Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/20"
(AUTOMATIC EDIT of page 20 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 20 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021047.png ; $V ( a )$ ; confidence 0.983 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029033.png ; $M ( P )$ ; confidence 0.983 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356014.png ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020065.png ; $> 2$ ; confidence 0.983 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120020/l1200203.png ; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028098.png ; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001038.png ; $\sigma \in G$ ; confidence 0.983 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032015.png ; $p ( [ x , y ] ) = p ( x ) + p ( y )$ ; confidence 0.983 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003032.png ; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png ; $\{ G , \vee , \wedge \}$ ; confidence 0.983 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009084.png ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png ; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201402.png ; $\sigma ( z )$ ; confidence 0.983 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022074.png ; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530309.png ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060179.png ; $x = 2 a$ ; confidence 0.983 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230101.png ; $L \in \Omega ^ { 1 + 1 } ( M ; T M )$ ; confidence 0.983 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601087.png ; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020021.png ; $| \theta ( e ^ { i t } | = 1$ ; confidence 0.982 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070119.png ; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002035.png ; $C E$ ; confidence 0.982 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030010.png ; $D : A \rightarrow E$ ; confidence 0.982 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020208.png ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041015.png ; $( N = 0 )$ ; confidence 0.982 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n1300505.png ; $( s , r , \mu )$ ; confidence 0.982 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010065.png ; $A$ ; confidence 0.982 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png ; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044500/g0445009.png ; $| x | < 1$ ; confidence 0.982 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001052.png ; $M _ { K }$ ; confidence 0.982 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013067.png ; $\lambda \in SP ^ { - } ( n )$ ; confidence 0.982 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002036.png ; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203206.png ; $S T : X \rightarrow Y$ ; confidence 0.982 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011026.png ; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008084.png ; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012038.png ; $Q ( R )$ ; confidence 0.982 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006018.png ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200608.png ; $V _ { y } Y$ ; confidence 0.982 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020109.png ; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008036.png ; $P _ { \theta _ { 0 } }$ ; confidence 0.982 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png ; $F = F _ { L }$ ; confidence 0.982 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028020.png ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022034.png ; $\partial M = \emptyset$ ; confidence 0.982 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840382.png ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006050.png ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203109.png ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda$ ; confidence 0.982 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019091.png ; $( X , \equiv )$ ; confidence 0.982 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025064.png ; $\rho \in D ( R ^ { n } )$ ; confidence 0.982 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015043.png ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png ; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202005.png ; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019034.png ; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060171.png ; $A ( x , y ) = \frac { 1 } { 2 } \int _ { ( x + y ) / 2 } ^ { \infty } q ( t ) d t +$ ; confidence 0.982 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h04632048.png ; $p < 1$ ; confidence 0.982 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040162.png ; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( L )$ ; confidence 0.982 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $C _ { \varphi }$ ; confidence 0.982 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040560/f04056017.png ; $( x ^ { i } )$ ; confidence 0.982 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/t/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png ; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png ; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263073.png ; $\square$ ; confidence 0.982 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080104.png ; $= \| M$ ; confidence 0.982 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004022.png ; $\{ u _ { i } ^ { n + 1 } \}$ ; confidence 0.982 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070100.png ; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180115.png ; $R \subseteq U \times U$ ; confidence 0.982 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003061.png ; $L ^ { 1 } ( m )$ ; confidence 0.982 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062250/m06225024.png ; $M _ { F }$ ; confidence 0.982 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230105.png ; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840313.png ; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008013.png ; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170171.png ; $M _ { p } ( n )$ ; confidence 0.982 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180445.png ; $k \geq n / 2$ ; confidence 0.982 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230123.png ; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602058.png ; $L _ { 2 } [ 0 , \infty )$ ; confidence 0.982 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001011.png ; $x z \leq y z$ ; confidence 0.982 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011031.png ; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012015.png ; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005013.png ; $( k , R )$ ; confidence 0.982 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230149.png ; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508012.png ; $2 \square$ ; confidence 0.982 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015069.png ; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353040.png ; $s > 1$ ; confidence 0.982 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004027.png ; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008022.png ; $L < R$ ; confidence 0.982 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002025.png ; $D \leq 92.4$ ; confidence 0.982 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660286.png ; $C ( f )$ ; confidence 0.982 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022057.png ; $D _ { \xi } \subset R ^ { p }$ ; confidence 0.982 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036029.png ; $i , j , k , l$ ; confidence 0.982 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004058.png ; $s = ( \overline { \zeta } - z )$ ; confidence 0.982 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007020.png ; $m$ ; confidence 0.982 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032097.png ; $m \in N$ ; confidence 0.982 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015044.png ; $\xi \in D ( S )$ ; confidence 0.982 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi x$ ; confidence 0.982 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006017.png ; $\Delta _ { 3 } U = 0$ ; confidence 0.982 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033032.png ; $H ^ { * } ( X , k )$ ; confidence 0.982 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520245.png ; $d _ { i } \in N \cup \{ 0 \}$ ; confidence 0.982 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200407.png ; $F M$ ; confidence 0.982 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001020.png ; $Z ( x ( n ) )$ ; confidence 0.982 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002030.png ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }$ ; confidence 0.982 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002025.png ; $B \cap K$ ; confidence 0.982 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020072.png ; $j | z _ { j } | = 1$ ; confidence 0.982 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090116.png ; $\Gamma ( A _ { 1 } )$ ; confidence 0.982 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062096.png ; $q ( x ) \geq 0$ ; confidence 0.981 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024050.png ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon )$ ; confidence 0.981 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png ; $A \subset A ^ { \prime \prime }$ ; confidence 0.981 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021039.png ; $\delta _ { 0 } ( X )$ ; confidence 0.981 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232053.png ; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310100.png ; $P \neq N P$ ; confidence 0.981 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520126.png ; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008064.png ; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/b/b130/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019055.png ; $M , 2 M$ ; confidence 0.981 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004089.png ; $u _ { L } = 0.75$ ; confidence 0.981 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033010.png ; $H ^ { * } ( M , R )$ ; confidence 0.981 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700027.png ; $\lambda x ( x x )$ ; confidence 0.981 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013034.png ; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017030.png ; $f ( d ) > 0$ ; confidence 0.981 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120133.png ; $C \rightarrow A$ ; confidence 0.981 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840253.png ; $\sigma _ { 0 } ( A )$ ; confidence 0.981 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170280.png ; $N / [ N , N ]$ ; confidence 0.981 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025036.png ; $C _ { A B }$ ; confidence 0.981 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016034.png ; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010049.png ; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501012.png ; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024031.png ; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230136.png ; $n _ { i } \geq p$ ; confidence 0.981 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172021.png ; $F = 0$ ; confidence 0.981 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014033.png ; $\sigma ^ { \prime }$ ; confidence 0.981 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062087.png ; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/d/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230118.png ; $R - Z R Z ^ { * } = G J G ^ { * }$ ; confidence 0.981 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026094.png ; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021017.png ; $t ( M ) = y t ( M - e )$ ; confidence 0.981 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006051.png ; $C ( P )$ ; confidence 0.981 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007018.png ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034033.png ; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017027.png ; $SO ( n , 1 )$ ; confidence 0.981 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006025.png ; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230141.png ; $O ( m ^ { 2 } )$ ; confidence 0.981 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004071.png ; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201902.png ; $P _ { \nu } ( z )$ ; confidence 0.981 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003037.png ; $M _ { 5 }$ ; confidence 0.981 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030019.png ; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008019.png ; $h ( x ) \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.981 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/f/f120/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080136.png ; $G = SO ( 1 , n )$ ; confidence 0.981 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584016.png ; $K _ { + } , K _ { - } \neq \{ 0 \}$ ; confidence 0.981 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/h/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012092.png ; $X = E _ { 0 } ( A ) \otimes X$ ; confidence 0.981 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030025.png ; $L ^ { 1 } ( R ^ { + } , \omega )$ ; confidence 0.981 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030096.png ; $K _ { i } = K$ ; confidence 0.981 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002020.png ; $A ( \Omega )$ ; confidence 0.981 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006058.png ; $A \rightarrow R$ ; confidence 0.981 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007061.png ; $\forall x , y \in P : = \{ x : x \} = 0 \}$ ; confidence 0.981 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442032.png ; $T _ { 0 } = 0$ ; confidence 0.981 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/l/l120/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l1200106.png ; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200403.png ; $F _ { L } ( a , x )$ ; confidence 0.981 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007029.png ; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602047.png ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $R ^ { p }$ ; confidence 0.981 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027013.png ; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160129.png ; $B < A$ ; confidence 0.981 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198036.png ; $x , y \in G$ ; confidence 0.981 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003064.png ; $L ^ { 2 } ( Q )$ ; confidence 0.981 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b12025012.png ; $T \rightarrow G$ ; confidence 0.981 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028058.png ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020201.png ; $( p , q ) \subset F$ ; confidence 0.981 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009012.png ; $a ^ { i } x$ ; confidence 0.981 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049019.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058860/l05886011.png ; $b = \infty$ ; confidence 0.981 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021640/c0216407.png ; $\alpha \in C$ ; confidence 0.981 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010117.png ; $\Phi _ { \sigma }$ ; confidence 0.981 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008014.png ; $w L , v K$ ; confidence 0.981 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300207.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004090.png ; $p _ { L } = 1.0$ ; confidence 0.981 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201602.png ; $f \in C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.981 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028019.png ; $A ( K ) ^ { * }$ ; confidence 0.981 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005044.png ; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050114.png ; $0 \leq k < d$ ; confidence 0.981 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300307.png ; $\psi _ { N } ( x - k )$ ; confidence 0.981 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/s/s130/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051018.png ; $F ( u ) = \emptyset$ ; confidence 0.981 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006082.png ; $g \in D \subset H$ ; confidence 0.981 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404907.png ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001090.png ; $Z ( e )$ ; confidence 0.980 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305809.png ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110730/b1107308.png ; $j \geq 0$ ; confidence 0.980 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012027.png ; $\sigma ( K ) \leq - 4$ ; confidence 0.980 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202907.png ; $M \rightarrow P$ ; confidence 0.980 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007068.png ; $u \in L$ ; confidence 0.980 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020156.png ; $f \in H ^ { 1 }$ ; confidence 0.980 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210109.png ; $p _ { i } ( \lambda )$ ; confidence 0.980 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010016.png ; $y ( x _ { 0 } + h )$ ; confidence 0.980 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c0211109.png ; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053011.png ; $M ( \nu )$ ; confidence 0.980 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029053.png ; $x ^ { 7 }$ ; confidence 0.980 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840204.png ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 }$ ; confidence 0.980 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001010.png ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k } \end{array} \right.$ ; confidence 0.980 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029051.png ; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003052.png ; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150129.png ; $A - S \in \Phi ( X , Y )$ ; confidence 0.980 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024051.png ; $p \geq 0$ ; confidence 0.980 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065064.png ; $I = [ - 1,1 ]$ ; confidence 0.980 |
Revision as of 00:10, 13 February 2020
List
1.
; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983
2.
; $V ( a )$ ; confidence 0.983
3.
; $M ( P )$ ; confidence 0.983
4.
; $p \in \overline { A \cup q }$ ; confidence 0.983
5.
; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983
6.
; $> 2$ ; confidence 0.983
7.
; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983
8.
; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983
9.
; $\sigma \in G$ ; confidence 0.983
10.
; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983
11.
; $p ( [ x , y ] ) = p ( x ) + p ( y )$ ; confidence 0.983
12.
; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983
13.
; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983
14.
; $\{ G , \vee , \wedge \}$ ; confidence 0.983
15.
; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983
16.
; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983
17.
; $\omega ( v , J v ) > 0$ ; confidence 0.983
18.
; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983
19.
; $\sigma ( z )$ ; confidence 0.983
20.
; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983
21.
; $m ( \emptyset ) = 0$ ; confidence 0.983
22.
; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983
23.
; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983
24.
; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983
25.
; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983
26.
; $x = 2 a$ ; confidence 0.983
27.
; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983
28.
; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983
29.
; $L \in \Omega ^ { 1 + 1 } ( M ; T M )$ ; confidence 0.983
30.
; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983
31.
; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983
32.
; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983
33.
; $| \theta ( e ^ { i t } | = 1$ ; confidence 0.982
34.
; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982
35.
; $C E$ ; confidence 0.982
36.
; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982
37.
; $q ( x ) \rightarrow + \infty$ ; confidence 0.982
38.
; $D : A \rightarrow E$ ; confidence 0.982
39.
; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982
40.
; $( N = 0 )$ ; confidence 0.982
41.
; $( s , r , \mu )$ ; confidence 0.982
42.
; $A$ ; confidence 0.982
43.
; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982
44.
; $| x | < 1$ ; confidence 0.982
45.
; $M _ { K }$ ; confidence 0.982
46.
; $\lambda \in SP ^ { - } ( n )$ ; confidence 0.982
47.
; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982
48.
; $S T : X \rightarrow Y$ ; confidence 0.982
49.
; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982
50.
; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982
51.
; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982
52.
; $Q ( R )$ ; confidence 0.982
53.
; $f : \overline { M } \rightarrow K$ ; confidence 0.982
54.
; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982
55.
; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982
56.
; $V _ { y } Y$ ; confidence 0.982
57.
; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982
58.
; $P _ { \theta _ { 0 } }$ ; confidence 0.982
59.
; $I = ( 0 , q ]$ ; confidence 0.982
60.
; $F = F _ { L }$ ; confidence 0.982
61.
; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982
62.
; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982
63.
; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982
64.
; $D ^ { \lambda }$ ; confidence 0.982
65.
; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982
66.
; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982
67.
; $\partial M = \emptyset$ ; confidence 0.982
68.
; $A , B , C \in C$ ; confidence 0.982
69.
; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982
70.
; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982
71.
; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda$ ; confidence 0.982
72.
; $( X , \equiv )$ ; confidence 0.982
73.
; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982
74.
; $\rho \in D ( R ^ { n } )$ ; confidence 0.982
75.
; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982
76.
; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982
77.
; $L _ { \infty } ( T )$ ; confidence 0.982
78.
; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982
79.
; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982
80.
; $A ( x , y ) = \frac { 1 } { 2 } \int _ { ( x + y ) / 2 } ^ { \infty } q ( t ) d t +$ ; confidence 0.982
81.
; $p < 1$ ; confidence 0.982
82.
; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982
83.
; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982
84.
; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982
85.
; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982
86.
; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982
87.
; $\square ^ { * }$ ; confidence 0.982
88.
; $1 \rightarrow \infty$ ; confidence 0.982
89.
; $( L )$ ; confidence 0.982
90.
; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
91.
; $C _ { \varphi }$ ; confidence 0.982
92.
; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
93.
; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982
94.
; $( x ^ { i } )$ ; confidence 0.982
95.
; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982
96.
; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982
97.
; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982
98.
; $\square$ ; confidence 0.982
99.
; $= \| M$ ; confidence 0.982
100.
; $\sigma ( n ) > 2 n$ ; confidence 0.982
101.
; $\{ u _ { i } ^ { n + 1 } \}$ ; confidence 0.982
102.
; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982
103.
; $R \subseteq U \times U$ ; confidence 0.982
104.
; $L ^ { 1 } ( m )$ ; confidence 0.982
105.
; $M _ { F }$ ; confidence 0.982
106.
; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982
107.
; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982
108.
; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982
109.
; $M _ { p } ( n )$ ; confidence 0.982
110.
; $k \geq n / 2$ ; confidence 0.982
111.
; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982
112.
; $L _ { 2 } [ 0 , \infty )$ ; confidence 0.982
113.
; $x z \leq y z$ ; confidence 0.982
114.
; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982
115.
; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982
116.
; $( k , R )$ ; confidence 0.982
117.
; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982
118.
; $2 \square$ ; confidence 0.982
119.
; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982
120.
; $s > 1$ ; confidence 0.982
121.
; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982
122.
; $L < R$ ; confidence 0.982
123.
; $D \leq 92.4$ ; confidence 0.982
124.
; $C ( f )$ ; confidence 0.982
125.
; $D _ { \xi } \subset R ^ { p }$ ; confidence 0.982
126.
; $i , j , k , l$ ; confidence 0.982
127.
; $s = ( \overline { \zeta } - z )$ ; confidence 0.982
128.
; $m$ ; confidence 0.982
129.
; $m \in N$ ; confidence 0.982
130.
; $\xi \in D ( S )$ ; confidence 0.982
131.
; $\pi x$ ; confidence 0.982
132.
; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982
133.
; $\Delta _ { 3 } U = 0$ ; confidence 0.982
134.
; $H ^ { * } ( X , k )$ ; confidence 0.982
135.
; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982
136.
; $d _ { i } \in N \cup \{ 0 \}$ ; confidence 0.982
137.
; $L ^ { \infty } ( Q )$ ; confidence 0.982
138.
; $F M$ ; confidence 0.982
139.
; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982
140.
; $Z ( x ( n ) )$ ; confidence 0.982
141.
; $f \in C ( X )$ ; confidence 0.982
142.
; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }$ ; confidence 0.982
143.
; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982
144.
; $B \cap K$ ; confidence 0.982
145.
; $j | z _ { j } | = 1$ ; confidence 0.982
146.
; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982
147.
; $\Gamma ( A _ { 1 } )$ ; confidence 0.982
148.
; $q ( x ) \geq 0$ ; confidence 0.981
149.
; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981
150.
; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon )$ ; confidence 0.981
151.
; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981
152.
; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981
153.
; $A \subset A ^ { \prime \prime }$ ; confidence 0.981
154.
; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981
155.
; $\delta _ { 0 } ( X )$ ; confidence 0.981
156.
; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981
157.
; $P \neq N P$ ; confidence 0.981
158.
; $K / k$ ; confidence 0.981
159.
; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981
160.
; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981
161.
; $M , 2 M$ ; confidence 0.981
162.
; $u _ { L } = 0.75$ ; confidence 0.981
163.
; $H ^ { * } ( M , R )$ ; confidence 0.981
164.
; $\zeta _ { G } ( z )$ ; confidence 0.981
165.
; $\lambda x ( x x )$ ; confidence 0.981
166.
; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981
167.
; $f ( d ) > 0$ ; confidence 0.981
168.
; $C \rightarrow A$ ; confidence 0.981
169.
; $\sigma _ { 0 } ( A )$ ; confidence 0.981
170.
; $N / [ N , N ]$ ; confidence 0.981
171.
; $C ( X )$ ; confidence 0.981
172.
; $C _ { A B }$ ; confidence 0.981
173.
; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981
174.
; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981
175.
; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981
176.
; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981
177.
; $n _ { i } \geq p$ ; confidence 0.981
178.
; $F = 0$ ; confidence 0.981
179.
; $\sigma ^ { \prime }$ ; confidence 0.981
180.
; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981
181.
; $C _ { 2 } > 0$ ; confidence 0.981
182.
; $R - Z R Z ^ { * } = G J G ^ { * }$ ; confidence 0.981
183.
; $A _ { 1 } ( s )$ ; confidence 0.981
184.
; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981
185.
; $t ( M ) = y t ( M - e )$ ; confidence 0.981
186.
; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
187.
; $C ( P )$ ; confidence 0.981
188.
; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981
189.
; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981
190.
; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
191.
; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981
192.
; $SO ( n , 1 )$ ; confidence 0.981
193.
; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981
194.
; $O ( m ^ { 2 } )$ ; confidence 0.981
195.
; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981
196.
; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981
197.
; $P _ { \nu } ( z )$ ; confidence 0.981
198.
; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981
199.
; $M _ { 5 }$ ; confidence 0.981
200.
; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981
201.
; $h ( x ) \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.981
202.
; $G = SO ( 1 , n )$ ; confidence 0.981
203.
; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981
204.
; $x > 0$ ; confidence 0.981
205.
; $K _ { + } , K _ { - } \neq \{ 0 \}$ ; confidence 0.981
206.
; $X = E _ { 0 } ( A ) \otimes X$ ; confidence 0.981
207.
; $L ^ { 1 } ( R ^ { + } , \omega )$ ; confidence 0.981
208.
; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981
209.
; $K _ { i } = K$ ; confidence 0.981
210.
; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981
211.
; $( g )$ ; confidence 0.981
212.
; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
213.
; $\| A \| _ { \infty }$ ; confidence 0.981
214.
; $R [ H \times H$ ; confidence 0.981
215.
; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981
216.
; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
217.
; $A x = b$ ; confidence 0.981
218.
; $\phi \in H$ ; confidence 0.981
219.
; $P Q$ ; confidence 0.981
220.
; $A ( \Omega )$ ; confidence 0.981
221.
; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981
222.
; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981
223.
; $u _ { \Phi } ( x ; t )$ ; confidence 0.981
224.
; $A \rightarrow R$ ; confidence 0.981
225.
; $\forall x , y \in P : = \{ x : x \} = 0 \}$ ; confidence 0.981
226.
; $T _ { 0 } = 0$ ; confidence 0.981
227.
; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981
228.
; $F _ { L } ( a , x )$ ; confidence 0.981
229.
; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981
230.
; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981
231.
; $R ^ { p }$ ; confidence 0.981
232.
; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981
233.
; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981
234.
; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981
235.
; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981
236.
; $B < A$ ; confidence 0.981
237.
; $x , y \in G$ ; confidence 0.981
238.
; $L ^ { 2 } ( Q )$ ; confidence 0.981
239.
; $\epsilon : A \rightarrow R$ ; confidence 0.981
240.
; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981
241.
; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981
242.
; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981
243.
; $f ( x _ { 0 } )$ ; confidence 0.981
244.
; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981
245.
; $T \rightarrow G$ ; confidence 0.981
246.
; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981
247.
; $( p , q ) \subset F$ ; confidence 0.981
248.
; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981
249.
; $a ^ { i } x$ ; confidence 0.981
250.
; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981
251.
; $\infty \in H ^ { * }$ ; confidence 0.981
252.
; $\operatorname { log } \alpha$ ; confidence 0.981
253.
; $b = \infty$ ; confidence 0.981
254.
; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981
255.
; $\alpha \in C$ ; confidence 0.981
256.
; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981
257.
; $\Phi _ { \sigma }$ ; confidence 0.981
258.
; $w L , v K$ ; confidence 0.981
259.
; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981
260.
; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981
261.
; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981
262.
; $\lambda ^ { * } > 0$ ; confidence 0.981
263.
; $p _ { L } = 1.0$ ; confidence 0.981
264.
; $f \in C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.981
265.
; $A ( K ) ^ { * }$ ; confidence 0.981
266.
; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981
267.
; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981
268.
; $0 \leq k < d$ ; confidence 0.981
269.
; $\psi _ { N } ( x - k )$ ; confidence 0.981
270.
; $F ( u ) = \emptyset$ ; confidence 0.981
271.
; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981
272.
; $g \in D \subset H$ ; confidence 0.981
273.
; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981
274.
; $Z ( e )$ ; confidence 0.980
275.
; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980
276.
; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980
277.
; $j \geq 0$ ; confidence 0.980
278.
; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980
279.
; $\sigma ( K ) \leq - 4$ ; confidence 0.980
280.
; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980
281.
; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980
282.
; $M \rightarrow P$ ; confidence 0.980
283.
; $u \in L$ ; confidence 0.980
284.
; $f \in H ^ { 1 }$ ; confidence 0.980
285.
; $p _ { i } ( \lambda )$ ; confidence 0.980
286.
; $y ( x _ { 0 } + h )$ ; confidence 0.980
287.
; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980
288.
; $M ( \nu )$ ; confidence 0.980
289.
; $x ^ { 7 }$ ; confidence 0.980
290.
; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 }$ ; confidence 0.980
291.
; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980
292.
; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980
293.
; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k } \end{array} \right.$ ; confidence 0.980
294.
; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980
295.
; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980
296.
; $h ( \psi ) \in F$ ; confidence 0.980
297.
; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980
298.
; $A - S \in \Phi ( X , Y )$ ; confidence 0.980
299.
; $p \geq 0$ ; confidence 0.980
300.
; $I = [ - 1,1 ]$ ; confidence 0.980
Maximilian Janisch/latexlist/latex/NoNroff/20. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/20&oldid=44508