Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/20"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 20 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 20 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007033.png ; $X _ { i } \mapsto X _ { i } + \alpha _ { i } X _ { n }$ ; confidence 0.867
+
1. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983
  
2. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012016.png ; $\| f ( x ) - \alpha ( x ) \| \leq \varepsilon$ ; confidence 0.520
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021047.png ; $V ( a )$ ; confidence 0.983
  
3. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006042.png ; $\operatorname { succ } ( x ) = \{ y : x < p y \}$ ; confidence 0.578
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029033.png ; $M ( P )$ ; confidence 0.983
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005040.png ; $C _ { + } : = \{ k : \operatorname { Im } k > 0 \}$ ; confidence 0.472
+
4. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983
  
5. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005022.png ; $r _ { \pm } ( - k ) = \overline { r _ { \pm } ( k ) }$ ; confidence 0.925
+
5. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356014.png ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060144.png ; $C _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020065.png ; $> 2$ ; confidence 0.983
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060137.png ; $k [ 1 - S ( k ) + \frac { Q } { i k } ] \in L ^ { 2 } ( R )$ ; confidence 0.447
+
7. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120020/l1200203.png ; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008099.png ; $S _ { i - 1 } \rightarrow \langle m \rangle$ ; confidence 0.306
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028098.png ; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090186.png ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 )$ ; confidence 0.957
+
9. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001038.png ; $\sigma \in G$ ; confidence 0.983
  
10. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001043.png ; $( \partial _ { 1 } , \dots , \partial _ { n } )$ ; confidence 0.696
+
10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983
  
11. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002045.png ; $P ( X = 0 ) \leq e ^ { - \Omega ( 1 / ( n p ^ { 2 } ) ) }$ ; confidence 0.287
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032015.png ; $p ( [ x , y ] ) = p ( x ) + p ( y )$ ; confidence 0.983
  
12. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002099.png ; $Y _ { t } = B _ { \operatorname { min } } ( t , 1 )$ ; confidence 0.749
+
12. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983
  
13. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001038.png ; $( \nabla _ { X } J ) Y = g ( X , Y ) Z - \alpha ( Y ) X$ ; confidence 0.910
+
13. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003032.png ; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983
  
14. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001034.png ; $g ( X , Y ) = g ( X , J Y ) + \alpha ( X ) \alpha ( Y )$ ; confidence 0.331
+
14. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004022.png ; $\{ G , \vee , \wedge \}$ ; confidence 0.983
  
15. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002040.png ; $- P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) < 0 ] =$ ; confidence 0.288
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983
  
16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008080.png ; $\alpha = ( \alpha 0 , \dots , \alpha _ { m } )$ ; confidence 0.444
+
16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009084.png ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983
  
17. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840226.png ; $\operatorname { Im } \sigma ( A | L ) \geq 0$ ; confidence 0.541
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983
  
18. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584031.png ; $( x , y ) = [ x _ { + } , y _ { + } ] - [ x _ { - } , y _ { - } ]$ ; confidence 0.835
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005068.png ; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983
  
19. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003029.png ; $\operatorname { Ric } ( \omega ) = \omega$ ; confidence 0.996
+
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201402.png ; $\sigma ( z )$ ; confidence 0.983
  
20. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100109.png ; $a \preceq b \Rightarrow a + c \preceq b + c$ ; confidence 0.598
+
20. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983
  
21. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020102.png ; $x \preceq z \preceq y \Rightarrow z \in H$ ; confidence 0.878
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983
  
22. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003020.png ; $\operatorname { inf } ( | \mu | , | \nu | ) = 0$ ; confidence 0.988
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022074.png ; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983
  
23. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000144.png ; $( x : \sigma ) \in \Gamma \vdash x : \sigma$ ; confidence 0.480
+
23. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983
  
24. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700063.png ; $( \ldots ( F A _ { 1 } ) A _ { 2 } ) \ldots A _ { N } )$ ; confidence 0.420
+
24. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530309.png ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100127.png ; $u _ { j } = ( - \Delta + m ^ { 2 } ) ^ { - 1 / 2 } f _ { j }$ ; confidence 0.958
+
25. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983
  
26. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010086.png ; $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$ ; confidence 0.999
+
26. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060179.png ; $x = 2 a$ ; confidence 0.983
  
27. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006016.png ; $z _ { 0 } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.985
+
27. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983
  
28. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006017.png ; $z _ { i } \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.986
+
28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983
  
29. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006073.png ; $( 20 , \dots , z _ { r } - 1 ) \neq ( 0 , \dots , 0 )$ ; confidence 0.479
+
29. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230101.png ; $L \in \Omega ^ { 1 + 1 } ( M ; T M )$ ; confidence 0.983
  
30. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} _ { q u } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.300
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983
  
31. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120172.png ; $K _ { S } [ \overline { \sigma } ] \cap K _ { t }$ ; confidence 0.333
+
31. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983
  
32. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010039.png ; $B f = F ^ { - 1 } [ b ( x , t , \alpha ) \tilde { f } ]$ ; confidence 0.960
+
32. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601087.png ; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983
  
33. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170262.png ; $d _ { 1 } ( e _ { 1 } ^ { 2 } ) = g _ { i } e _ { 0 } - e _ { 0 }$ ; confidence 0.098
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020021.png ; $| \theta ( e ^ { i t } | = 1$ ; confidence 0.982
  
34. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170251.png ; $X \stackrel { f } { \rightarrow } Y ^ { g } , X$ ; confidence 0.083
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070119.png ; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982
  
35. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0$ ; confidence 0.695
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002035.png ; $C E$ ; confidence 0.982
  
36. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002063.png ; $\hat { M } _ { k } \times S ^ { 1 } \times R ^ { 3 }$ ; confidence 0.461
+
36. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982
  
37. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009030.png ; $y ^ { \prime \prime } + b y ^ { \prime } + c y = 0$ ; confidence 0.998
+
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982
  
38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011019.png ; $\partial T ( h ) = \partial F \times S ^ { 1 }$ ; confidence 0.916
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030010.png ; $D : A \rightarrow E$ ; confidence 0.982
  
39. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110114.png ; $( \partial \phi / \partial x _ { i } ) | _ { t }$ ; confidence 0.966
+
39. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020208.png ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982
  
40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013028.png ; $\frac { d N } { d t } = \frac { d n } { d t } = f ( N ) =$ ; confidence 0.927
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041015.png ; $( N = 0 )$ ; confidence 0.982
  
41. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796
+
41. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n1300505.png ; $( s , r , \mu )$ ; confidence 0.982
  
42. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140146.png ; $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$ ; confidence 0.585
+
42. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010065.png ; $A$ ; confidence 0.982
  
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014058.png ; $\int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) )$ ; confidence 0.925
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005031.png ; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982
  
44. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019028.png ; $m _ { i } + j = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.421
+
44. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044500/g0445009.png ; $| x | < 1$ ; confidence 0.982
  
45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302004.png ; $P = \omega ^ { - 1 } : T ^ { * } M \rightarrow T M$ ; confidence 0.985
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001052.png ; $M _ { K }$ ; confidence 0.982
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022036.png ; $V _ { 1 } = \rho _ { 1 } \oplus \rho _ { 1 } 96883$ ; confidence 0.576
+
46. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013067.png ; $\lambda \in SP ^ { - } ( n )$ ; confidence 0.982
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023027.png ; $\operatorname { max } \{ 1 / t , 1 / ( T - t ) \}$ ; confidence 0.998
+
47. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002036.png ; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982
  
48. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023056.png ; $\operatorname { max } \{ 1 / s , 1 / ( t - s ) \}$ ; confidence 0.985
+
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203206.png ; $S T : X \rightarrow Y$ ; confidence 0.982
  
49. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230117.png ; $\alpha : X _ { n } \rightarrow X ^ { \prime }$ ; confidence 0.812
+
49. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011026.png ; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982
  
50. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027019.png ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678
+
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982
  
51. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025086.png ; $M _ { i } ( R ^ { n } ) \subset M _ { i + 1 } ( R ^ { n } )$ ; confidence 0.913
+
51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008084.png ; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982
  
52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250104.png ; $u v - ( T _ { d } v + T _ { v } u ) \in H ^ { r } ( R ^ { n } )$ ; confidence 0.281
+
52. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012038.png ; $Q ( R )$ ; confidence 0.982
  
53. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
+
53. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982
  
54. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018095.png ; $\mu ( 0,1 ) = q _ { 2 } - q _ { 3 } + q _ { 4 } - \ldots$ ; confidence 0.722
+
54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982
  
55. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180166.png ; $\mu ( M ) = \mu ( M \backslash a ) - \mu ( M / a )$ ; confidence 0.926
+
55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006018.png ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982
  
56. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002028.png ; $Y = \cup _ { \alpha \in [ 0,1 ] } Y _ { \alpha }$ ; confidence 0.605
+
56. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200608.png ; $V _ { y } Y$ ; confidence 0.982
  
57. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002016.png ; $k _ { \mu } = \operatorname { log } L _ { \mu }$ ; confidence 0.993
+
57. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020109.png ; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982
  
58. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003057.png ; $( L - \operatorname { Re } ( \lambda I ) u = f$ ; confidence 0.767
+
58. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008036.png ; $P _ { \theta _ { 0 } }$ ; confidence 0.982
  
59. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704
+
59. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982
  
60. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011041.png ; $\underline { x } = ( x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.356
+
60. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004064.png ; $F = F _ { L }$ ; confidence 0.982
  
61. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520139.png ; $e _ { j } ^ { n _ { i j } } \in E _ { A , K [ \lambda ] }$ ; confidence 0.944
+
61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982
  
62. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752022.png ; $A \in M _ { \operatorname { max } _ { n } } ( K )$ ; confidence 0.123
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028020.png ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982
  
63. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520314.png ; $\{ \alpha ( f ) : f \in L _ { 2 } ( M , \sigma ) \}$ ; confidence 0.974
+
63. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982
  
64. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520207.png ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944
+
64. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982
  
65. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o0681703.png ; $\omega ^ { 2 } = \int _ { 0 } ^ { 1 } Z ^ { 2 } ( t ) d t$ ; confidence 0.992
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982
  
66. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005028.png ; $\varphi + = W _ { \Theta } ( z ) \varphi _ { - }$ ; confidence 0.911
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982
  
67. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d033210100.png ; $\lambda = ( \lambda _ { 1 } , \lambda _ { 2 } )$ ; confidence 1.000
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022034.png ; $\partial M = \emptyset$ ; confidence 0.982
  
68. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006071.png ; $t ^ { p } \operatorname { log } ^ { \sigma } t$ ; confidence 0.962
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982
  
69. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013018.png ; $\| \lambda \theta ^ { N } \| \rightarrow 0$ ; confidence 0.342
+
69. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840382.png ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982
  
70. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015047.png ; $x \preceq y \preceq z \Rightarrow y \in H$ ; confidence 0.822
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006050.png ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982
  
71. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014034.png ; $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ ; confidence 0.427
+
71. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203109.png ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda$ ; confidence 0.982
  
72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017061.png ; $\| \delta _ { A } ( X _ { n } ) \| \rightarrow 0$ ; confidence 0.980
+
72. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019091.png ; $( X , \equiv )$ ; confidence 0.982
  
73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200202.png ; $A = \operatorname { Fun } _ { q } ( SL ( n , C ) )$ ; confidence 0.278
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982
  
74. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200207.png ; $T \in \operatorname { Mat } ( n ) \otimes A$ ; confidence 0.927
+
74. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025064.png ; $\rho \in D ( R ^ { n } )$ ; confidence 0.982
  
75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001030.png ; $- t / 2 < t _ { 1 } \leq \ldots \leq t _ { n } < t / 2$ ; confidence 0.911
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015043.png ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982
  
76. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005024.png ; $\alpha \mapsto f ( x ^ { k } + \alpha d ^ { k } )$ ; confidence 0.995
+
76. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png ; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982
  
77. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008090.png ; $\rho ( x ) = \lambda \int _ { 0 } ^ { x } y d B ( y )$ ; confidence 0.967
+
77. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982
  
78. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008032.png ; $\sigma _ { p } = \sum _ { k = 1 } ^ { p } \rho _ { p }$ ; confidence 0.985
+
78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202005.png ; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982
  
79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005030.png ; $G \rightarrow \operatorname { Aut } ( A )$ ; confidence 0.544
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019034.png ; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982
  
80. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007066.png ; $f ( x ) : = \sum _ { j = 1 } ^ { J } K ( x , y ; ) c j , c j =$ ; confidence 0.277
+
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060171.png ; $A ( x , y ) = \frac { 1 } { 2 } \int _ { ( x + y ) / 2 } ^ { \infty } q ( t ) d t +$ ; confidence 0.982
  
81. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007032.png ; $( u , v ) _ { - } = ( A ^ { 1 / 2 } u , A ^ { 1 / 2 } v ) _ { 0 }$ ; confidence 0.994
+
81. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046320/h04632048.png ; $p < 1$ ; confidence 0.982
  
82. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011044.png ; $\Rightarrow w ( x _ { 1 } , \dots , x _ { x } ) = e$ ; confidence 0.344
+
82. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040162.png ; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s1301105.png ; $Z ^ { + } [ x _ { 1 } , \ldots , x _ { n } ] ^ { S _ { n } }$ ; confidence 0.109
+
83. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982
  
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s1304008.png ; $X ^ { P } = \{ x \in X : g x = x , \forall g \in P \}$ ; confidence 0.488
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982
  
85. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044014.png ; $[ W , Z \wedge D X ] * \simeq [ W \wedge X , Z ] *$ ; confidence 0.600
+
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982
  
86. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045052.png ; $- 3 P [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ]$ ; confidence 0.709
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982
  
87. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026020.png ; $f ^ { ( n ) } \in L ^ { 2 } \overline { ( R ^ { n } ) }$ ; confidence 0.435
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059052.png ; $R = \{ z : | \operatorname { arg } z | < \pi \}$ ; confidence 0.849
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067015.png ; $( p : A \rightarrow D , q : B \rightarrow D )$ ; confidence 0.909
+
89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( L )$ ; confidence 0.982
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320125.png ; $\varphi = ( \varphi _ { 0 } , \varphi ^ { * } )$ ; confidence 0.966
+
90. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320104.png ; $\operatorname { dim } ( \wedge ^ { n } V ) = 1$ ; confidence 0.980
+
91. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $C _ { \varphi }$ ; confidence 0.982
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050162.png ; $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = B _ { 4 }$ ; confidence 0.841
+
92. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
  
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005045.png ; $\Gamma _ { X } \subset R ^ { n } \times R ^ { p }$ ; confidence 0.556
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982
  
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200509.png ; $d f _ { X } : T V _ { X } \rightarrow T W _ { f } ( X )$ ; confidence 0.509
+
94. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040560/f04056017.png ; $( x ^ { i } )$ ; confidence 0.982
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007030.png ; $J ( z ) = j ( z ) - 744 = \sum _ { k } c _ { k } q ^ { k } =$ ; confidence 0.994
+
95. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png ; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982
  
96. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301007.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , T ) = 0$ ; confidence 0.609
+
96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png ; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982
  
97. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130120/t1301207.png ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , T ) = 0$ ; confidence 0.923
+
97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982
  
98. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822
+
98. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032630/d03263073.png ; $\square$ ; confidence 0.982
  
99. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787
+
99. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080104.png ; $= \| M$ ; confidence 0.982
  
100. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301407.png ; $x = ( x _ { i } ) _ { i \in Q _ { 0 } } \in Z ^ { Q _ { 0 } }$ ; confidence 0.557
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982
  
101. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019020.png ; $t ( k , r ) \leq ( \frac { r - 1 } { k - 1 } ) ^ { r - 1 }$ ; confidence 0.976
+
101. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004022.png ; $\{ u _ { i } ^ { n + 1 } \}$ ; confidence 0.982
  
102. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200110.png ; $c _ { m , n } = \sqrt { n } ( n / ( 4 e ( m + n ) ) ) ^ { n }$ ; confidence 0.903
+
102. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070100.png ; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982
  
103. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200126.png ; $0 < \delta _ { 1 } < \delta _ { 2 } < n / ( m + n + 1 )$ ; confidence 0.998
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180115.png ; $R \subseteq U \times U$ ; confidence 0.982
  
104. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200147.png ; $j \neq r | z j - z _ { r } | \geq \delta | z _ { r } |$ ; confidence 0.309
+
104. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003061.png ; $L ^ { 1 } ( m )$ ; confidence 0.982
  
105. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200152.png ; $m = \operatorname { max } ( m _ { 1 } , m _ { 2 } )$ ; confidence 0.808
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062250/m06225024.png ; $M _ { F }$ ; confidence 0.982
  
106. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020092.png ; $g ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k }$ ; confidence 0.778
+
106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230105.png ; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982
  
107. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100607.png ; $\Delta ^ { 2 } \Phi = - \frac { 1 } { 2 } E [ w , w ]$ ; confidence 0.999
+
107. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840313.png ; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982
  
108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301103.png ; $\Gamma : = \oint \vec { U } \cdot d \vec { r }$ ; confidence 0.787
+
108. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008013.png ; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982
  
109. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006045.png ; $d _ { n } = \prod _ { p - 1 | n } p ^ { 1 + v _ { p } ( n ) }$ ; confidence 0.938
+
109. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170171.png ; $M _ { p } ( n )$ ; confidence 0.982
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008018.png ; $( f \times g ) ( q , p ) : = W ^ { - 1 } ( W ( f ) W ( g ) )$ ; confidence 0.900
+
110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180445.png ; $k \geq n / 2$ ; confidence 0.982
  
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975
+
111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230123.png ; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982
  
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
+
112. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602058.png ; $L _ { 2 } [ 0 , \infty )$ ; confidence 0.982
  
113. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110115.png ; $\chi ( x , \xi ) = ( x + x _ { 0 } , \xi + \xi _ { 0 } )$ ; confidence 0.885
+
113. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001011.png ; $x z \leq y z$ ; confidence 0.982
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013015.png ; $\sigma _ { ess } ( T ) = \sigma _ { ess } ( T + S )$ ; confidence 0.624
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011031.png ; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982
  
115. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w1201406.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012015.png ; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982
  
116. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014010.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( N , M ) = 0$ ; confidence 0.968
+
116. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005013.png ; $( k , R )$ ; confidence 0.982
  
117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014016.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972
+
117. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230149.png ; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982
  
118. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080152.png ; $\mu = \mu ( z , z ) \partial _ { z } \otimes d z$ ; confidence 0.934
+
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508012.png ; $2 \square$ ; confidence 0.982
  
119. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012018.png ; $d ( x , A _ { \lambda } ) \rightarrow d ( x , A )$ ; confidence 0.995
+
119. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015069.png ; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982
  
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020032.png ; $\sum _ { \nu = 1 } ^ { x } \alpha _ { \nu } \leq 2$ ; confidence 0.637
+
120. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353040.png ; $s > 1$ ; confidence 0.982
  
121. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010095.png ; $( R \in R \leftrightarrow ( \neg R \in R ) )$ ; confidence 0.984
+
121. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004027.png ; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982
  
122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011098.png ; $\mu ( i , m ) = A \lambda ^ { i } B ( i + c , d - c + 1 )$ ; confidence 0.996
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008022.png ; $L < R$ ; confidence 0.982
  
123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
+
123. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002025.png ; $D \leq 92.4$ ; confidence 0.982
  
124. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013036.png ; $n \rightarrow \infty | a _ { n } | ^ { 1 / n } = 1$ ; confidence 0.774
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660286.png ; $C ( f )$ ; confidence 0.982
  
125. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013042.png ; $z = \operatorname { exp } ( i \theta _ { 0 } )$ ; confidence 0.999
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022057.png ; $D _ { \xi } \subset R ^ { p }$ ; confidence 0.982
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036029.png ; $i , j , k , l$ ; confidence 0.982
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240193.png ; $\hat { \psi } = c ^ { \prime } \hat { \beta }$ ; confidence 0.596
+
127. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004058.png ; $s = ( \overline { \zeta } - z )$ ; confidence 0.982
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240235.png ; $SS _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence 0.750
+
128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007020.png ; $m$ ; confidence 0.982
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240279.png ; $S = ( q F _ { \alpha ; q , n - \gamma } ) ^ { 1 / 2 }$ ; confidence 0.668
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032097.png ; $m \in N$ ; confidence 0.982
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300406.png ; $\lambda ^ { Fm } : Fm ^ { n } \rightarrow Fm$ ; confidence 0.522
+
130. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015044.png ; $\xi \in D ( S )$ ; confidence 0.982
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040450.png ; $D ( K ) = \langle F m , \vDash _ { K } \rangle$ ; confidence 0.282
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029059.png ; $\pi x$ ; confidence 0.982
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152
+
132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897
+
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006017.png ; $\Delta _ { 3 } U = 0$ ; confidence 0.982
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040145.png ; $T , \varphi \operatorname { log } 5 \psi$ ; confidence 0.060
+
134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033032.png ; $H ^ { * } ( X , k )$ ; confidence 0.982
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050150.png ; $= \prod _ { p \in P } ( 1 - | p | ^ { - z } ) ^ { - 1 } =$ ; confidence 0.997
+
135. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005064.png ; $A ( 0 ) uv + f ( 0 ) \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.339
+
136. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520245.png ; $d _ { i } \in N \cup \{ 0 \}$ ; confidence 0.982
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005058.png ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752
+
137. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675
+
138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200407.png ; $F M$ ; confidence 0.982
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008069.png ; $H ^ { 1 } ( \Omega ) \times H ^ { 1 } ( \Omega )$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008036.png ; $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ ; confidence 0.988
+
140. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001020.png ; $Z ( x ( n ) )$ ; confidence 0.982
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012064.png ; $\lambda ^ { * } = \lambda ( x ^ { * } , y ^ { * } )$ ; confidence 0.984
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137037.png ; $f \in C ( X )$ ; confidence 0.982
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c t \leq y 0$ ; confidence 0.710
+
142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002030.png ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }$ ; confidence 0.982
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015029.png ; $\operatorname { Der } ( \mathfrak { g } )$ ; confidence 0.820
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023010.png ; $Z _ { n , n - 1 } ^ { \infty } ( \overline { D } )$ ; confidence 0.984
+
144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002025.png ; $B \cap K$ ; confidence 0.982
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024032.png ; $\overline { CH } \overline { D } ^ { p } ( X )$ ; confidence 0.193
+
145. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020072.png ; $j | z _ { j } | = 1$ ; confidence 0.982
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021030.png ; $k = 0 , \ldots , n = \operatorname { dim } a$ ; confidence 0.172
+
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002059.png ; $| b ( u , v ) | ^ { 2 } \leq | b ( u , u ) | | b ( v , v ) |$ ; confidence 0.960
+
147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090116.png ; $\Gamma ( A _ { 1 } )$ ; confidence 0.982
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004033.png ; $0 \leq f _ { N } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062096.png ; $q ( x ) \geq 0$ ; confidence 0.981
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005055.png ; $A = H _ { \vec { \mu C } } ^ { \infty } ( B _ { E } )$ ; confidence 0.559
+
149. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022051.png ; $H _ { M } ^ { i } ( X , Q ( j ) ) = K ^ { ( j ) } 2 j - i ( X )$ ; confidence 0.834
+
150. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024050.png ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon )$ ; confidence 0.981
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022064.png ; $H _ { M } ^ { \bullet } ( M _ { \Sigma } , Q ( * ) )$ ; confidence 0.141
+
151. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300907.png ; $E ( u ) = \int _ { R } ( u ^ { 2 } + u _ { X } ^ { 2 } ) d x$ ; confidence 0.860
+
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009032.png ; $\hat { M u } ( \xi ) = m ( \xi ) \hat { u } ( \xi )$ ; confidence 0.552
+
153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png ; $A \subset A ^ { \prime \prime }$ ; confidence 0.981
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027079.png ; $\sum m \underline { \square } _ { n } ( h ) h$ ; confidence 0.519
+
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030056.png ; $\phi ( , \eta ) Y \square \underline { r }$ ; confidence 0.211
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021039.png ; $\delta _ { 0 } ( X )$ ; confidence 0.981
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032078.png ; $F ( s , t ) = \operatorname { max } \{ s , t \}$ ; confidence 0.999
+
156. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232053.png ; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034036.png ; $1 - \sqrt [ \frac { 2 } { 3 } ] { n } < B _ { n } ( D )$ ; confidence 0.863
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310100.png ; $P \neq N P$ ; confidence 0.981
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019026.png ; $h \in [ H _ { 1 } , H _ { 2 } ] \subseteq [ H , 2 H ]$ ; confidence 0.960
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040075.png ; $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ ; confidence 0.366
+
159. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520126.png ; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023061.png ; $H _ { n } = \operatorname { rist } _ { G } ( n )$ ; confidence 0.902
+
160. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008064.png ; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025066.png ; $8 \omega ^ { 3 } \leq \alpha \beta \gamma$ ; confidence 0.997
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019055.png ; $M , 2 M$ ; confidence 0.981
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026065.png ; $R ^ { n } \backslash f ( \partial \Omega )$ ; confidence 0.604
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004089.png ; $u _ { L } = 0.75$ ; confidence 0.981
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050049.png ; $= \operatorname { exp } ( - x \sqrt { 2 u } )$ ; confidence 0.995
+
163. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033010.png ; $H ^ { * } ( M , R )$ ; confidence 0.981
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290220.png ; $R ^ { \prime } ( I ) = \oplus _ { n } \in Z ^ { n }$ ; confidence 0.613
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001019.png ; $| z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1$ ; confidence 0.427
+
165. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700027.png ; $\lambda x ( x x )$ ; confidence 0.981
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010130.png ; $\{ z \in C ^ { n } : 1 + \{ z , \zeta \} \neq 0 \}$ ; confidence 0.456
+
166. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013034.png ; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982
+
167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017030.png ; $f ( d ) > 0$ ; confidence 0.981
  
168. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007093.png ; $F : C ^ { * } \otimes _ { k } C \rightarrow Ab$ ; confidence 0.755
+
168. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120133.png ; $C \rightarrow A$ ; confidence 0.981
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070248.png ; $\phi : k ( C _ { 1 } ) \rightarrow k ( C _ { 2 } )$ ; confidence 0.997
+
169. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840253.png ; $\sigma _ { 0 } ( A )$ ; confidence 0.981
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009027.png ; $L _ { i , j } = L C _ { j } ( x ) _ { \alpha = x _ { i } }$ ; confidence 0.085
+
170. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170280.png ; $N / [ N , N ]$ ; confidence 0.981
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327026.png ; $r ( A \cup B ) + r ( A \cap B ) \leq r ( A ) + r ( B )$ ; confidence 0.820
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016042.png ; $= \operatorname { DSPACE } [ n ^ { O ( 1 ) } ]$ ; confidence 0.482
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025036.png ; $C _ { A B }$ ; confidence 0.981
  
173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180422.png ; $\dot { k } = m + ( q _ { 1 } + \ldots + q _ { m } ) / 2$ ; confidence 0.511
+
173. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016034.png ; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981
  
174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180119.png ; $E * x = \operatorname { Hom } _ { R } ( E * , R )$ ; confidence 0.307
+
174. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010049.png ; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180402.png ; $\operatorname { Ric } ( g ) = 0 \in S ^ { 2 } E$ ; confidence 0.082
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501012.png ; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020018.png ; $( M , \xi = \operatorname { ker } \alpha )$ ; confidence 0.557
+
176. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024031.png ; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983
+
177. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230136.png ; $n _ { i } \geq p$ ; confidence 0.981
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021010.png ; $( a | b ) ^ { * } ( c | d ) = ( a ^ { * } c ) | ( b ^ { * } d )$ ; confidence 0.378
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172021.png ; $F = 0$ ; confidence 0.981
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026068.png ; $u _ { t } = F ( t , u ) , 0 < t , u ( x , 0 ) = u ^ { 0 } ( x )$ ; confidence 0.985
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014033.png ; $\sigma ^ { \prime }$ ; confidence 0.981
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062087.png ; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030055.png ; $P = I - \sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * }$ ; confidence 0.508
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008069.png ; $f ( w ^ { H _ { i } } | _ { v ^ { H _ { i } } } ) = f ( w | v )$ ; confidence 0.164
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230118.png ; $R - Z R Z ^ { * } = G J G ^ { * }$ ; confidence 0.981
  
183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006059.png ; $A = B ^ { \uparrow X _ { 1 } , \ldots , X _ { n } }$ ; confidence 0.284
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981
  
184. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301706.png ; $- \Delta u = \lambda u \text { in } \Omega$ ; confidence 0.996
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026094.png ; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981
  
185. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023088.png ; $T ^ { - 1 } = L ( x ) L ^ { * } ( x ) - L ( y ) L ^ { * } ( y )$ ; confidence 0.991
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021017.png ; $t ( M ) = y t ( M - e )$ ; confidence 0.981
  
186. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981
  
187. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018042.png ; $\| f - f g h \| \leq \| f - f g \| + \| f g - f g h \|$ ; confidence 0.995
+
187. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006051.png ; $C ( P )$ ; confidence 0.981
  
188. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280151.png ; $\omega ( \zeta ) \in C ( \partial D _ { m } )$ ; confidence 0.984
+
188. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007018.png ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981
  
189. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006069.png ; $\nabla _ { \Gamma } s : T M \rightarrow V Y$ ; confidence 0.901
+
189. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981
  
190. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e1201009.png ; $E ^ { \prime } = E + \frac { 1 } { c } v \times B$ ; confidence 0.986
+
190. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
  
191. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982
+
191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034033.png ; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981
  
192. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005016.png ; $\Omega = \{ ( x , y ) \in R ^ { 2 } : 0 < x < y < 1 \}$ ; confidence 0.992
+
192. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017027.png ; $SO ( n , 1 )$ ; confidence 0.981
  
193. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
+
193. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006025.png ; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981
  
194. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024078.png ; $c _ { L } \in H ^ { 1 } ( Q ( \mu _ { L } ) ; Z / M ( n ) )$ ; confidence 0.490
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230141.png ; $O ( m ^ { 2 } )$ ; confidence 0.981
  
195. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240133.png ; $T = \operatorname { Sym } ^ { 2 } T _ { p } ( E )$ ; confidence 0.911
+
195. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004071.png ; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981
  
196. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007035.png ; $f ( n ) = ( t / 2 \pi ) \operatorname { log } n$ ; confidence 0.999
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981
  
197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005027.png ; $x _ { 0 } \notin \{ p _ { 1 } , \dots , p _ { w } \}$ ; confidence 0.258
+
197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201902.png ; $P _ { \nu } ( z )$ ; confidence 0.981
  
198. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980
+
198. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160113.png ; $( \phi _ { 1 } \vee \ldots \vee \phi _ { n } )$ ; confidence 0.921
+
199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003037.png ; $M _ { 5 }$ ; confidence 0.981
  
200. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160185.png ; $P ( T , l ) = \vee \{ \psi _ { \Omega } ^ { l } e :$ ; confidence 0.725
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030019.png ; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981
  
201. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023071.png ; $\delta _ { P } ( A ) + [ A , A ] ^ { \wedge } / 2 = 0$ ; confidence 0.950
+
201. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008019.png ; $h ( x ) \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.981
  
202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202308.png ; $\Omega ^ { 0 } ( M ; T M ) = \Gamma ( T M ) = X ( M )$ ; confidence 0.990
+
202. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080136.png ; $G = SO ( 1 , n )$ ; confidence 0.981
  
203. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001081.png ; $\operatorname { log } _ { \mu } 0 = \infty$ ; confidence 0.516
+
203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981
  
204. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003051.png ; $B = ( C ^ { \infty } ( \Omega ) ) ^ { \Lambda }$ ; confidence 0.916
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981
  
205. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
+
205. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584016.png ; $K _ { + } , K _ { - } \neq \{ 0 \}$ ; confidence 0.981
  
206. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791
+
206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012092.png ; $X = E _ { 0 } ( A ) \otimes X$ ; confidence 0.981
  
207. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005020.png ; $\psi _ { N } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.497
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030025.png ; $L ^ { 1 } ( R ^ { + } , \omega )$ ; confidence 0.981
  
208. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012081.png ; $f _ { \infty } = f - \Sigma _ { \infty } \phi$ ; confidence 0.951
+
208. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981
  
209. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030148.png ; $Ch : K _ { 0 } ( A ) \rightarrow HC _ { 2 n } ( A )$ ; confidence 0.820
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030096.png ; $K _ { i } = K$ ; confidence 0.981
  
210. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003023.png ; $d ( P ) = ( - 1 ) ^ { n } Ch ( [ a ] ) T ( M ) [ T ^ { * } M ]$ ; confidence 0.390
+
210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981
  
211. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200208.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } f ( x ) d x x$ ; confidence 0.833
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005045.png ; $\{ T ( n , \alpha ) : n \in N , 0 < \alpha < 1 \}$ ; confidence 0.954
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
  
213. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005078.png ; $\beta ( m , \alpha _ { N } , \theta _ { N } ; T )$ ; confidence 0.464
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981
  
214. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300702.png ; $u = e ^ { i k \alpha x } + v , \alpha \in S ^ { 2 }$ ; confidence 0.864
+
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440103.png ; $R [ H \times H$ ; confidence 0.981
  
215. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080127.png ; $u = \operatorname { exp } ( - 4 J / k _ { B } T )$ ; confidence 0.994
+
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981
  
216. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008084.png ; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982
+
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981
  
217. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010025.png ; $d s _ { M } ^ { 2 } = d t ^ { 2 } + f ( t ) d s _ { N } ^ { 2 }$ ; confidence 0.898
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010117.png ; $A x = b$ ; confidence 0.981
  
218. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002090.png ; $E [ | Y _ { \infty } - Y _ { T } | | F _ { T } ] \leq c$ ; confidence 0.475
+
218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
  
219. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040146.png ; $\operatorname { deg } _ { z } P _ { L } ( v , z )$ ; confidence 0.894
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604027.png ; $P Q$ ; confidence 0.981
  
220. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007026.png ; $f \in \operatorname { Hol } ( \Delta , C )$ ; confidence 0.709
+
220. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002020.png ; $A ( \Omega )$ ; confidence 0.981
  
221. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006013.png ; $c _ { 1 } ( L ) ^ { \operatorname { dim } X } > 0$ ; confidence 0.878
+
221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981
  
222. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002044.png ; $\operatorname { sign } ( Y _ { 1 } - Y _ { 2 } )$ ; confidence 1.000
+
222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981
  
223. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013032.png ; $p ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
+
223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001073.png ; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006058.png ; $A \rightarrow R$ ; confidence 0.981
  
225. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980
+
225. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007061.png ; $\forall x , y \in P : = \{ x : x \} = 0 \}$ ; confidence 0.981
  
226. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l1200401.png ; $\partial _ { t } u + \partial _ { x } f ( u ) = 0$ ; confidence 0.993
+
226. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054420/j05442032.png ; $T _ { 0 } = 0$ ; confidence 0.981
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005013.png ; $f \in L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.798
+
227. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l1200106.png ; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981
  
228. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010031.png ; $L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }$ ; confidence 0.833
+
228. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200403.png ; $F _ { L } ( a , x )$ ; confidence 0.981
  
229. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010022.png ; $\sum _ { j \geq 1 } | e | ^ { \gamma } \approx$ ; confidence 0.797
+
229. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007029.png ; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008016.png ; $\mu : = \operatorname { min } \{ m , n - 1 \}$ ; confidence 0.999
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602047.png ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005062.png ; $\delta = x ^ { 0 } y ^ { 0 } - \sum x ^ { t } y ^ { t }$ ; confidence 0.921
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006022.png ; $R ^ { p }$ ; confidence 0.981
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170222.png ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666
+
232. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981
  
233. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105082.png ; $P ( E ) = 0 \Rightarrow \lambda ( F ( E ) ) = 0$ ; confidence 0.999
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981
  
234. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100140.png ; $\operatorname { Aut } ( \hat { G } , \tau )$ ; confidence 0.137
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027013.png ; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981
  
235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011050.png ; $\pi _ { 1 } ( \overline { M } ) = \pi _ { 1 } ( F )$ ; confidence 0.986
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140152.png ; $F _ { n } f = [ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) ] f$ ; confidence 0.422
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160129.png ; $B < A$ ; confidence 0.981
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019037.png ; $m _ { i j } = \langle f _ { i } , f _ { j } \rangle$ ; confidence 0.868
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198036.png ; $x , y \in G$ ; confidence 0.981
  
238. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022070.png ; $j ( z ) - 744 = \sum _ { k } \alpha _ { k } q ^ { k }$ ; confidence 0.719
+
238. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003064.png ; $L ^ { 2 } ( Q )$ ; confidence 0.981
  
239. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023036.png ; $v _ { 1 } , v _ { 2 } \in \overline { N E } ( X / S )$ ; confidence 0.811
+
239. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981
  
240. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260170.png ; $\alpha = \pi \circ \overline { \alpha }$ ; confidence 0.994
+
240. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981
  
241. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n120020116.png ; $m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713
+
241. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981
  
242. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982
+
242. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981
  
243. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n1300704.png ; $\mu : \Sigma \rightarrow [ 0 , + \infty ]$ ; confidence 0.986
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981
  
244. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011078.png ; $x \rightarrow \underline { f } _ { Q } ( x )$ ; confidence 0.113
+
244. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981
  
245. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b12025012.png ; $T \rightarrow G$ ; confidence 0.981
  
246. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011036.png ; $f : E ( \vec { G } ) \rightarrow Z _ { 4 } ^ { * }$ ; confidence 0.993
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028058.png ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981
  
247. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015043.png ; $R ^ { n } \backslash \overline { \Omega }$ ; confidence 0.939
+
247. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020201.png ; $( p , q ) \subset F$ ; confidence 0.981
  
248. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015014.png ; $P : C ( X ) \rightarrow \Pi _ { K \in K } C ( G )$ ; confidence 0.838
+
248. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981
  
249. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201704.png ; $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ ; confidence 0.804
+
249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009012.png ; $a ^ { i } x$ ; confidence 0.981
  
250. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200201.png ; $G = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049019.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981
  
251. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981
  
252. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005069.png ; $\phi = s ^ { T } y ( s ^ { T } y - y ^ { T } H y ) ^ { - 1 }$ ; confidence 0.998
+
252. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
  
253. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300408.png ; $| f ^ { \prime } ( x ) | ^ { n } \leq K J _ { f } ( x )$ ; confidence 0.839
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058860/l05886011.png ; $b = \infty$ ; confidence 0.981
  
254. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070135.png ; $( f ( . ) , K ( , y ) ) _ { H } = ( L F , K ( , y ) ) _ { H } =$ ; confidence 0.409
+
254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981
  
255. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013022.png ; $L = \operatorname { Ker } ( P _ { \sigma } )$ ; confidence 0.940
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021640/c0216407.png ; $\alpha \in C$ ; confidence 0.981
  
256. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001039.png ; $v \in \{ p _ { 1 } , \dots , p _ { x } , \infty \}$ ; confidence 0.484
+
256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981
  
257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300708.png ; $\phi ( \phi ( s , u ) , v ) = \phi ( s , u ^ { * } v )$ ; confidence 0.733
+
257. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010117.png ; $\Phi _ { \sigma }$ ; confidence 0.981
  
258. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602027.png ; $\overline { D } ^ { - } = D ^ { - } \cup \Gamma$ ; confidence 0.660
+
258. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008014.png ; $w L , v K$ ; confidence 0.981
  
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304503.png ; $R _ { i } = \operatorname { rank } ( x _ { i } )$ ; confidence 0.984
+
259. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300207.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981
  
260. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304504.png ; $S _ { i } = \operatorname { rank } ( y _ { i } )$ ; confidence 0.919
+
260. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049063.png ; $| N _ { k } | ^ { 2 } \geq | N _ { k } - 1 | | N _ { k } + 1$ ; confidence 0.285
+
261. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510117.png ; $V ^ { f } = \{ u \in V : \gamma ( u ) < \infty \}$ ; confidence 0.998
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981
  
263. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034081.png ; $h ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
+
263. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004090.png ; $p _ { L } = 1.0$ ; confidence 0.981
  
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620189.png ; $q ( x ) = g \operatorname { cos } \sqrt { x }$ ; confidence 0.997
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201602.png ; $f \in C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.981
  
265. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s1306202.png ; $- y ^ { \prime \prime } + q ( x ) y = \lambda y$ ; confidence 0.984
+
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028019.png ; $A ( K ) ^ { * }$ ; confidence 0.981
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340178.png ; $H _ { l } ( t , m ) = H ( \varphi _ { i } ( s , t ) , m )$ ; confidence 0.809
+
266. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340136.png ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193
+
267. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005044.png ; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981
  
268. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063016.png ; $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ ; confidence 0.306
+
268. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g130050114.png ; $0 \leq k < d$ ; confidence 0.981
  
269. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064067.png ; $\alpha = 1 + k = \operatorname { exp } ( s )$ ; confidence 0.655
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300307.png ; $\psi _ { N } ( x - k )$ ; confidence 0.981
  
270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194
+
270. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051018.png ; $F ( u ) = \emptyset$ ; confidence 0.981
  
271. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065071.png ; $w ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.999
+
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050181.png ; $\sigma _ { Te } ( ( L _ { A } , R _ { B } ) , L ( H ) ) =$ ; confidence 0.330
+
272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006082.png ; $g \in D \subset H$ ; confidence 0.981
  
273. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005056.png ; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404907.png ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981
  
274. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t1200306.png ; $U ^ { \prime } = f ( U ) \subset R ^ { \prime }$ ; confidence 0.998
+
274. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001090.png ; $Z ( e )$ ; confidence 0.980
  
275. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007013.png ; $h ( w ) : = \operatorname { log } ( g ( w ) / w )$ ; confidence 0.998
+
275. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s1305809.png ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980
  
276. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050120.png ; $K _ { x } = \operatorname { Ker } ( d f _ { x } )$ ; confidence 0.720
+
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980
  
277. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005095.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110730/b1107308.png ; $j \geq 0$ ; confidence 0.980
  
278. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015062.png ; $C ^ { * } ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.819
+
278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980
  
279. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014039.png ; $T _ { \phi } ^ { * } = T _ { \overline { \phi } }$ ; confidence 0.975
+
279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012027.png ; $\sigma ( K ) \leq - 4$ ; confidence 0.980
  
280. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015053.png ; $\xi \rightarrow \xi ^ { \# } \equiv S \xi$ ; confidence 0.478
+
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980
  
281. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015073.png ; $\Delta ^ { i t } L ( A ) \Delta ^ { - i t } = L ( A )$ ; confidence 0.962
+
281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980
  
282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505
+
282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202907.png ; $M \rightarrow P$ ; confidence 0.980
  
283. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200179.png ; $\operatorname { Re } G _ { 1 } ( r ) \geq B$ ; confidence 0.984
+
283. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007068.png ; $u \in L$ ; confidence 0.980
  
284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020080.png ; $R _ { n } < 1 - \operatorname { log } n / ( 3 n )$ ; confidence 0.520
+
284. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020156.png ; $f \in H ^ { 1 }$ ; confidence 0.980
  
285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021061.png ; $( - 1 ) ^ { r } q ^ { k ( n - r ) } t ( M ; 1 - q ^ { k } , 0 )$ ; confidence 0.962
+
285. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210109.png ; $p _ { i } ( \lambda )$ ; confidence 0.980
  
286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004012.png ; $\chi ^ { \prime } ( G ) \leq 3 \Delta ( G ) / 2$ ; confidence 0.993
+
286. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010016.png ; $y ( x _ { 0 } + h )$ ; confidence 0.980
  
287. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900183.png ; $\{ \zeta \rightarrow T _ { n } ( \zeta ) \}$ ; confidence 0.996
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c0211109.png ; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980
  
288. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001016.png ; $= z ^ { n + m } ( f ( D + m ) g ( D ) - f ( D ) g ( D + n ) ) +$ ; confidence 0.928
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053011.png ; $M ( \nu )$ ; confidence 0.980
  
289. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005069.png ; $\delta ( a b ) = \delta ( a ) b + a \delta ( b )$ ; confidence 0.937
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029053.png ; $x ^ { 7 }$ ; confidence 0.980
  
290. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w120060105.png ; $( F R ^ { m } ) = m \operatorname { dim } ( F R )$ ; confidence 0.673
+
290. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840204.png ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 }$ ; confidence 0.980
  
291. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006086.png ; $T _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi$ ; confidence 0.497
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980
  
292. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980
  
293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007069.png ; $\sigma ( \xi , x ) = ( \alpha \xi + b x ) ^ { k }$ ; confidence 0.781
+
293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001010.png ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k } \end{array} \right.$ ; confidence 0.980
  
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110254.png ; $q _ { \alpha } \in S ( \tilde { h } ^ { - 1 } , g )$ ; confidence 0.391
+
294. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980
  
295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110137.png ; $( a _ { m } ^ { - 1 } b ) ( x , \xi ) = r _ { N } ( a , b ) +$ ; confidence 0.212
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029051.png ; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980
  
296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013011.png ; $\sigma ( T ) \backslash \sigma _ { d } ( T )$ ; confidence 0.881
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980
  
297. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080177.png ; $( A , \overline { A } , t \sim t _ { \alpha } )$ ; confidence 0.162
+
297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003052.png ; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980
  
298. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009015.png ; $\tilde { n } _ { 1 } \ldots \tilde { n } _ { k }$ ; confidence 0.437
+
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150129.png ; $A - S \in \Phi ( X , Y )$ ; confidence 0.980
  
299. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201805.png ; $t \wedge s = \operatorname { min } ( t , s )$ ; confidence 0.900
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024051.png ; $p \geq 0$ ; confidence 0.980
  
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013017.png ; $\hat { W } = \int _ { \Sigma } ( H ^ { 2 } - K ) d A$ ; confidence 0.606
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065064.png ; $I = [ - 1,1 ]$ ; confidence 0.980

Revision as of 00:10, 13 February 2020

List

1. c02583029.png ; $\{ U ^ { n } H \} _ { n = - \infty } ^ { + \infty }$ ; confidence 0.983

2. b12021047.png ; $V ( a )$ ; confidence 0.983

3. a13029033.png ; $M ( P )$ ; confidence 0.983

4. c02327017.png ; $p \in \overline { A \cup q }$ ; confidence 0.983

5. t09356014.png ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983

6. c12020065.png ; $> 2$ ; confidence 0.983

7. l1200203.png ; $\phi _ { i } : U _ { i } \rightarrow T _ { i } \times D _ { i }$ ; confidence 0.983

8. a12028098.png ; $t \mapsto V _ { t } ^ { * } \rho$ ; confidence 0.983

9. g13001038.png ; $\sigma \in G$ ; confidence 0.983

10. e12015048.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.983

11. s12032015.png ; $p ( [ x , y ] ) = p ( x ) + p ( y )$ ; confidence 0.983

12. f130290141.png ; $( f , \phi ) ^ { \leftarrow } : L ^ { X } \leftarrow M ^ { Y }$ ; confidence 0.983

13. v12003032.png ; $L _ { 1 } ( [ 0,1 ] )$ ; confidence 0.983

14. l11004022.png ; $\{ G , \vee , \wedge \}$ ; confidence 0.983

15. a120050114.png ; $\frac { \partial } { \partial t } U ( t , s ) v = - A ( t ) U ( t , s ) v$ ; confidence 0.983

16. l12009084.png ; $\Gamma ( \wedge A ^ { * } )$ ; confidence 0.983

17. s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983

18. b12005068.png ; $M _ { z } \equiv \Pi ^ { - 1 } ( z )$ ; confidence 0.983

19. b1201402.png ; $\sigma ( z )$ ; confidence 0.983

20. r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983

21. b12049028.png ; $m ( \emptyset ) = 0$ ; confidence 0.983

22. b11022074.png ; $( 2 \pi i ) ^ { j } A \subset C$ ; confidence 0.983

23. b12004078.png ; $T : L _ { 1 } + L _ { \infty } \rightarrow L _ { 1 } + L _ { \infty }$ ; confidence 0.983

24. i0530309.png ; $d f ( t , X _ { t } ) = [ f _ { t } ^ { \prime } ( t , X _ { t } ) + \alpha ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) +$ ; confidence 0.983

25. n1200707.png ; $| m ( E ) | < M _ { E } , \quad m \in M$ ; confidence 0.983

26. i130060179.png ; $x = 2 a$ ; confidence 0.983

27. o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983

28. c12017035.png ; $\beta \equiv ( \beta _ { j } ) _ { j \geq 0 }$ ; confidence 0.983

29. f120230101.png ; $L \in \Omega ^ { 1 + 1 } ( M ; T M )$ ; confidence 0.983

30. a12010038.png ; $\langle A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.983

31. d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.983

32. h04601087.png ; $( W ^ { \prime } ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.983

33. b12020021.png ; $| \theta ( e ^ { i t } | = 1$ ; confidence 0.982

34. t120070119.png ; $\Theta _ { \Lambda } ( q )$ ; confidence 0.982

35. a12002035.png ; $C E$ ; confidence 0.982

36. n13006034.png ; $\mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }$ ; confidence 0.982

37. s13062038.png ; $q ( x ) \rightarrow + \infty$ ; confidence 0.982

38. a13030010.png ; $D : A \rightarrow E$ ; confidence 0.982

39. v120020208.png ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982

40. s13041015.png ; $( N = 0 )$ ; confidence 0.982

41. n1300505.png ; $( s , r , \mu )$ ; confidence 0.982

42. k12010065.png ; $A$ ; confidence 0.982

43. t13005031.png ; $D _ { A } : \Lambda ( X ) \rightarrow \Lambda ( X )$ ; confidence 0.982

44. g0445009.png ; $| x | < 1$ ; confidence 0.982

45. s13001052.png ; $M _ { K }$ ; confidence 0.982

46. p13013067.png ; $\lambda \in SP ^ { - } ( n )$ ; confidence 0.982

47. k13002036.png ; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982

48. d1203206.png ; $S T : X \rightarrow Y$ ; confidence 0.982

49. m11011026.png ; $| \operatorname { arg } x | < ( m + n - 1 / 2 ) ( p + q ) \pi$ ; confidence 0.982

50. f12002063.png ; $K ( X ) \cap A ( ( X ) )$ ; confidence 0.982

51. i12008084.png ; $\operatorname { det } ( P - \lambda I ) = 0$ ; confidence 0.982

52. m12012038.png ; $Q ( R )$ ; confidence 0.982

53. m12011075.png ; $f : \overline { M } \rightarrow K$ ; confidence 0.982

54. t13009010.png ; $\rho _ { X } : T _ { X } \rightarrow R$ ; confidence 0.982

55. d12006018.png ; $Q ^ { \pm } = \pm D + \sigma$ ; confidence 0.982

56. e1200608.png ; $V _ { y } Y$ ; confidence 0.982

57. v120020109.png ; $\Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \}$ ; confidence 0.982

58. f04008036.png ; $P _ { \theta _ { 0 } }$ ; confidence 0.982

59. e13007017.png ; $I = ( 0 , q ]$ ; confidence 0.982

60. l11004064.png ; $F = F _ { L }$ ; confidence 0.982

61. k055840168.png ; $E _ { \overline { \lambda } } = E _ { \lambda } ^ { + }$ ; confidence 0.982

62. a13028020.png ; $b = ( \sqrt { 2 } ) ^ { - 1 }$ ; confidence 0.982

63. e035000127.png ; $( T f ) ( t ) = \int _ { 0 } ^ { 1 } K ( s , t ) f ( s ) d s$ ; confidence 0.982

64. s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982

65. b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982

66. c1200308.png ; $f \in \operatorname { Car } ( J \times G )$ ; confidence 0.982

67. s12022034.png ; $\partial M = \emptyset$ ; confidence 0.982

68. a1300107.png ; $A , B , C \in C$ ; confidence 0.982

69. k055840382.png ; $\alpha ( \lambda ) y ( 0 ) + \beta ( \lambda ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.982

70. i13006050.png ; $q ( x ) = - 2 d A ( x , x ) / d x$ ; confidence 0.982

71. d1203109.png ; $f ( T ) = \frac { 1 } { 2 \pi i } \int _ { \partial U } f ( \lambda ) ( \lambda - T ) ^ { - 1 } d \lambda$ ; confidence 0.982

72. e12019091.png ; $( X , \equiv )$ ; confidence 0.982

73. a01020047.png ; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982

74. m13025064.png ; $\rho \in D ( R ^ { n } )$ ; confidence 0.982

75. b12015043.png ; $d _ { 1 } ^ { * } = d _ { 2 } ^ { * }$ ; confidence 0.982

76. l11001073.png ; $P ^ { + } = \{ \alpha \in P : \alpha \geq 0 \}$ ; confidence 0.982

77. v11005032.png ; $L _ { \infty } ( T )$ ; confidence 0.982

78. e1202005.png ; $d ( C _ { i } , C _ { j } )$ ; confidence 0.982

79. b13019034.png ; $f ( M _ { 2 } ) - f ( M _ { 1 } ) \ll T$ ; confidence 0.982

80. i130060171.png ; $A ( x , y ) = \frac { 1 } { 2 } \int _ { ( x + y ) / 2 } ^ { \infty } q ( t ) d t +$ ; confidence 0.982

81. h04632048.png ; $p < 1$ ; confidence 0.982

82. g130040162.png ; $\int f d \nu _ { i } \rightarrow \int f d \nu$ ; confidence 0.982

83. q12007051.png ; $g ^ { n } , E ^ { n } , F ^ { n }$ ; confidence 0.982

84. c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982

85. s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982

86. a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982

87. a11042063.png ; $\square ^ { * }$ ; confidence 0.982

88. a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982

89. d12002050.png ; $( L )$ ; confidence 0.982

90. g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982

91. o13008035.png ; $C _ { \varphi }$ ; confidence 0.982

92. r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982

93. b11022021.png ; $L ( M , s ) = L ( h ^ { i } ( X ) , s )$ ; confidence 0.982

94. f04056017.png ; $( x ^ { i } )$ ; confidence 0.982

95. t13005056.png ; $( A ) ^ { \prime } : = \{ B \in L ( X ) : B A = A B \}$ ; confidence 0.982

96. r13010014.png ; $( X , Y ) / \operatorname { rad } _ { A } ^ { 2 } ( X , Y )$ ; confidence 0.982

97. s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982

98. d03263073.png ; $\square$ ; confidence 0.982

99. f120080104.png ; $= \| M$ ; confidence 0.982

100. a1300704.png ; $\sigma ( n ) > 2 n$ ; confidence 0.982

101. l12004022.png ; $\{ u _ { i } ^ { n + 1 } \}$ ; confidence 0.982

102. p130070100.png ; $W ( z , w ) = \operatorname { sup } h ( z , w )$ ; confidence 0.982

103. a130180115.png ; $R \subseteq U \times U$ ; confidence 0.982

104. l11003061.png ; $L ^ { 1 } ( m )$ ; confidence 0.982

105. m06225024.png ; $M _ { F }$ ; confidence 0.982

106. s120230105.png ; $( X X ^ { \prime } ) ^ { 1 / 2 }$ ; confidence 0.982

107. k055840313.png ; $J \dot { x } ( t ) = i H ( t ) x ( t )$ ; confidence 0.982

108. d11008013.png ; $f = f ( w | v ) = [ L w : K v ]$ ; confidence 0.982

109. c120170171.png ; $M _ { p } ( n )$ ; confidence 0.982

110. c120180445.png ; $k \geq n / 2$ ; confidence 0.982

111. m130230123.png ; $f ^ { \prime } \circ \alpha = f$ ; confidence 0.982

112. h04602058.png ; $L _ { 2 } [ 0 , \infty )$ ; confidence 0.982

113. f11001011.png ; $x z \leq y z$ ; confidence 0.982

114. a12011031.png ; $T ( 1 , n ) = 2 ^ { n }$ ; confidence 0.982

115. b13012015.png ; $| g ( t _ { 1 } ) - g ( t _ { 2 } ) | \leq | f ( t _ { 1 } ) - f ( t _ { 2 } ) |$ ; confidence 0.982

116. g12005013.png ; $( k , R )$ ; confidence 0.982

117. m130230149.png ; $\phi ^ { + } : X _ { n } ^ { + } \rightarrow Y$ ; confidence 0.982

118. k05508012.png ; $2 \square$ ; confidence 0.982

119. p11015069.png ; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982

120. d03353040.png ; $s > 1$ ; confidence 0.982

121. j13004027.png ; $P _ { L } ( v , z ) = P _ { L } ( - v ^ { - 1 } , z )$ ; confidence 0.982

122. a13008022.png ; $L < R$ ; confidence 0.982

123. o13002025.png ; $D \leq 92.4$ ; confidence 0.982

124. c022660286.png ; $C ( f )$ ; confidence 0.982

125. b12022057.png ; $D _ { \xi } \subset R ^ { p }$ ; confidence 0.982

126. b12036029.png ; $i , j , k , l$ ; confidence 0.982

127. i12004058.png ; $s = ( \overline { \zeta } - z )$ ; confidence 0.982

128. l12007020.png ; $m$ ; confidence 0.982

129. b12032097.png ; $m \in N$ ; confidence 0.982

130. t12015044.png ; $\xi \in D ( S )$ ; confidence 0.982

131. a01029059.png ; $\pi x$ ; confidence 0.982

132. o13002017.png ; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982

133. b12006017.png ; $\Delta _ { 3 } U = 0$ ; confidence 0.982

134. d03033032.png ; $H ^ { * } ( X , k )$ ; confidence 0.982

135. e13003037.png ; $L _ { 0 } ^ { 2 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.982

136. n067520245.png ; $d _ { i } \in N \cup \{ 0 \}$ ; confidence 0.982

137. l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982

138. n1200407.png ; $F M$ ; confidence 0.982

139. f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982

140. z13001020.png ; $Z ( x ( n ) )$ ; confidence 0.982

141. a01137037.png ; $f \in C ( X )$ ; confidence 0.982

142. m13002030.png ; $\phi = ( \frac { 1 } { \operatorname { tanh } r } - \frac { 1 } { r } ) \frac { x _ { i } } { r } \sigma _ { i }$ ; confidence 0.982

143. b12009087.png ; $\varphi ( z ) = ( f ( z ^ { m } ) ) ^ { 1 / m }$ ; confidence 0.982

144. f12002025.png ; $B \cap K$ ; confidence 0.982

145. t12020072.png ; $j | z _ { j } | = 1$ ; confidence 0.982

146. s12023066.png ; $K _ { 1 } ( ( n - m ) \times m ) = 0$ ; confidence 0.982

147. l120090116.png ; $\Gamma ( A _ { 1 } )$ ; confidence 0.982

148. s13062096.png ; $q ( x ) \geq 0$ ; confidence 0.981

149. z13013011.png ; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981

150. f13024050.png ; $= \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon )$ ; confidence 0.981

151. h13003041.png ; $s _ { i + j - 1 } = \int _ { - 1 } ^ { 1 } z ^ { i + j - 2 } d \eta ( z )$ ; confidence 0.981

152. q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981

153. t12015056.png ; $A \subset A ^ { \prime \prime }$ ; confidence 0.981

154. b120210101.png ; $M _ { i } / M _ { i - 1 } \simeq M ( \mu _ { i } )$ ; confidence 0.981

155. b12021039.png ; $\delta _ { 0 } ( X )$ ; confidence 0.981

156. r08232053.png ; $\Gamma = \{ z = e ^ { i \theta } : | z | = 1 \}$ ; confidence 0.981

157. a130310100.png ; $P \neq N P$ ; confidence 0.981

158. a011600196.png ; $K / k$ ; confidence 0.981

159. n067520126.png ; $N _ { 1 } \in M _ { n \times n } ( K )$ ; confidence 0.981

160. r13008064.png ; $L : L ^ { 2 } ( T , d m ) \rightarrow F$ ; confidence 0.981

161. b13019055.png ; $M , 2 M$ ; confidence 0.981

162. l12004089.png ; $u _ { L } = 0.75$ ; confidence 0.981

163. d03033010.png ; $H ^ { * } ( M , R )$ ; confidence 0.981

164. a130050153.png ; $\zeta _ { G } ( z )$ ; confidence 0.981

165. l05700027.png ; $\lambda x ( x x )$ ; confidence 0.981

166. p12013034.png ; $\operatorname { min } S ^ { ( n ) } \rightarrow \infty$ ; confidence 0.981

167. s12017030.png ; $f ( d ) > 0$ ; confidence 0.981

168. h120120133.png ; $C \rightarrow A$ ; confidence 0.981

169. k055840253.png ; $\sigma _ { 0 } ( A )$ ; confidence 0.981

170. l120170280.png ; $N / [ N , N ]$ ; confidence 0.981

171. a11010021.png ; $C ( X )$ ; confidence 0.981

172. b13025036.png ; $C _ { A B }$ ; confidence 0.981

173. f12016034.png ; $k _ { G } \notin \{ \pm \infty , 0 \}$ ; confidence 0.981

174. n12010049.png ; $\rho ( \zeta ) = \sum _ { i = 0 } ^ { k } \alpha _ { i } \zeta ^ { i }$ ; confidence 0.981

175. b01501012.png ; $\phi _ { n } \circ \xi ^ { * } = \xi$ ; confidence 0.981

176. f12024031.png ; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981

177. s120230136.png ; $n _ { i } \geq p$ ; confidence 0.981

178. a01172021.png ; $F = 0$ ; confidence 0.981

179. b12014033.png ; $\sigma ^ { \prime }$ ; confidence 0.981

180. s13062087.png ; $\mu _ { ac } ( A ) = \int _ { A } f ( \lambda ) d \lambda$ ; confidence 0.981

181. a12007066.png ; $C _ { 2 } > 0$ ; confidence 0.981

182. d120230118.png ; $R - Z R Z ^ { * } = G J G ^ { * }$ ; confidence 0.981

183. a13012050.png ; $A _ { 1 } ( s )$ ; confidence 0.981

184. b13026094.png ; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981

185. t12021017.png ; $t ( M ) = y t ( M - e )$ ; confidence 0.981

186. a130040119.png ; $\psi \rightarrow \varphi \in T$ ; confidence 0.981

187. i12006051.png ; $C ( P )$ ; confidence 0.981

188. r13007018.png ; $| f ( y ) | \leq c ( y ) \| f \|$ ; confidence 0.981

189. i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981

190. g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981

191. s12034033.png ; $SH ^ { * } ( M , \omega , L , \phi ( L ) )$ ; confidence 0.981

192. f13017027.png ; $SO ( n , 1 )$ ; confidence 0.981

193. n13006025.png ; $\lambda _ { 2 } / \lambda _ { 1 }$ ; confidence 0.981

194. d120230141.png ; $O ( m ^ { 2 } )$ ; confidence 0.981

195. g13004071.png ; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981

196. a12028031.png ; $\int k _ { n } ( z ) U _ { z } ( x ) d z$ ; confidence 0.981

197. m1201902.png ; $P _ { \nu } ( z )$ ; confidence 0.981

198. t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981

199. d12003037.png ; $M _ { 5 }$ ; confidence 0.981

200. d12030019.png ; $( F _ { t } ; t \geq 0 )$ ; confidence 0.981

201. o13008019.png ; $h ( x ) \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.981

202. f120080136.png ; $G = SO ( 1 , n )$ ; confidence 0.981

203. h12012080.png ; $\Sigma _ { \infty } = t - t \phi t + \ldots + ( - t \phi ) ^ { n } t +$ ; confidence 0.981

204. a12012059.png ; $x > 0$ ; confidence 0.981

205. k05584016.png ; $K _ { + } , K _ { - } \neq \{ 0 \}$ ; confidence 0.981

206. h12012092.png ; $X = E _ { 0 } ( A ) \otimes X$ ; confidence 0.981

207. a13030025.png ; $L ^ { 1 } ( R ^ { + } , \omega )$ ; confidence 0.981

208. w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981

209. c12030096.png ; $K _ { i } = K$ ; confidence 0.981

210. m12023053.png ; $f _ { t , s } : = - ( - f _ { t } ) _ { s }$ ; confidence 0.981

211. a13013075.png ; $( g )$ ; confidence 0.981

212. a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981

213. b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981

214. b120440103.png ; $R [ H \times H$ ; confidence 0.981

215. d120280152.png ; $A ( D ) ^ { * } \simeq A / B$ ; confidence 0.981

216. f12015012.png ; $\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$ ; confidence 0.981

217. a110010117.png ; $A x = b$ ; confidence 0.981

218. l12006027.png ; $\phi \in H$ ; confidence 0.981

219. c02604027.png ; $P Q$ ; confidence 0.981

220. e13002020.png ; $A ( \Omega )$ ; confidence 0.981

221. m13020043.png ; $J : M \rightarrow \mathfrak { g } ^ { * }$ ; confidence 0.981

222. r13004047.png ; $\mu _ { 2 } ( \Omega ) \leq \frac { \pi p _ { 1 } ^ { 2 } } { A }$ ; confidence 0.981

223. h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981

224. w12006058.png ; $A \rightarrow R$ ; confidence 0.981

225. i13007061.png ; $\forall x , y \in P : = \{ x : x \} = 0 \}$ ; confidence 0.981

226. j05442032.png ; $T _ { 0 } = 0$ ; confidence 0.981

227. l1200106.png ; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981

228. k1200403.png ; $F _ { L } ( a , x )$ ; confidence 0.981

229. j13007029.png ; $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.981

230. s08602047.png ; $\Phi ^ { + } ( t _ { 0 } )$ ; confidence 0.981

231. a12006022.png ; $R ^ { p }$ ; confidence 0.981

232. p12017062.png ; $\| \delta _ { A } * ( X _ { n } ) \| \geq 1$ ; confidence 0.981

233. f120230128.png ; $L \in \Omega ^ { 1 } ( M ; T M )$ ; confidence 0.981

234. b12027013.png ; $L ( t ) = R ( t ) + A ( t )$ ; confidence 0.981

235. a120160131.png ; $R = r _ { 1 } ( X _ { 1 } ) + r _ { 2 } ( X _ { 2 } ) - r _ { 12 } ( X _ { 12 } )$ ; confidence 0.981

236. c130160129.png ; $B < A$ ; confidence 0.981

237. a01198036.png ; $x , y \in G$ ; confidence 0.981

238. z13003064.png ; $L ^ { 2 } ( Q )$ ; confidence 0.981

239. h12012087.png ; $\epsilon : A \rightarrow R$ ; confidence 0.981

240. r13008066.png ; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981

241. d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981

242. m12016047.png ; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981

243. c02565024.png ; $f ( x _ { 0 } )$ ; confidence 0.981

244. r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981

245. b12025012.png ; $T \rightarrow G$ ; confidence 0.981

246. a12028058.png ; $\{ U _ { t } \} _ { t \in G }$ ; confidence 0.981

247. v120020201.png ; $( p , q ) \subset F$ ; confidence 0.981

248. w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981

249. r13009012.png ; $a ^ { i } x$ ; confidence 0.981

250. f04049019.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } }$ ; confidence 0.981

251. s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981

252. g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981

253. l05886011.png ; $b = \infty$ ; confidence 0.981

254. s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981

255. c0216407.png ; $\alpha \in C$ ; confidence 0.981

256. o13005063.png ; $G : \mathfrak { H } \rightarrow \mathfrak { G }$ ; confidence 0.981

257. x120010117.png ; $\Phi _ { \sigma }$ ; confidence 0.981

258. d11008014.png ; $w L , v K$ ; confidence 0.981

259. e1300207.png ; $\{ A ( \Omega ) : \Omega \text { open } \}$ ; confidence 0.981

260. s12021014.png ; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981

261. v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981

262. a12017031.png ; $\lambda ^ { * } > 0$ ; confidence 0.981

263. l12004090.png ; $p _ { L } = 1.0$ ; confidence 0.981

264. s1201602.png ; $f \in C ^ { k } ( [ 0,1 ] ^ { d } )$ ; confidence 0.981

265. d12028019.png ; $A ( K ) ^ { * }$ ; confidence 0.981

266. k13006024.png ; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981

267. q13005044.png ; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981

268. g130050114.png ; $0 \leq k < d$ ; confidence 0.981

269. d1300307.png ; $\psi _ { N } ( x - k )$ ; confidence 0.981

270. s13051018.png ; $F ( u ) = \emptyset$ ; confidence 0.981

271. f12010054.png ; $\tau ( p ) = 2 p ^ { 11 / 2 } \operatorname { cos } ( \phi _ { p } )$ ; confidence 0.981

272. l12006082.png ; $g \in D \subset H$ ; confidence 0.981

273. f0404907.png ; $\nu _ { 1 } , \nu _ { 2 } > 0$ ; confidence 0.981

274. g13001090.png ; $Z ( e )$ ; confidence 0.980

275. s1305809.png ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980

276. b12012016.png ; $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.980

277. b1107308.png ; $j \geq 0$ ; confidence 0.980

278. f120080124.png ; $B ( G ) \subset M _ { 0 } A ( G ) \subset M A ( G )$ ; confidence 0.980

279. p13012027.png ; $\sigma ( K ) \leq - 4$ ; confidence 0.980

280. f12011020.png ; $f ( x ) = \sum _ { j = 1 } ^ { N } F _ { j } ( x + i \Gamma _ { j } 0 )$ ; confidence 0.980

281. l12016028.png ; $F : S ^ { 2 } \rightarrow \Omega G$ ; confidence 0.980

282. c1202907.png ; $M \rightarrow P$ ; confidence 0.980

283. p13007068.png ; $u \in L$ ; confidence 0.980

284. j120020156.png ; $f \in H ^ { 1 }$ ; confidence 0.980

285. f120210109.png ; $p _ { i } ( \lambda )$ ; confidence 0.980

286. n12010016.png ; $y ( x _ { 0 } + h )$ ; confidence 0.980

287. c0211109.png ; $H ^ { n } ( \alpha , \alpha ^ { \prime } ; G )$ ; confidence 0.980

288. b12053011.png ; $M ( \nu )$ ; confidence 0.980

289. a13029053.png ; $x ^ { 7 }$ ; confidence 0.980

290. k055840204.png ; $K \rightarrow ( T _ { 21 } + T _ { 22 } K ) ( T _ { 11 } + T _ { 12 } K ) ^ { - 1 }$ ; confidence 0.980

291. c13006042.png ; $\mathfrak { V } ( G , \Omega )$ ; confidence 0.980

292. l12004036.png ; $u ( x _ { i } , t ^ { n + 1 } ) = u ( x _ { i } , t ^ { n } ) +$ ; confidence 0.980

293. z13001010.png ; $\delta _ { k } ( n ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } n = k } \\ { 0 } & { \text { if } n \neq k } \end{array} \right.$ ; confidence 0.980

294. f12001015.png ; $F : X \rightarrow X ^ { \prime }$ ; confidence 0.980

295. a13029051.png ; $[ 0,1 ] \times R \rightarrow M$ ; confidence 0.980

296. a13004079.png ; $h ( \psi ) \in F$ ; confidence 0.980

297. m12003052.png ; $\varepsilon ^ { * } ( T ) = 1 / 2$ ; confidence 0.980

298. f120150129.png ; $A - S \in \Phi ( X , Y )$ ; confidence 0.980

299. a12024051.png ; $p \geq 0$ ; confidence 0.980

300. s13065064.png ; $I = [ - 1,1 ]$ ; confidence 0.980

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/20. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/20&oldid=44508