) ^ { - 1 }$ ; confidence 0.989
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007058.png ; $\operatorname { log } \sigma _ { 1 }$ ; confidence 0.978
  
205. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047021.png ; $\operatorname { dim } ( E ( \lambda ) X )$ ; confidence 0.769
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006087.png ; $T _ { A } M \rightarrow T _ { A } T M \rightarrow T T _ { A } M$ ; confidence 0.978
  
206. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687
+
206. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420127.png ; $y x = q x y$ ; confidence 0.978
  
207. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
207. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301304.png ; $x _ { 3 } = r \operatorname { cos } \theta$ ; confidence 0.978
  
208. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047010/h04701017.png ; $h ( x ) = \operatorname { exp } ( - x ^ { 2 } )$ ; confidence 0.999
+
208. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001095.png ; $R _ { V }$ ; confidence 0.978
  
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058031.png ; $\varepsilon _ { l } - \varepsilon _ { l }$ ; confidence 0.285
+
209. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005031.png ; $D \backslash [ 0 , r ]$ ; confidence 0.978
  
210. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028038.png ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png ; $g = 1$ ; confidence 0.978
  
211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320127.png ; $\varphi ^ { * } : O ( V ) \rightarrow O ( U )$ ; confidence 0.985
+
211. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009033.png ; $( f ^ { * } g ) ( x )$ ; confidence 0.978
  
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032067.png ; $\Pi ( M ) _ { \circlearrowleft } = M _ { I }$ ; confidence 0.349
+
212. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007058.png ; $B ( m , D , n ) < ( 2 m ( m + 1 ) ) ^ { 2 ^ { n - 2 } } D ^ { 2 ^ { n - 1 } }$ ; confidence 0.978
  
213. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064017.png ; $\{ \lambda _ { k } ^ { ( n ) } \} _ { k = 1 } ^ { n }$ ; confidence 0.940
+
213. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005046.png ; $W _ { \Theta } ( z )$ ; confidence 0.978
  
214. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t1300509.png ; $E _ { i } : \Lambda \rightarrow \Lambda$ ; confidence 0.888
+
214. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230135.png ; $\pi ^ { k } : E ^ { k } \rightarrow M$ ; confidence 0.978
  
215. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005030.png ; $\Lambda ( X ) : = X \otimes _ { C } \Lambda$ ; confidence 0.612
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025890/c02589019.png ; $x , y \in H$ ; confidence 0.978
  
216. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005064.png ; $\overline { \Sigma } \square ^ { i } ( f )$ ; confidence 0.824
+
216. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013039.png ; $N * = 0$ ; confidence 0.978
  
217. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005081.png ; $j ^ { s } ( f ) : V \rightarrow J ^ { s } ( V , W )$ ; confidence 0.866
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024068.png ; $L ( E / K , 1 ) \neq 0$ ; confidence 0.978
  
218. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007064.png ; $2 m , j g - \frac { 1 } { q ^ { m } } \in q Z [ [ q ] ]$ ; confidence 0.403
+
218. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602064.png ; $\| W ( 1 - P C ) ^ { - 1 } \| _ { \infty }$ ; confidence 0.978
  
219. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008024.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p :$ ; confidence 0.637
+
219. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300109.png ; $Q _ { D \cup 0 } = ( v ^ { - 1 } - v ) Q _ { D }$ ; confidence 0.978
  
220. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613
+
220. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png ; $( S , g )$ ; confidence 0.978
  
221. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797
+
221. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003038.png ; $A _ { p }$ ; confidence 0.978
  
222. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011035.png ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , - )$ ; confidence 0.894
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202101.png ; $\pi : Z \rightarrow Y$ ; confidence 0.978
  
223. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780
+
223. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005059.png ; $( x _ { 1 } - x _ { 2 } ) ^ { k } [ Y ( u , x _ { 1 } ) , Y ( v , x _ { 2 } ) ] = 0$ ; confidence 0.978
  
224. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130113.png ; $K ^ { b } ( F _ { \Lambda } ) ^ { ( T , T [ i ] ) } = 0$ ; confidence 0.257
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303403.png ; $S _ { 2 } ( M ; q )$ ; confidence 0.978
  
225. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013060.png ; $\Lambda ^ { p } M = M ( \Lambda ^ { t } ) ^ { p }$ ; confidence 0.987
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007083.png ; $\xi \in R ^ { k }$ ; confidence 0.978
  
226. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015044.png ; $K = I _ { 1 } \bowtie \ldots < I _ { r } < T ( S )$ ; confidence 0.121
+
226. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021015.png ; $C ( S ^ { n - 1 } )$ ; confidence 0.978
  
227. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 }$ ; confidence 0.574
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950119.png ; $r > 2$ ; confidence 0.978
  
228. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200194.png ; $1 > \delta _ { 1 } > \delta _ { 2 } \geq \rho$ ; confidence 0.992
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015055.png ; $Y ( r \times s )$ ; confidence 0.978
  
229. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200170.png ; $\operatorname { Re } G _ { 2 } ( r ) \leq - A$ ; confidence 0.927
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978
  
230. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002031.png ; $| \hat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978
  
231. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020203.png ; $G = p \circ q ^ { - 1 } : X \rightarrow K ( Y )$ ; confidence 0.960
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
  
232. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002026.png ; $f : ( X , X _ { 0 } ) \rightarrow ( Y , Y _ { 0 } )$ ; confidence 0.998
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
  
233. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004028.png ; $r \geq ( \sqrt { 7 } - 1 ) n \approx 1.647 n$ ; confidence 0.998
+
233. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840251.png ; $[ A x , y ]$ ; confidence 0.978
  
234. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030101.png ; $\| ( x _ { X } + x ) / 2 \| \rightarrow \| x \|$ ; confidence 0.344
+
234. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090107.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } I _ { n } ( g _ { n } )$ ; confidence 0.978
  
235. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001024.png ; $\operatorname { deg } ( z ^ { x } f ( D ) ) = n$ ; confidence 0.859
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978
  
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005014.png ; $A = A _ { 1 } \oplus \ldots \oplus A _ { i k }$ ; confidence 0.131
+
236. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009042.png ; $t ^ { - 1 } , g _ { i } , t$ ; confidence 0.978
  
237. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006069.png ; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163607.png ; $a d - b c = 1 , \quad c \equiv 0 ( \operatorname { mod } p ) , \quad d \equiv 1 ( \operatorname { mod } p )$ ; confidence 0.978
  
238. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007089.png ; $\| e ^ { i \xi A } \| \leq C ( 1 + | \xi | ) ^ { s }$ ; confidence 0.592
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031086.png ; $A P$ ; confidence 0.978
  
239. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080151.png ; $\mu \in \Omega ^ { - 1,1 } ( \Sigma _ { g } )$ ; confidence 0.995
+
239. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015085.png ; $S ( A )$ ; confidence 0.978
  
240. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008022.png ; $\lambda _ { 0 } < \ldots < \lambda _ { 2 g }$ ; confidence 0.988
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021089.png ; $L ( \Lambda _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.978
  
241. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w12016016.png ; $C ^ { k } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013570/a01357028.png ; $A ( x )$ ; confidence 0.978
  
242. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017069.png ; $\omega ( G ) = \cap _ { p } \omega ^ { p } ( G )$ ; confidence 0.999
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006045.png ; $\partial _ { k } ( m )$ ; confidence 0.978
  
243. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017064.png ; $l \equiv 2 ( \operatorname { mod } 3 )$ ; confidence 0.997
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007093.png ; $\alpha \leq 2$ ; confidence 0.978
  
244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018056.png ; $H ( A ) = \sigma \{ W ^ { ( 2 ) } ( t ) : t \in A \}$ ; confidence 0.998
+
244. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011023.png ; $\{ v _ { i } \}$ ; confidence 0.978
  
245. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201908.png ; $f _ { W } = ( 2 \pi \hbar ) ^ { - 3 N } \psi _ { W }$ ; confidence 0.274
+
245. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004047.png ; $0 < s < 1$ ; confidence 0.978
  
246. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021019.png ; $A ^ { 2 } + B ^ { 2 } + C ^ { 2 } + D ^ { 2 } = 4 m l _ { M }$ ; confidence 0.288
+
246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170133.png ; $M ( n + k + 1 )$ ; confidence 0.978
  
247. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017033.png ; $\{ y _ { s } ^ { ( i ) } : s < t , i = 1 , \dots , n \}$ ; confidence 0.483
+
247. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020212.png ; $\{ \operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta ) \}$ ; confidence 0.978
  
248. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010029.png ; $\forall z ( z \in x \rightarrow z \in y )$ ; confidence 0.772
+
248. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200602.png ; $m = \operatorname { dim } M$ ; confidence 0.978
  
249. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003040.png ; $( Z f ) ( t + 1 , w ) = e ^ { 2 \pi i w } ( Z f ) ( t , w )$ ; confidence 0.652
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025016.png ; $0 < \omega \leq \pi / 6$ ; confidence 0.978
  
250. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012044.png ; $W ^ { \prime \prime } H ^ { \omega } [ 0,1 ]$ ; confidence 0.282
+
250. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062033.png ; $q ( x ) \rightarrow 0$ ; confidence 0.978
  
251. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301304.png ; $x _ { 3 } = r \operatorname { cos } \theta$ ; confidence 0.978
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000199.png ; $\rho ( x : = d )$ ; confidence 0.978
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c0211109.png ; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980
+
252. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004015.png ; $\sum _ { j = 1 } ^ { n } \omega _ { j } ^ { 2 } = 0$ ; confidence 0.978
  
253. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png ; $F _ { \tau } \subset F _ { 3 } \subset S$ ; confidence 0.996
+
253. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010030.png ; $A _ { 2 } ( G )$ ; confidence 0.978
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703045.png ; $n \leq 4$ ; confidence 0.978
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240217.png ; $\operatorname { dim } ( \omega ) = r - q$ ; confidence 0.998
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770174.png ; $q ( x ) \geq - c x ^ { 2 }$ ; confidence 0.978
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
+
257. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047270/h04727018.png ; $p \rightarrow 1$ ; confidence 0.978
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337
+
258. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019038.png ; $[ L ]$ ; confidence 0.978
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040567.png ; $\Lambda _ { D } \operatorname { Th } m D$ ; confidence 0.565
+
259. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260145.png ; $\operatorname { Ext } ( A , B ) = \operatorname { Hom } ( B , Q ( A ) )$ ; confidence 0.978
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \operatorname { tg } \varphi$ ; confidence 0.107
+
260. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070141.png ; $R : A \rightarrow H$ ; confidence 0.978
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686
+
261. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130130.png ; $N _ { 0 } = \frac { \lambda - \delta \xi } { 2 \alpha } , L _ { 0 } = \frac { 2 \beta N _ { 0 } + \gamma \xi ^ { p } - \varepsilon } { \mu _ { 1 } } , F _ { 0 } = \xi$ ; confidence 0.978
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
+
262. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002019.png ; $M _ { \mu } \subset E$ ; confidence 0.978
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040576.png ; $\frac { \varphi } { \square \varphi }$ ; confidence 0.997
+
263. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021048.png ; $\lambda - \lambda _ { i }$ ; confidence 0.978
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200104.png ; $\{ x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } \}$ ; confidence 0.978
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004027.png ; $\Gamma ^ { \prime } \subseteq \Gamma$ ; confidence 1.000
+
266. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026039.png ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.978
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004050.png ; $\mathfrak { A } = \langle A , F \rangle$ ; confidence 0.241
+
267. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005019.png ; $L ^ { p } ( \mu , D )$ ; confidence 0.978
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007013.png ; $q = 2 \pi / L$ ; confidence 0.978
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005046.png ; $0 \leq \beta _ { i } < \alpha _ { i } \leq 2$ ; confidence 0.996
+
269. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840236.png ; $\rho ( A ) \neq \emptyset$ ; confidence 0.978
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005070.png ; $\frac { d u ( t ) } { d t } + A ( t ) u ( t ) = f ( t )$ ; confidence 1.000
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014052.png ; $S ( z ) \equiv \frac { \omega ( z ) } { \sigma ( z ) } ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.978
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050117.png ; $f \in C ( [ 0 , T ] ; X ) \cap L ^ { 1 } ( 0 , T ; Y )$ ; confidence 0.992
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008068.png ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998
+
273. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840126.png ; $\overline { L + L ^ { \perp } } = K$ ; confidence 0.978
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008071.png ; $f \in L ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.992
+
274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017036.png ; $C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 )$ ; confidence 0.978
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008075.png ; $f \in H ^ { 1 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.993
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040176.png ; $\{ a , b \}$ ; confidence 0.977
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501
+
276. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376042.png ; $k = \infty$ ; confidence 0.977
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010023.png ; $A : D ( A ) \subset X \rightarrow 2 ^ { X }$ ; confidence 0.990
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017011.png ; $( I - \Delta ) ^ { \alpha / 2 } = G - \alpha$ ; confidence 0.977
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201108.png ; $\varphi ( \alpha , b , 2 ) = \alpha ^ { b }$ ; confidence 0.673
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180343.png ; $\Phi \{ M , g \} \in S ^ { 1 } ( = R / Z )$ ; confidence 0.977
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i }$ ; confidence 0.789
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200101.png ; $( \mathfrak { g } ^ { \alpha } | \mathfrak { g } ^ { \beta } ) = 0$ ; confidence 0.977
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B ($ ; confidence 0.701
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200201.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } W _ { \mu , i \tau } ( x ) f ( x ) d x$ ; confidence 0.977
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018076.png ; $S _ { n } = \sum _ { i = 0 } ^ { n } c _ { i } t ^ { i }$ ; confidence 0.718
+
281. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027096.png ; $i \geq 0$ ; confidence 0.977
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020065.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { x }$ ; confidence 0.403
+
282. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090228.png ; $X ^ { \omega } \chi ^ { - 1 }$ ; confidence 0.977
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020070.png ; $X = X _ { 1 } \oplus \ldots \oplus X _ { n }$ ; confidence 0.768
+
283. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190111.png ; $\rho \in R$ ; confidence 0.977
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023073.png ; $f \in C ( \Gamma ) \cap L ^ { 1 } ( \Gamma )$ ; confidence 0.998
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060128.png ; $X - T - R$ ; confidence 0.977
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023029.png ; $\Omega = \{ \zeta : \psi ( \zeta ) < 0 \}$ ; confidence 0.999
+
285. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200108.png ; $j \in J ( x - y )$ ; confidence 0.977
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028013.png ; $U _ { z } \overline { x } ( n ) = z ^ { n } R ( n )$ ; confidence 0.329
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012041.png ; $( I - A ) v = c$ ; confidence 0.977
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032047.png ; $E ( Y _ { i } ^ { 2 } ) = \sigma ^ { 2 } < \infty$ ; confidence 0.539
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070236.png ; $\mathfrak { D } ( C , C _ { i } )$ ; confidence 0.977
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201009.png ; $( L F ) _ { n } ( X ) = \{ H _ { n } , F _ { n } ( X ) \}$ ; confidence 0.264
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053014.png ; $L \subset M ( \mu )$ ; confidence 0.977
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210110.png ; $( Hom _ { a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 0.508
+
289. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101605.png ; $\{ L ( n ) : n \geq 0 \}$ ; confidence 0.977
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106605.png ; $f \in L ^ { 1 } \operatorname { loc } ( R )$ ; confidence 0.719
+
290. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010092.png ; $( \neg y \in y )$ ; confidence 0.977
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002040.png ; $b : R ^ { n } \times R ^ { n } \rightarrow R$ ; confidence 0.985
+
291. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017011.png ; $> 6$ ; confidence 0.977
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001096.png ; $\Gamma = \operatorname { Sp } ( 2 n , Z )$ ; confidence 0.839
+
292. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807017.png ; $T ^ { 2 } = Y ^ { \prime } S ^ { - 1 } Y$ ; confidence 0.977
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004033.png ; $W _ { 0 } \supset W _ { 1 } \supset \ldots$ ; confidence 0.853
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009027.png ; $\varphi \in C ^ { 1 } ( R ; R ^ { n } )$ ; confidence 0.977
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004059.png ; $\{ U _ { n } , V _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.737
+
294. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006028.png ; $\operatorname { deg } L > 2 g - 2$ ; confidence 0.977
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040117.png ; $X ^ { * } = X _ { c } ^ { * } \oplus X _ { s } ^ { * }$ ; confidence 0.921
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005030.png ; $\operatorname { dist } ( B , U ^ { c } ) > 0$ ; confidence 0.929
+
296. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001070.png ; $H ^ { 1 } ( D _ { R } ^ { \prime } )$ ; confidence 0.977
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006088.png ; $( A + E ) x = \mu x = ( \mu I ) x \Rightarrow$ ; confidence 0.957
+
297. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010068.png ; $f \in C ^ { G }$ ; confidence 0.977
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006027.png ; $( 1 \pm z z ) ^ { 2 } w _ { z z } \pm n ( n + 1 ) w = 0$ ; confidence 0.996
+
298. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047200/h04720020.png ; $\Gamma$ ; confidence 0.977
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b12008023.png ; $\operatorname { log } ( 1 / \epsilon )$ ; confidence 0.999
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220103.png ; $f ( z ) d z \mapsto \overline { f ( z ) } d z$ ; confidence 0.970
+
300. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090322.png ; $\Lambda ( V )$ ; confidence 0.977

Revision as of 00:10, 13 February 2020

List

1. e12006068.png ; $s : M \rightarrow Y$ ; confidence 0.980

2. a13022015.png ; $r : B \rightarrow A$ ; confidence 0.980

3. l06105068.png ; $\Omega \times T$ ; confidence 0.980

4. v1301108.png ; $\frac { b } { h } = \frac { 1 } { \pi } \operatorname { cosh } ^ { - 1 } \sqrt { 2 } \approx 0.2806$ ; confidence 0.980

5. p12012021.png ; $C _ { A B }$ ; confidence 0.980

6. d12029021.png ; $\sum _ { q = 1 } ^ { \infty } q f ( q )$ ; confidence 0.980

7. a130040120.png ; $\varphi \leftrightarrow \psi \in T$ ; confidence 0.980

8. b12015087.png ; $\operatorname { dim } D = 2 ^ { x }$ ; confidence 0.980

9. d12013017.png ; $S ( V )$ ; confidence 0.980

10. b11004034.png ; $\Theta _ { 0 }$ ; confidence 0.980

11. n067520129.png ; $f = \lambda ^ { p } + \alpha _ { 1 } \lambda ^ { p - 1 } + \ldots + \alpha _ { p }$ ; confidence 0.980

12. t120060126.png ; $[ 0 , Z ]$ ; confidence 0.980

13. b12014047.png ; $a ( z ) = S ( z )$ ; confidence 0.980

14. e035000132.png ; $\epsilon ^ { 2 } = \sum _ { i = 1 } ^ { \infty } \operatorname { min } \{ \lambda _ { i } , f ( \epsilon ) \}$ ; confidence 0.980

15. m13008026.png ; $E [ 0 , \sigma ]$ ; confidence 0.980

16. r12002018.png ; $M _ { 21 } ( q ) \ddot { q } _ { 1 } + M _ { 22 } ( q ) \ddot { q } _ { 2 } + F _ { 2 } ( q , \dot { q } ) = 0$ ; confidence 0.980

17. m13014071.png ; $d \mu = d \sigma _ { 1 } - \delta _ { 0 }$ ; confidence 0.980

18. n1300409.png ; $O ( n ^ { 4 } )$ ; confidence 0.980

19. m06377021.png ; $a _ { i } \in [ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.980

20. h13006016.png ; $\Delta ( z ) = ( 2 \pi ) ^ { 12 } \sum _ { m = 1 } ^ { \infty } \tau ( m ) q ^ { m } ( z ) \in M ( 12 )$ ; confidence 0.980

21. a130050213.png ; $A _ { 1 } = \prod _ { r < 2 } \zeta ( r ) = 2.29$ ; confidence 0.980

22. l12014027.png ; $q ( T ) p ( T ) \leq \operatorname { dim } \operatorname { ker } q ( T ) + \operatorname { dim } \operatorname { ker } p ( T )$ ; confidence 0.980

23. a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980

24. a13024015.png ; $n > m$ ; confidence 0.980

25. a130240220.png ; $n \times n$ ; confidence 0.980

26. c12016016.png ; $j = 1 : n$ ; confidence 0.980

27. d120020174.png ; $( US )$ ; confidence 0.980

28. r13013019.png ; $P _ { \sigma } ^ { 2 } = P _ { \sigma }$ ; confidence 0.980

29. s12032058.png ; $S ( L )$ ; confidence 0.980

30. h0482005.png ; $Z = 1$ ; confidence 0.980

31. b13022045.png ; $\gamma \in K$ ; confidence 0.980

32. d12028080.png ; $K ( z , \zeta )$ ; confidence 0.980

33. s120320104.png ; $\operatorname { dim } ( \wedge ^ { n } V ) = 1$ ; confidence 0.980

34. b120150156.png ; $p _ { i } = p _ { j }$ ; confidence 0.980

35. a120270122.png ; $| G | ^ { - 1 } \sum _ { g \in G } \chi ( g ^ { 2 } )$ ; confidence 0.980

36. a12008025.png ; $V = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.980

37. w12017087.png ; $\iota \omega ( G ) = \omega ( G )$ ; confidence 0.980

38. a130070128.png ; $k > 8$ ; confidence 0.980

39. a130050236.png ; $q > 1$ ; confidence 0.980

40. z13013013.png ; $L ^ { 2 } [ D ]$ ; confidence 0.980

41. l06005050.png ; $( x ^ { 0 } ) ^ { 2 } - \sum _ { t } ( x ^ { t } ) ^ { 2 } = 1 , \quad t > 0$ ; confidence 0.980

42. f120110195.png ; $\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + | y | + 1 } { \varepsilon } \}$ ; confidence 0.980

43. a11070038.png ; $p \geq 2$ ; confidence 0.980

44. j120020143.png ; $Y _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } Y _ { t }$ ; confidence 0.980

45. m12003077.png ; $( \vec { x } , y )$ ; confidence 0.980

46. b13023064.png ; $u | = n$ ; confidence 0.980

47. a13018021.png ; $\Gamma \subseteq \Delta$ ; confidence 0.980

48. l12004094.png ; $p _ { R } = 0.1$ ; confidence 0.980

49. s12026017.png ; $[ D _ { t } , D _ { s } ^ { * } ] = \delta ( t - s ) , [ D _ { t } , D _ { s } ] = [ D _ { t } ^ { * } , D _ { s } ^ { * } ] = 0$ ; confidence 0.980

50. c13009029.png ; $C _ { j } ( x _ { i } ) = \delta _ { i , j }$ ; confidence 0.980

51. o13008069.png ; $p ( x ) \equiv 0$ ; confidence 0.980

52. d12016049.png ; $( M _ { s } f ) ( t )$ ; confidence 0.980

53. i1201003.png ; $\{ X , Y \}$ ; confidence 0.980

54. a120310113.png ; $M ( C ( S ) , \alpha _ { 2 } , G _ { 2 } )$ ; confidence 0.980

55. y12002025.png ; $\nabla _ { A } F _ { A } = 0$ ; confidence 0.980

56. p12017061.png ; $\| \delta _ { A } ( X _ { n } ) \| \rightarrow 0$ ; confidence 0.980

57. r1300107.png ; $x _ { 0 } = 1 / f$ ; confidence 0.980

58. a12005063.png ; $u _ { 0 } \in D ( A ( 0 ) )$ ; confidence 0.980

59. p13007086.png ; $u | _ { E } = - \infty$ ; confidence 0.980

60. p12013039.png ; $S ^ { \prime }$ ; confidence 0.980

61. j13003045.png ; $\{ x y z \} = ( x y ^ { * } z + z y ^ { * } x ) / 2$ ; confidence 0.980

62. c02211042.png ; $p _ { i } ( \theta ) > 0$ ; confidence 0.980

63. t13011025.png ; $( X ( T _ { A } ) , Y ( T _ { A } ) )$ ; confidence 0.980

64. e13006063.png ; $q : Q \rightarrow B$ ; confidence 0.980

65. c0221104.png ; $p _ { 1 } + \ldots + p _ { k } = 1$ ; confidence 0.980

66. t12021031.png ; $t ( M _ { 1 } \oplus M _ { 2 } ) = t ( M _ { 1 } ) t ( M _ { 2 } )$ ; confidence 0.980

67. e12007048.png ; $D ^ { k + 1 } \{ ( c z + d ) ^ { k } F ( M z ) \} =$ ; confidence 0.980

68. a12011026.png ; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980

69. w09759045.png ; $E ( Q )$ ; confidence 0.980

70. i12001039.png ; $\sigma _ { 1 } \prec \sigma _ { 2 }$ ; confidence 0.980

71. a01081080.png ; $n - k$ ; confidence 0.980

72. a13012015.png ; $t > 4$ ; confidence 0.980

73. b12016054.png ; $x _ { i } ^ { \prime }$ ; confidence 0.980

74. f120210102.png ; $L ( u ( z , \lambda ) ) =$ ; confidence 0.980

75. d120230145.png ; $R = L D ^ { - 1 } L ^ { * }$ ; confidence 0.980

76. b11022028.png ; $L _ { \infty } ( M , s ) = L _ { \infty } ( h ^ { i } ( X ) , s )$ ; confidence 0.980

77. a12026062.png ; $A \rightarrow A ^ { * }$ ; confidence 0.980

78. s12005055.png ; $A X = X A$ ; confidence 0.980

79. s13062076.png ; $\mu = d \rho _ { 0 }$ ; confidence 0.980

80. c02531012.png ; $\square$ ; confidence 0.980

81. b01683019.png ; $\epsilon \rightarrow 0$ ; confidence 0.980

82. x12003015.png ; $X f ( 1 )$ ; confidence 0.979

83. a12007062.png ; $A ( 0 ) u _ { 0 } \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.979

84. f13009020.png ; $U _ { m } ( x )$ ; confidence 0.979

85. e1201809.png ; $\operatorname { Re } ( s )$ ; confidence 0.979

86. b12010043.png ; $X _ { i } ( 0 , x _ { i } ) = x _ { i }$ ; confidence 0.979

87. d12023052.png ; $J \Theta ^ { * } = J$ ; confidence 0.979

88. e120190188.png ; $\Phi _ { 1 } , \Phi _ { 2 } \in \Gamma$ ; confidence 0.979

89. h13012013.png ; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \varepsilon$ ; confidence 0.979

90. v13005077.png ; $\omega \in V$ ; confidence 0.979

91. m12011043.png ; $E : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow Z \rightarrow \{ 1 \}$ ; confidence 0.979

92. e0350007.png ; $H _ { \epsilon } ( C , X ) = \operatorname { log } _ { 2 } N _ { \epsilon } ( C , X )$ ; confidence 0.979

93. h04637030.png ; $M _ { f }$ ; confidence 0.979

94. w12017077.png ; $\iota \omega ( G )$ ; confidence 0.979

95. h046010150.png ; $( W ; T ^ { 4 } , T ^ { 4 } )$ ; confidence 0.979

96. d1300108.png ; $h ( x , y ) = F ( \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y ) )$ ; confidence 0.979

97. c1200506.png ; $\mu ( S ) \leq C h$ ; confidence 0.979

98. w120110223.png ; $\langle \xi \rangle = 1 + | \xi |$ ; confidence 0.979

99. l13005040.png ; $k + 2$ ; confidence 0.979

100. a12025040.png ; $k \geq n + 4$ ; confidence 0.979

101. e120190167.png ; $\{ W ^ { + } \cup h _ { 1 } \cup h _ { 2 } \}$ ; confidence 0.979

102. d12002044.png ; $g ( u _ { 1 } ) =$ ; confidence 0.979

103. m13023061.png ; $g \circ \phi = f$ ; confidence 0.979

104. p07469017.png ; $g \in G$ ; confidence 0.979

105. c120180236.png ; $W ( g ) \otimes \ldots \otimes W ( g ) \in \otimes ^ { 4 m } E$ ; confidence 0.979

106. h13002028.png ; $t \in A = \{ 2010213,2111213,2212213,2313213$ ; confidence 0.979

107. i12008011.png ; $\rho _ { i } = ( 1 - S _ { i } ) / 2$ ; confidence 0.979

108. b12055017.png ; $b _ { \gamma } ^ { - 1 } ( t )$ ; confidence 0.979

109. s13058016.png ; $U = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { cos } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.979

110. b12037086.png ; $k \leq n ^ { 1 / 4 }$ ; confidence 0.979

111. a12005048.png ; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979

112. c1301608.png ; $w \in S$ ; confidence 0.979

113. v13005044.png ; $Y ( u , x ) v$ ; confidence 0.979

114. b12022096.png ; $u ^ { n + 1 } ( x )$ ; confidence 0.979

115. f1300905.png ; $U _ { - n } ( x ) = ( - 1 ) ^ { n - 1 } U _ { n } ( x )$ ; confidence 0.979

116. z13011061.png ; $1 / x ( x + 1 )$ ; confidence 0.979

117. s087360318.png ; $5$ ; confidence 0.979

118. b12018042.png ; $( A , P ^ { A } )$ ; confidence 0.979

119. v120020153.png ; $N _ { K } ( F ) \subset X$ ; confidence 0.979

120. s1303405.png ; $L _ { + } = q L _ { 0 }$ ; confidence 0.979

121. e120120101.png ; $= Q ( \theta | \theta ^ { ( t ) } ) - \int \operatorname { log } f ( \phi | \theta ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.979

122. m13025067.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } ( u ^ { * } \rho _ { \varepsilon } ) ( v ^ { * } \sigma _ { \varepsilon } )$ ; confidence 0.979

123. m12016052.png ; $X : = M + r A U B ^ { \prime }$ ; confidence 0.979

124. o13001011.png ; $\Gamma u = u _ { N } + h ( s ) u$ ; confidence 0.979

125. e03500012.png ; $H _ { \epsilon } ( C , X )$ ; confidence 0.979

126. z13002039.png ; $G , G _ { \tau } \subset P$ ; confidence 0.979

127. w11006024.png ; $( C , B , m )$ ; confidence 0.979

128. z13011052.png ; $\{ \mu _ { n } ( k ) \} _ { k = 1 } ^ { \mu _ { n } }$ ; confidence 0.979

129. b13020013.png ; $e _ { i } , f _ { i } , h _ { i }$ ; confidence 0.979

130. g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979

131. k13005023.png ; $N \rightarrow \infty , \sigma \rightarrow 0 , \frac { 1 } { \lambda } = \operatorname { lim } ( \pi \sigma ^ { 2 } N ) \in ] 0 , \infty$ ; confidence 0.979

132. b12051088.png ; $H _ { 0 } ^ { - 1 }$ ; confidence 0.979

133. a13008075.png ; $c _ { n } = \frac { 1 } { \sqrt { n } B ( \frac { n } { 2 } , \frac { 1 } { 2 } ) } = \frac { \Gamma ( \frac { n + 1 } { 2 } ) } { \sqrt { n \pi } \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.979

134. i13007070.png ; $\forall x , y \in P$ ; confidence 0.979

135. d12016062.png ; $L _ { p } ( S ) + L _ { p } ( T )$ ; confidence 0.979

136. a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979

137. b01616036.png ; $0 < c < 1$ ; confidence 0.979

138. t1301005.png ; $\square _ { H } T$ ; confidence 0.979

139. b120040141.png ; $X _ { \theta } = X _ { 0 } ^ { 1 - \theta } X _ { 1 } ^ { \theta }$ ; confidence 0.979

140. d12013013.png ; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.979

141. a12016039.png ; $b A$ ; confidence 0.979

142. a013000145.png ; $\overline { \partial } u = f$ ; confidence 0.979

143. e12007032.png ; $\{ \Gamma , k , v \}$ ; confidence 0.979

144. c11033034.png ; $O ( n ^ { 2 } )$ ; confidence 0.979

145. b130200192.png ; $\epsilon ( s ) = ( - 1 ) ^ { m }$ ; confidence 0.979

146. k05584040.png ; $[ x , y ] = ( J x , y ) , \quad x , y \in K$ ; confidence 0.979

147. s120230123.png ; $\operatorname { cov } ( X ) = V \otimes I _ { n }$ ; confidence 0.979

148. q130050104.png ; $a , b , x \in T$ ; confidence 0.979

149. b12004029.png ; $L _ { \infty } ( \mu ) \subset X \subset L _ { 1 } ( \mu )$ ; confidence 0.979

150. c13009014.png ; $P _ { N } u = \sum _ { j = 0 } ^ { N } u ( x _ { j } ) C _ { j } ( x )$ ; confidence 0.979

151. j13007052.png ; $F ( E ( k , \omega ) ) \subseteq E ( d ( \omega ) k , \eta )$ ; confidence 0.979

152. n12010040.png ; $\| y _ { 1 } - z _ { 1 } \| \leq \varphi ( \xi ) \| y _ { 0 } - z _ { 0 } \|$ ; confidence 0.979

153. c12021025.png ; $P _ { n } ^ { \prime } ( A ) = 0$ ; confidence 0.979

154. d12002052.png ; $u _ { 1 } = u _ { 1 } ^ { * }$ ; confidence 0.979

155. f12005026.png ; $F = F _ { q }$ ; confidence 0.979

156. b1201006.png ; $\frac { d } { d t } F ( t ) = - L F ( t ) + [ L , A ] F ( t )$ ; confidence 0.979

157. k1201108.png ; $L = \partial + u _ { - 1 } ( x ) \partial ^ { - 1 } + u _ { - 2 } ( x ) \partial ^ { - 2 } +$ ; confidence 0.979

158. e12026082.png ; $L ^ { 1 } ( \nu )$ ; confidence 0.979

159. a13008048.png ; $+ \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0$ ; confidence 0.979

160. b120420106.png ; $\phi : G \times G \times G \rightarrow k ^ { * }$ ; confidence 0.979

161. e03500084.png ; $H _ { \epsilon } ^ { \prime } ( \xi )$ ; confidence 0.979

162. i13006055.png ; $S ( \infty ) = 1$ ; confidence 0.979

163. e120190174.png ; $( h _ { 1 } ^ { \prime } , h _ { 2 } ^ { \prime } , p ^ { \prime } , W ^ { \prime } )$ ; confidence 0.979

164. m120120119.png ; $B \in F$ ; confidence 0.979

165. d1203003.png ; $d X ( t ) = \alpha ( t , X ( t ) ) d t + b ( t , X ( t ) ) d B ( t )$ ; confidence 0.979

166. s1201702.png ; $F : X \times D \rightarrow 2 ^ { X } \backslash \{ \emptyset \}$ ; confidence 0.979

167. i12004018.png ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { BM } ( \zeta , z )$ ; confidence 0.979

168. a01107011.png ; $M _ { 1 }$ ; confidence 0.979

169. a0139801.png ; $\{ X _ { t } \}$ ; confidence 0.979

170. t12020016.png ; $M _ { 6 } \geq \kappa > 0$ ; confidence 0.979

171. b12022051.png ; $\partial _ { t } u + \sum _ { j = 1 } ^ { N } \frac { \partial } { \partial x _ { j } } F _ { j } ( u ) = 0$ ; confidence 0.979

172. e1300705.png ; $A \rightarrow \infty$ ; confidence 0.979

173. k12013018.png ; $[ a , b ] = [ - 1,1 ]$ ; confidence 0.979

174. d120230159.png ; $G _ { 0 } = G$ ; confidence 0.979

175. s13065011.png ; $\delta _ { \mu } = \operatorname { min } _ { H } \| H \| _ { \mu }$ ; confidence 0.979

176. a130240520.png ; $\Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.979

177. b13026086.png ; $g : B [ R ] \rightarrow B [ R ]$ ; confidence 0.979

178. i12004034.png ; $z \in D$ ; confidence 0.979

179. s130510136.png ; $\gamma ^ { \prime } ( u ) \notin K$ ; confidence 0.979

180. d12018075.png ; $P ( K )$ ; confidence 0.979

181. h120020131.png ; $B _ { p } ^ { 1 / p }$ ; confidence 0.979

182. b1201605.png ; $1 \leq i , k , j \leq n$ ; confidence 0.979

183. p1201706.png ; $\delta _ { A , A } = \delta _ { A }$ ; confidence 0.979

184. f13005011.png ; $w _ { 1 } = w _ { 2 } = w _ { 3 }$ ; confidence 0.979

185. b12013021.png ; $L ^ { p } ( G )$ ; confidence 0.979

186. g13003015.png ; $A ( \Omega ) = B / I$ ; confidence 0.979

187. c1202807.png ; $X _ { \infty }$ ; confidence 0.979

188. h13006046.png ; $= \cup _ { \beta ^ { \prime } } D \alpha D \beta ^ { \prime } = \cup _ { \alpha ^ { \prime } , \beta ^ { \prime } } D \alpha ^ { \prime } \beta ^ { \prime }$ ; confidence 0.979

189. s12022043.png ; $( M )$ ; confidence 0.979

190. r13008051.png ; $K _ { D } ( z , \zeta ) = \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( z ) \overline { \phi _ { j } ( \zeta ) }$ ; confidence 0.978

191. c0217902.png ; $\sigma ( x )$ ; confidence 0.978

192. f12005014.png ; $F [ T ]$ ; confidence 0.978

193. t120200214.png ; $G _ { 1 } ( k ) = \sum _ { j = 1 } ^ { n } P _ { j } ( k ) z _ { j } ^ { k }$ ; confidence 0.978

194. w13007031.png ; $p _ { k } > 1$ ; confidence 0.978

195. h04601084.png ; $\tau ^ { * } = \tau$ ; confidence 0.978

196. w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978

197. l13005031.png ; $L ( a ) = L _ { N } ( a )$ ; confidence 0.978

198. b13020076.png ; $[ \mathfrak { g } _ { + } , \mathfrak { g } _ { - } ] \subset \mathfrak { h }$ ; confidence 0.978

199. j120020174.png ; $f _ { 1 } = u _ { 1 } + i v _ { 1 }$ ; confidence 0.978

200. f120080176.png ; $B _ { p } ( G ) \subset M A _ { p } ( G )$ ; confidence 0.978

201. w12018085.png ; $R ^ { N } \backslash \{ 0 \}$ ; confidence 0.978

202. b12034077.png ; $f ( z _ { 0 } ) > 0$ ; confidence 0.978

203. a13030062.png ; $T : E \rightarrow F$ ; confidence 0.978

204. m12007058.png ; $\operatorname { log } \sigma _ { 1 }$ ; confidence 0.978

205. w12006087.png ; $T _ { A } M \rightarrow T _ { A } T M \rightarrow T T _ { A } M$ ; confidence 0.978

206. b120420127.png ; $y x = q x y$ ; confidence 0.978

207. z1301304.png ; $x _ { 3 } = r \operatorname { cos } \theta$ ; confidence 0.978

208. y12001095.png ; $R _ { V }$ ; confidence 0.978

209. q13005031.png ; $D \backslash [ 0 , r ]$ ; confidence 0.978

210. a010210133.png ; $g = 1$ ; confidence 0.978

211. k12009033.png ; $( f ^ { * } g ) ( x )$ ; confidence 0.978

212. h13007058.png ; $B ( m , D , n ) < ( 2 m ( m + 1 ) ) ^ { 2 ^ { n - 2 } } D ^ { 2 ^ { n - 1 } }$ ; confidence 0.978

213. o13005046.png ; $W _ { \Theta } ( z )$ ; confidence 0.978

214. e120230135.png ; $\pi ^ { k } : E ^ { k } \rightarrow M$ ; confidence 0.978

215. c02589019.png ; $x , y \in H$ ; confidence 0.978

216. m12013039.png ; $N * = 0$ ; confidence 0.978

217. e12024068.png ; $L ( E / K , 1 ) \neq 0$ ; confidence 0.978

218. h04602064.png ; $\| W ( 1 - P C ) ^ { - 1 } \| _ { \infty }$ ; confidence 0.978

219. j1300109.png ; $Q _ { D \cup 0 } = ( v ^ { - 1 } - v ) Q _ { D }$ ; confidence 0.978

220. t12001048.png ; $( S , g )$ ; confidence 0.978

221. d12003038.png ; $A _ { p }$ ; confidence 0.978

222. s1202101.png ; $\pi : Z \rightarrow Y$ ; confidence 0.978

223. v13005059.png ; $( x _ { 1 } - x _ { 2 } ) ^ { k } [ Y ( u , x _ { 1 } ) , Y ( v , x _ { 2 } ) ] = 0$ ; confidence 0.978

224. s1303403.png ; $S _ { 2 } ( M ; q )$ ; confidence 0.978

225. w12007083.png ; $\xi \in R ^ { k }$ ; confidence 0.978

226. m12021015.png ; $C ( S ^ { n - 1 } )$ ; confidence 0.978

227. a012950119.png ; $r > 2$ ; confidence 0.978

228. m12015055.png ; $Y ( r \times s )$ ; confidence 0.978

229. a11042078.png ; $4$ ; confidence 0.978

230. a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978

231. b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978

232. s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978

233. k055840251.png ; $[ A x , y ]$ ; confidence 0.978

234. w130090107.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } I _ { n } ( g _ { n } )$ ; confidence 0.978

235. a12007051.png ; $f ( t ) \in D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.978

236. h13009042.png ; $t ^ { - 1 } , g _ { i } , t$ ; confidence 0.978

237. b0163607.png ; $a d - b c = 1 , \quad c \equiv 0 ( \operatorname { mod } p ) , \quad d \equiv 1 ( \operatorname { mod } p )$ ; confidence 0.978

238. a13031086.png ; $A P$ ; confidence 0.978

239. f11015085.png ; $S ( A )$ ; confidence 0.978

240. c12021089.png ; $L ( \Lambda _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.978

241. a01357028.png ; $A ( x )$ ; confidence 0.978

242. k13006045.png ; $\partial _ { k } ( m )$ ; confidence 0.978

243. a13007093.png ; $\alpha \leq 2$ ; confidence 0.978

244. c13011023.png ; $\{ v _ { i } \}$ ; confidence 0.978

245. g13004047.png ; $0 < s < 1$ ; confidence 0.978

246. c120170133.png ; $M ( n + k + 1 )$ ; confidence 0.978

247. v120020212.png ; $\{ \operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta ) \}$ ; confidence 0.978

248. e1200602.png ; $m = \operatorname { dim } M$ ; confidence 0.978

249. b13025016.png ; $0 < \omega \leq \pi / 6$ ; confidence 0.978

250. s13062033.png ; $q ( x ) \rightarrow 0$ ; confidence 0.978

251. l057000199.png ; $\rho ( x : = d )$ ; confidence 0.978

252. w13004015.png ; $\sum _ { j = 1 } ^ { n } \omega _ { j } ^ { 2 } = 0$ ; confidence 0.978

253. f13010030.png ; $A _ { 2 } ( G )$ ; confidence 0.978

254. b01703045.png ; $n \leq 4$ ; confidence 0.978

255. s090770174.png ; $q ( x ) \geq - c x ^ { 2 }$ ; confidence 0.978

256. a130240140.png ; $\psi = c ^ { \prime } \beta$ ; confidence 0.978

257. h04727018.png ; $p \rightarrow 1$ ; confidence 0.978

258. c13019038.png ; $[ L ]$ ; confidence 0.978

259. m130260145.png ; $\operatorname { Ext } ( A , B ) = \operatorname { Hom } ( B , Q ( A ) )$ ; confidence 0.978

260. q120070141.png ; $R : A \rightarrow H$ ; confidence 0.978

261. m120130130.png ; $N _ { 0 } = \frac { \lambda - \delta \xi } { 2 \alpha } , L _ { 0 } = \frac { 2 \beta N _ { 0 } + \gamma \xi ^ { p } - \varepsilon } { \mu _ { 1 } } , F _ { 0 } = \xi$ ; confidence 0.978

262. n12002019.png ; $M _ { \mu } \subset E$ ; confidence 0.978

263. f12021048.png ; $\lambda - \lambda _ { i }$ ; confidence 0.978

264. a12010069.png ; $u = u _ { f } \in D ( \Delta )$ ; confidence 0.978

265. b1200104.png ; $\{ x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } \}$ ; confidence 0.978

266. m13026039.png ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.978

267. c12005019.png ; $L ^ { p } ( \mu , D )$ ; confidence 0.978

268. k13007013.png ; $q = 2 \pi / L$ ; confidence 0.978

269. k055840236.png ; $\rho ( A ) \neq \emptyset$ ; confidence 0.978

270. b12014052.png ; $S ( z ) \equiv \frac { \omega ( z ) } { \sigma ( z ) } ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.978

271. a12006019.png ; $( b ( x ) u , u ) \geq 0$ ; confidence 0.978

272. a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978

273. k055840126.png ; $\overline { L + L ^ { \perp } } = K$ ; confidence 0.978

274. d13017036.png ; $C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 )$ ; confidence 0.978

275. a130040176.png ; $\{ a , b \}$ ; confidence 0.977

276. d03376042.png ; $k = \infty$ ; confidence 0.977

277. b12017011.png ; $( I - \Delta ) ^ { \alpha / 2 } = G - \alpha$ ; confidence 0.977

278. c120180343.png ; $\Phi \{ M , g \} \in S ^ { 1 } ( = R / Z )$ ; confidence 0.977

279. b130200101.png ; $( \mathfrak { g } ^ { \alpha } | \mathfrak { g } ^ { \beta } ) = 0$ ; confidence 0.977

280. i1200201.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } W _ { \mu , i \tau } ( x ) f ( x ) d x$ ; confidence 0.977

281. b12027096.png ; $i \geq 0$ ; confidence 0.977

282. i130090228.png ; $X ^ { \omega } \chi ^ { - 1 }$ ; confidence 0.977

283. e120190111.png ; $\rho \in R$ ; confidence 0.977

284. d130060128.png ; $X - T - R$ ; confidence 0.977

285. m1200108.png ; $j \in J ( x - y )$ ; confidence 0.977

286. a12012041.png ; $( I - A ) v = c$ ; confidence 0.977

287. c130070236.png ; $\mathfrak { D } ( C , C _ { i } )$ ; confidence 0.977

288. b12053014.png ; $L \subset M ( \mu )$ ; confidence 0.977

289. f1101605.png ; $\{ L ( n ) : n \geq 0 \}$ ; confidence 0.977

290. z13010092.png ; $( \neg y \in y )$ ; confidence 0.977

291. l12017011.png ; $> 6$ ; confidence 0.977

292. h04807017.png ; $T ^ { 2 } = Y ^ { \prime } S ^ { - 1 } Y$ ; confidence 0.977

293. b13009027.png ; $\varphi \in C ^ { 1 } ( R ; R ^ { n } )$ ; confidence 0.977

294. k12006028.png ; $\operatorname { deg } L > 2 g - 2$ ; confidence 0.977

295. s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977

296. o13001070.png ; $H ^ { 1 } ( D _ { R } ^ { \prime } )$ ; confidence 0.977

297. f13010068.png ; $f \in C ^ { G }$ ; confidence 0.977

298. h04720020.png ; $\Gamma$ ; confidence 0.977

299. a12002021.png ; $F : X \times I \rightarrow Z$ ; confidence 0.977

300. w120090322.png ; $\Lambda ( V )$ ; confidence 0.977

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/21. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/21&oldid=44509