Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/10"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 10 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 10 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014045.png ; $s _ { i } ( z ) \alpha ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008054.png ; $A ( t )$ ; confidence 0.997
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014056.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z )$ ; confidence 0.999
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010291.png ; $G ( A )$ ; confidence 0.997
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150159.png ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240503.png ; $j = 1,2,3$ ; confidence 0.997
  
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022083.png ; $f = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) f _ { 0 } \in D _ { \xi }$ ; confidence 0.600
+
4. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007025.png ; $( \alpha _ { k } | \alpha _ { l } ) = ( \beta _ { k } | \beta _ { l } ) = 0$ ; confidence 0.997
  
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420146.png ; $\Psi _ { V , W } ( v \otimes w ) = \sum v ^ { ( I ) } \supset w \otimes v ^ { ( 2 ) }$ ; confidence 0.080
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021021.png ; $K = L + M$ ; confidence 0.997
  
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430175.png ; $\partial _ { q , y } ( x ^ { n } y ^ { m } ) = q ^ { n } [ m ] _ { q ^ { 2 } } x ^ { n } y ^ { m - 1 }$ ; confidence 0.097
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015028.png ; $t > 1$ ; confidence 0.997
  
7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022033.png ; $\| u \| _ { p , m , T } = \sum _ { | \alpha | \leq m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.645
+
7. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002031.png ; $p _ { i } = p = p ( n )$ ; confidence 0.997
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052085.png ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.747
+
8. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520334.png ; $\Gamma ( H )$ ; confidence 0.997
  
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052090.png ; $w = \prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.725
+
9. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007092.png ; $1 \leq h \leq t$ ; confidence 0.997
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056012.png ; $\operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0$ ; confidence 0.800
+
10. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754806.png ; $p \supset ( p \vee q )$ ; confidence 0.997
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004010.png ; $z \in C \backslash Z _ { 0 } , \quad Z _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}$ ; confidence 0.448
+
11. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015057.png ; $n = 2$ ; confidence 0.997
  
12. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080114.png ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921
+
12. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006069.png ; $T : q \rightarrow S$ ; confidence 0.997
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008018.png ; $\sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0$ ; confidence 0.342
+
13. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005027.png ; $L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.997
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008060.png ; $\operatorname { det } [ E \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } s ^ { i }$ ; confidence 0.892
+
14. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005010.png ; $\delta : R \rightarrow R$ ; confidence 0.997
  
15. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017078.png ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015065.png ; $E : L ^ { 2 } ( S ) \rightarrow H ^ { 2 } ( S )$ ; confidence 0.997
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018076.png ; $g = \lambda \mu ( d \rho \otimes d \sigma + d \sigma \otimes d \rho ) / 2$ ; confidence 0.803
+
16. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070117.png ; $G = W$ ; confidence 0.997
  
17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180179.png ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { Y + 4 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.312
+
17. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012049.png ; $\varphi ^ { 2 } = 0$ ; confidence 0.997
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019040.png ; $\varphi * : K _ { 0 } ^ { dag } ( c _ { 1 } \otimes C [ \Gamma ] ) \rightarrow C$ ; confidence 0.081
+
18. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005021.png ; $\lambda = k ^ { 2 }$ ; confidence 0.997
  
19. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003013.png ; $\int _ { - \infty } ^ { \infty } x ^ { k } \psi _ { N } ( x ) d x = 0,0 \leq k \leq N$ ; confidence 0.884
+
19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201504.png ; $( \xi | \eta )$ ; confidence 0.997
  
20. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013054.png ; $A ^ { \pm } = \frac { n } { 2 } ( \pm 1 - \operatorname { cos } \theta ) d \phi$ ; confidence 0.999
+
20. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010110.png ; $\Phi _ { \sigma } \neq 0$ ; confidence 0.997
  
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018024.png ; $\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( e ^ { i \theta } ) d \theta = f ( 0 )$ ; confidence 0.998
+
21. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840281.png ; $N = N ^ { + }$ ; confidence 0.997
  
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026032.png ; $X \underline { \square } _ { N } = \operatorname { inf } _ { t } X _ { n } ( t )$ ; confidence 0.077
+
22. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n1300209.png ; $A \times Y$ ; confidence 0.997
  
23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028063.png ; $\tilde { D } = \{ w : w _ { 1 } z _ { 1 } + \ldots + w _ { n } z _ { n } \neq 1 , z \in D \}$ ; confidence 0.229
+
23. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120147.png ; $T ( \nabla ) _ { \infty } : \overline { B } ( H ( Y ) ) \rightarrow \overline { B } ( Y )$ ; confidence 0.997
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d1202905.png ; $| x - \frac { p } { q } | < f ( q ) , \quad \operatorname { gcd } ( p , q ) = 1 , q > 0$ ; confidence 0.906
+
24. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004069.png ; $( x , t \xi ) \in \Gamma$ ; confidence 0.997
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120200/e1202008.png ; $d ( C _ { i } , C _ { j } ) = \sqrt { \sum _ { k = 1 } ^ { r } ( x _ { j k } - x _ { i k } ) ^ { 2 } }$ ; confidence 0.655
+
25. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012017.png ; $O G$ ; confidence 0.997
  
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E )$ ; confidence 0.574
+
26. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023059.png ; $f _ { t - s } \leq f _ { t , s } \leq f$ ; confidence 0.997
  
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230131.png ; $E ^ { k } = \{ [ \sigma ] _ { x } ^ { k } : x \in M , \sigma \in \Gamma _ { x } ( E ) \}$ ; confidence 0.532
+
27. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010045.png ; $m = 7$ ; confidence 0.997
  
28. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d110020103.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { \mathfrak { N } } \in C$ ; confidence 0.344
+
28. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011057.png ; $A ^ { 2 } \leq C ^ { 2 }$ ; confidence 0.997
  
29. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010051.png ; $T ( \square _ { \alpha } \varphi ) = \square _ { \alpha } ( T ( \varphi ) )$ ; confidence 0.872
+
29. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061200/l06120017.png ; $\delta < 1$ ; confidence 0.997
  
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008016.png ; $\hat { \mu } ( x ) = \int _ { G } \overline { \chi ( x ) } d \mu ( \chi ) , x \in G$ ; confidence 0.547
+
30. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007042.png ; $( u , v ) +$ ; confidence 0.997
  
31. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010068.png ; $L ( s ) = \sum _ { n = 1 } ^ { \infty } c ( n ) n ^ { - s } , \operatorname { Re } s > k$ ; confidence 0.949
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027068.png ; $R ^ { + } \equiv [ 0 , \infty ) \rightarrow R$ ; confidence 0.997
  
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110195.png ; $\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + | y | + 1 } { \varepsilon } \}$ ; confidence 0.980
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419020.png ; $\phi ( t )$ ; confidence 0.997
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150160.png ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679
+
33. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l0600308.png ; $P B \perp P Q$ ; confidence 0.997
  
34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021025.png ; $\lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }$ ; confidence 0.701
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101802.png ; $u \rho ^ { \prime } ( u ) = - \rho ( u - 1 ) \quad ( u > 1 )$ ; confidence 0.997
  
35. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060107.png ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A )$ ; confidence 0.439
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013048.png ; $C _ { \mu } ( z ) = \int \frac { 1 } { z - w } d \mu ( w )$ ; confidence 0.997
  
36. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006011.png ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in C : | z - \alpha | \leq \delta \}$ ; confidence 0.926
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012050.png ; $0 \leq y ^ { \prime } \leq y$ ; confidence 0.997
  
37. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004084.png ; $p _ { m } ( x , \xi ) = \sum _ { | \alpha | = m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.806
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026023.png ; $u : A \rightarrow A ^ { \prime }$ ; confidence 0.997
  
38. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260129.png ; $\alpha ( d \theta )$ ; confidence 0.997
  
39. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030141.png ; $( D _ { + } ) = \int _ { M } \hat { A } ( M ) Ch ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }$ ; confidence 0.258
+
39. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337018.png ; $f ^ { \prime } ( x ) h = D f ( x , h )$ ; confidence 0.997
  
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006089.png ; $f ( k ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } g ( t ) e ^ { i k t } d t )$ ; confidence 0.994
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602050.png ; $\Phi ^ { + } ( z )$ ; confidence 0.997
  
41. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009060.png ; $R = O [ [ \Gamma ] ] = \text { varprojlim } O [ \Gamma / \Gamma ^ { p ^ { n } } ]$ ; confidence 0.400
+
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180293.png ; $C ^ { \infty } ( M )$ ; confidence 0.997
  
42. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020142.png ; $X _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } X _ { t }$ ; confidence 0.864
+
42. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003011.png ; $\operatorname { Ric } ( \omega ) = 0$ ; confidence 0.997
  
43. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020143.png ; $Y _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } Y _ { t }$ ; confidence 0.980
+
43. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840108.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.997
  
44. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002021.png ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070248.png ; $\phi : k ( C _ { 1 } ) \rightarrow k ( C _ { 2 } )$ ; confidence 0.997
  
45. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508015.png ; $h = \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \bigotimes d z _ { \nu }$ ; confidence 0.237
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202307.png ; $H ( D ) \cap C ( \overline { D } )$ ; confidence 0.997
  
46. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700061.png ; $( \lambda x _ { 1 } ( \lambda x _ { 2 } \ldots ( \lambda x _ { n } M ) \ldots ) )$ ; confidence 0.217
+
46. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004070.png ; $\omega ( G )$ ; confidence 0.997
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014070.png ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004078.png ; $h ( \varphi ) \in F$ ; confidence 0.997
  
48. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021012.png ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \}$ ; confidence 0.443
+
48. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260252.png ; $\sigma = B ^ { \perp } \cap C ^ { \prime } \cap N ^ { \perp }$ ; confidence 0.997
  
49. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202406.png ; $( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x }$ ; confidence 0.905
+
49. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002021.png ; $A ( q ) \ddot { q } + b ( q , \dot { q } ) = 0$ ; confidence 0.997
  
50. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027036.png ; $s _ { j } = \sum _ { i = 1 } ^ { M } ( z _ { 1 } ^ { ( 1 ) } ) ^ { j } , \quad j = 1 , \ldots , M$ ; confidence 0.400
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017022.png ; $\lambda _ { 1 } ( \Omega )$ ; confidence 0.997
  
51. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025050.png ; $( \varphi u ) ( \varphi v ) = F ^ { - 1 } ( F ( \varphi u ) ^ { * } F ( \varphi v ) )$ ; confidence 0.950
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009037.png ; $0 \leq n < N - 1$ ; confidence 0.997
  
52. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003039.png ; $( \partial ^ { 2 } / \partial x ^ { 2 } + \partial ^ { 2 } / \partial y ^ { 2 } )$ ; confidence 0.989
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101075.png ; $4 k$ ; confidence 0.997
  
53. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004013.png ; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017018.png ; $K ( t ) = \beta ( t ) \Pi ( t )$ ; confidence 0.997
  
54. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520129.png ; $f = \lambda ^ { p } + \alpha _ { 1 } \lambda ^ { p - 1 } + \ldots + \alpha _ { p }$ ; confidence 0.980
+
54. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024028.png ; $U ( \varepsilon ) \oplus U ( \varepsilon )$ ; confidence 0.997
  
55. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001038.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k )$ ; confidence 0.985
+
55. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010054.png ; $B f$ ; confidence 0.997
  
56. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787
+
56. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583082.png ; $T ( K ^ { \prime } ) \subset K ^ { \prime }$ ; confidence 0.997
  
57. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005039.png ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . y$ ; confidence 0.471
+
57. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840167.png ; $E _ { \lambda }$ ; confidence 0.997
  
58. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002038.png ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g + ( u ) \text { is defined } \}$ ; confidence 0.751
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026400/c02640027.png ; $\Phi ( M )$ ; confidence 0.997
  
59. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002042.png ; $\overline { U M } = \{ u \in U M : l ( - u ) < \infty \} \cup U ^ { + } \partial M$ ; confidence 0.994
+
59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021080.png ; $n = 33,35,39$ ; confidence 0.997
  
60. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041055.png ; $\| p _ { \lambda } ^ { ( \alpha - 1 , \beta - 1 ) } \| _ { \mu _ { 0 } } = \circ ( n )$ ; confidence 0.121
+
60. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025044.png ; $F ( \varphi u )$ ; confidence 0.997
  
61. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
+
61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840169.png ; $\operatorname { dim } R ( E _ { \lambda } ) < \infty$ ; confidence 0.997
  
62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034024.png ; $SH ^ { * } ( M , \omega , \phi ) = SH ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036015.png ; $Y _ { t } \geq 0$ ; confidence 0.997
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050132.png ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975
+
63. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601054.png ; $( W , M _ { 0 } )$ ; confidence 0.997
  
64. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009025.png ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026025.png ; $d = \partial + \overline { \partial }$ ; confidence 0.997
  
65. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014060.png ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008056.png ; $E A = A E$ ; confidence 0.997
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140130.png ; $\operatorname { lim } _ { t \rightarrow 0 ^ { + } } \phi ( e ^ { i t } \zeta )$ ; confidence 0.968
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180269.png ; $0 \leq p \leq r$ ; confidence 0.997
  
67. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408021.png ; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}$ ; confidence 0.933
+
67. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190185.png ; $W = W ^ { + }$ ; confidence 0.997
  
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r t ( r + 1 , r ) = \infty$ ; confidence 0.712
+
68. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015045.png ; $K = \{ \overline { \Omega } \}$ ; confidence 0.997
  
69. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200187.png ; $z \in \{ | z | \geq \rho \} \cup \{ | \operatorname { arc } z | < \kappa \}$ ; confidence 0.903
+
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025021.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { - 1 / 2 }$ ; confidence 0.997
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759034.png ; $\phi = \sum \phi _ { v } : WC ( A , k ) \rightarrow \sum _ { v } WC ( A , k _ { v } )$ ; confidence 0.221
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020090.png ; $P ( T ) \in J$ ; confidence 0.997
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007046.png ; $f ( x ) = ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i x \xi } \hat { f } ( \xi ) d \xi$ ; confidence 0.400
+
71. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005024.png ; $r ( 1,2 )$ ; confidence 0.997
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090100.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
+
72. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006017.png ; $\{ ( x , y , z ) : ( x , y ) \in \Omega , | z | \leq h / 2 \}$ ; confidence 0.997
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011093.png ; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008015.png ; $x = 0$ ; confidence 0.997
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017050.png ; $k ( e ^ { - i \lambda } ) = \sum _ { j = 0 } ^ { \infty } K _ { j } e ^ { - i \lambda j }$ ; confidence 0.993
+
74. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000203.png ; $y \neq x$ ; confidence 0.997
  
75. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003024.png ; $f ( x ) = - \frac { 1 } { \pi } \int _ { 0 } ^ { \infty } \frac { d F _ { x } ( q ) } { q }$ ; confidence 0.948
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b1201503.png ; $( \Omega , A , P )$ ; confidence 0.997
  
76. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z1300808.png ; $\| f - p \| _ { 2 } = ( \int \int _ { D } | f ( x , y ) - p ( x , y ) | ^ { 2 } d x d y ) ^ { 1 / 2 }$ ; confidence 0.839
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026033.png ; $[ f , \Omega , y ]$ ; confidence 0.997
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240307.png ; $SS _ { H } = \| \hat { \eta } _ { \Omega } - \hat { \eta } _ { \omega } \| ^ { 2 }$ ; confidence 0.587
+
77. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006072.png ; $\delta \Leftrightarrow F \Leftrightarrow A \Leftrightarrow q$ ; confidence 0.997
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040229.png ; $\wedge \Gamma \approx \Delta \rightarrow \varphi \approx \psi$ ; confidence 0.985
+
78. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019041.png ; $( P , \equiv )$ ; confidence 0.997
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780
+
79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002077.png ; $\rho \geq \| H _ { \phi } \|$ ; confidence 0.997
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017010.png ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006078.png ; $z f ( z ) = H f ( z )$ ; confidence 0.997
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022063.png ; $\square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0$ ; confidence 0.286
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820210.png ; $F ( X , Y )$ ; confidence 0.997
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025020.png ; $- [ \alpha _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , \alpha _ { 1 } ] = D _ { 1 } \alpha _ { 1 }$ ; confidence 0.681
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021034.png ; $\{ m \} \subseteq \{ n \}$ ; confidence 0.997
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010026.png ; $p _ { i } ^ { * } = p _ { i } - \eta \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle$ ; confidence 0.870
+
83. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m1301802.png ; $\{ z : x \leq z \leq y \}$ ; confidence 0.997
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021033.png ; $+ \sum _ { 1 \leq i < j \leq k } ( - 1 ) ^ { i + j } X \otimes [ X , X _ { j } ] \wedge$ ; confidence 0.236
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018074.png ; $\Delta ^ { 2 }$ ; confidence 0.997
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002013.png ; $\operatorname { sp } ( J , x ) = \operatorname { sp } ( J ^ { \prime } , x )$ ; confidence 0.846
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010116.png ; $f : X \rightarrow G A$ ; confidence 0.997
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004052.png ; $U _ { 1 } \supset V _ { 1 } \supset U _ { 2 } \supset V _ { 2 } \supset \ldots$ ; confidence 0.888
+
86. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520298.png ; $H = \sum \oplus H _ { \alpha }$ ; confidence 0.997
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006087.png ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \| E \|$ ; confidence 0.417
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003020.png ; $U U ^ { \prime }$ ; confidence 0.997
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b1200808.png ; $E _ { WOr } ( P , m ) = \operatorname { sup } _ { p \in P } | \epsilon ( p , m ) |$ ; confidence 0.341
+
88. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001022.png ; $Z [ x ( n - k ) ] = z ^ { - k } Z ( x ( n ) )$ ; confidence 0.997
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022030.png ; $\Lambda ( M , s ) = \Lambda ( h ^ { i } ( X ) , s ) = L _ { \infty } ( M , s ) L ( M , s )$ ; confidence 0.991
+
89. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002036.png ; $\varphi \preceq \psi$ ; confidence 0.997
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201401.png ; $\sigma ( z ) S ( z ) \equiv \omega ( z ) ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.995
+
90. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004030.png ; $41$ ; confidence 0.997
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016014.png ; $p = x _ { 1 } + \frac { 1 } { 2 } x _ { 3 } , \quad q = x _ { 2 } + \frac { 1 } { 2 } x _ { 3 }$ ; confidence 0.989
+
91. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001063.png ; $h ( x _ { i } ) \neq f ( x _ { i } )$ ; confidence 0.997
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301908.png ; $\alpha = \operatorname { log } M / \operatorname { log } T \in ( 0,1 )$ ; confidence 0.999
+
92. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130134.png ; $F _ { 0 } = \xi$ ; confidence 0.997
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020076.png ; $[ \mathfrak { g } _ { + } , \mathfrak { g } _ { - } ] \subset \mathfrak { h }$ ; confidence 0.978
+
93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015028.png ; $\xi ^ { i } ( t )$ ; confidence 0.997
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043042.png ; $\Psi ( x ^ { n } \bigotimes x ^ { m } ) = q ^ { n m } x ^ { m } \varnothing x ^ { n }$ ; confidence 0.119
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007031.png ; $| m | , | n | \neq 1$ ; confidence 0.997
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023036.png ; $f ( u ) = \{ g \in G : g a c t s \text { trivially on } T \backslash T _ { d } \}$ ; confidence 0.155
+
95. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022021.png ; $\| p _ { k } \|$ ; confidence 0.997
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002047.png ; $\int _ { 0 } ^ { \infty } ( V _ { g } f ) ( \theta , t ) \frac { d t } { t } = c _ { g } f$ ; confidence 0.536
+
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090248.png ; $\Phi = \Phi ^ { + } \cup \Phi ^ { - }$ ; confidence 0.997
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c1200507.png ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}$ ; confidence 0.662
+
97. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021060/c02106012.png ; $| \alpha | ^ { 2 } + | \beta | ^ { 2 } = 1$ ; confidence 0.997
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300403.png ; $G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong$ ; confidence 0.996
+
98. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026022.png ; $\delta = \operatorname { exp } ( - 2 \pi \rho / \omega )$ ; confidence 0.997
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008059.png ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } \alpha _ { i } , n - i A ^ { i } E ^ { n - i } = 0$ ; confidence 0.510
+
99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028018.png ; $A ( D ) ^ { * }$ ; confidence 0.997
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300901.png ; $T _ { n } ( x ) = \operatorname { cos } ( n \operatorname { cos } ^ { - 1 } x )$ ; confidence 0.739
+
100. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202403.png ; $p : ( X , A ) \rightarrow ( X / A , * )$ ; confidence 0.997
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180270.png ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } E \rightarrow \otimes ^ { p + q + 1 } E$ ; confidence 0.462
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002029.png ; $Q \subset U M$ ; confidence 0.997
  
102. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018026.png ; $- \{ d y ^ { 1 } \otimes d y ^ { 1 } + \ldots + d y ^ { q } \bigotimes d y ^ { q } \}$ ; confidence 0.104
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017026.png ; $( \phi _ { t } , \psi _ { t } )$ ; confidence 0.997
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021054.png ; $\Lambda _ { n } = \operatorname { log } ( d P _ { n } ^ { \prime } / d P _ { n } )$ ; confidence 0.906
+
103. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003036.png ; $F _ { A } ^ { + } = i \sigma ( \phi , \phi )$ ; confidence 0.997
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c1302505.png ; $P ( X _ { k } > t ) = \operatorname { exp } ( - \int _ { 0 } ^ { t } u _ { k } ( s ) d s )$ ; confidence 0.594
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030059.png ; $\eta \in Y ^ { \prime }$ ; confidence 0.997
  
105. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120121.png ; $\int f ( \theta , \phi ) d \phi = \int f ( \theta , \phi , \alpha ) d \phi$ ; confidence 0.998
+
105. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006046.png ; $t : A \rightarrow X$ ; confidence 0.997
  
106. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006058.png ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974
+
106. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v0969006.png ; $T \in B ( H )$ ; confidence 0.997
  
107. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201104.png ; $\nabla \times E + \frac { 1 } { c } \frac { \partial B } { \partial t } = 0$ ; confidence 0.905
+
107. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200301.png ; $\operatorname { Ric } ( \omega )$ ; confidence 0.997
  
108. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023095.png ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) )$ ; confidence 0.424
+
108. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007033.png ; $L = 100$ ; confidence 0.997
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024056.png ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030077.png ; $L ^ { 2 } ( R ^ { N } )$ ; confidence 0.997
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011088.png ; $U \# , \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}$ ; confidence 0.445
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150101.png ; $N \cup \{ 0 \}$ ; confidence 0.997
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011063.png ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663
+
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120120/w12012034.png ; $R = 0$ ; confidence 0.997
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016081.png ; $( \mathfrak { B } \mathfrak { b } ) \sim _ { l } ( \mathfrak { A } \alpha )$ ; confidence 0.123
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005057.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad s , t \in [ 0 , T ]$ ; confidence 0.997
  
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
+
113. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019016.png ; $L ( p ^ { 2 } ( x ) ) > 0$ ; confidence 0.997
  
114. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004078.png ; $p ( x , \xi ) = \sum _ { | \alpha | \leq m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.593
+
114. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018096.png ; $\phi \in C ( X )$ ; confidence 0.997
  
115. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004071.png ; $P ( x , D ) = \sum _ { | \alpha | \leq m } p _ { \alpha } ( x ) D _ { x } ^ { \alpha }$ ; confidence 0.857
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202005.png ; $\sum _ { n = 0 } ^ { \infty } | a _ { n } | ^ { 2 } < \infty$ ; confidence 0.997
  
116. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602042.png ; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega$ ; confidence 0.820
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010055.png ; $\varphi \in L ^ { 1 } ( D , d A )$ ; confidence 0.997
  
117. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002077.png ; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609
+
117. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014052.png ; $\phi ( D )$ ; confidence 0.997
  
118. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005037.png ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y$ ; confidence 0.750
+
118. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001072.png ; $\psi : O _ { 1 } ( m ) \rightarrow O _ { 1 } ( m )$ ; confidence 0.997
  
119. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006043.png ; $D \alpha D = \coprod _ { \alpha ^ { \prime } \in A } D \alpha ^ { \prime }$ ; confidence 0.777
+
119. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002052.png ; $R \in L ( X )$ ; confidence 0.997
  
120. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006013.png ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c ( \frac { m n } { d ^ { 2 } } )$ ; confidence 0.304
+
120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003043.png ; $\Psi ( x , \theta ) = \psi ( x - \theta )$ ; confidence 0.997
  
121. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow C ^ { n }$ ; confidence 0.626
+
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001025.png ; $\operatorname { deg } ( C ) = 0$ ; confidence 0.997
  
122. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005099.png ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e$ ; confidence 0.332
+
122. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001057.png ; $x ^ { - 1 }$ ; confidence 0.997
  
123. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005032.png ; $g ( x , k ) = e ^ { - i k x } + \int _ { - \infty } ^ { x } A _ { - } ( x , y ) e ^ { - i k y } d y$ ; confidence 0.833
+
123. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001010.png ; $i : X \rightarrow U$ ; confidence 0.997
  
124. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006062.png ; $\| F ( x ) \| _ { L } \propto _ { ( R _ { + } ) } + \| F ( x ) \| _ { L ^ { 1 } ( R _ { + } ) } +$ ; confidence 0.088
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006072.png ; $| \mu - \lambda | < \| E \|$ ; confidence 0.997
  
125. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006098.png ; $q ( x ) = 2 \frac { d } { d x } [ \Gamma _ { 2 x } ( 2 x , 0 ) - \Gamma _ { 2 x } ( 0,0 ) ]$ ; confidence 0.992
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b1202103.png ; $U ( \mathfrak { g } )$ ; confidence 0.997
  
126. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006072.png ; $\delta \Leftrightarrow F \Leftrightarrow A \Leftrightarrow q$ ; confidence 0.997
+
126. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783041.png ; $L ( H ) \rightarrow \overline { A }$ ; confidence 0.997
  
127. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090232.png ; $\operatorname { char } ( Y ^ { \chi } ) = \pi ^ { \mu } \chi g _ { \chi } ( T )$ ; confidence 0.844
+
127. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031015.png ; $f ( T ) g ( T ) = ( f g ) ( T ) , f ( \sigma ( T ) ) = \sigma ( f ( T ) )$ ; confidence 0.997
  
128. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090111.png ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928
+
128. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010018.png ; $( - \Delta / 2 ) ^ { - 1 }$ ; confidence 0.997
  
129. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300507.png ; $Ma = \frac { u } { c } , Re = \frac { u l } { \nu } , Pr = \frac { \nu } { \kappa }$ ; confidence 0.275
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026031.png ; $0 \leq n \leq N - 1$ ; confidence 0.997
  
130. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005072.png ; $\operatorname { cosh } \delta = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.873
+
130. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101606.png ; $L ( 0 )$ ; confidence 0.997
  
131. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105053.png ; $( E ) < \delta \Rightarrow \operatorname { mes } ( f ( E ) ) < \epsilon$ ; confidence 0.350
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032046.png ; $L ^ { \infty } ( \mu )$ ; confidence 0.997
  
132. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003015.png ; $\Psi ( x , \theta ) = ( \partial / \partial \theta ) \rho ( x , \theta )$ ; confidence 0.996
+
132. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005077.png ; $w = \sqrt { s ^ { T } B s } ( \frac { y } { y ^ { T } s } - \frac { B s } { s ^ { T } B s } )$ ; confidence 0.997
  
133. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790
+
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200309.png ; $f : N \times A \rightarrow B$ ; confidence 0.997
  
134. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009063.png ; $\| P ( D ) ( \phi ) \| _ { 2 } \geq G \| \phi \| _ { 2 } ( L ^ { 2 } \text { norms } )$ ; confidence 0.343
+
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019038.png ; $y = f ^ { \prime } ( x )$ ; confidence 0.997
  
135. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011052.png ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029028.png ; $( \mu )$ ; confidence 0.997
  
136. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022037.png ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070113.png ; $\alpha ( g )$ ; confidence 0.997
  
137. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p1301008.png ; $\hat { K } = \{ z \in C ^ { n } : | P ( z ) | \leq \| P \| _ { K } , \forall P \in P \}$ ; confidence 0.228
+
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202105.png ; $x \rightarrow \frac { 1 } { x }$ ; confidence 0.997
  
138. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012042.png ; $\sigma _ { 1 } ^ { 3 } \sigma _ { 2 } ^ { - 1 } \sigma _ { 1 } \sigma _ { 2 } ^ { - 1 }$ ; confidence 0.988
+
138. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900126.png ; $P _ { 1 } \leq Q$ ; confidence 0.997
  
139. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001049.png ; $D _ { + } = \{ f \in D : \text { freal valued, } f ( s ) = 0 \text { for } s < 0 \}$ ; confidence 0.728
+
139. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300606.png ; $- \Delta u = \mu u \text { in } \Omega$ ; confidence 0.997
  
140. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300109.png ; $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ ; confidence 0.145
+
140. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100105.png ; $x + z \leq y + z$ ; confidence 0.997
  
141. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004017.png ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } \dot { y } _ { 0,1 } ^ { 2 } } { L ^ { 2 } }$ ; confidence 0.325
+
141. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520218.png ; $( C , D ) \in G$ ; confidence 0.997
  
142. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070137.png ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186
+
142. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460206.png ; $F ( i \omega )$ ; confidence 0.997
  
143. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304508.png ; $= 1 - \frac { 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } } { n ( n ^ { 2 } - 1 ) }$ ; confidence 0.956
+
143. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010114.png ; $\Phi _ { \sigma } = 0$ ; confidence 0.997
  
144. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510147.png ; $\sigma ( u ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001091.png ; $V ^ { * } = X ^ { * } / \Gamma$ ; confidence 0.997
  
145. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054078.png ; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934
+
145. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007011.png ; $0 \leq k < m \leq n$ ; confidence 0.997
  
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032052.png ; $U ( L ) = T ( L ) / \{ x \otimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \otimes x - [ x , y ] \}$ ; confidence 0.282
+
146. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807046.png ; $( ( n - k + 1 ) / n k ) T ^ { 2 }$ ; confidence 0.997
  
147. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032022.png ; $B _ { V } \otimes _ { W } ( x \otimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \otimes x )$ ; confidence 0.270
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040576.png ; $\frac { \varphi } { \square \varphi }$ ; confidence 0.997
  
148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064074.png ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t s ( t ) s ( - t ) d t )$ ; confidence 0.496
+
148. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005043.png ; $h ( z )$ ; confidence 0.997
  
149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267
+
149. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007041.png ; $v ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.997
  
150. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050114.png ; $\sigma _ { \pi } ( A , X ) = \sigma _ { \delta } ( A , X ) = \sigma _ { T } ( A , X )$ ; confidence 0.631
+
150. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011097.png ; $\varphi ( x )$ ; confidence 0.997
  
151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005048.png ; $\operatorname { dim } ( \Gamma _ { x } \cap ( R ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706
+
151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006046.png ; $\Phi ( x ) \geq 0$ ; confidence 0.997
  
152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013026.png ; $W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } }$ ; confidence 0.841
+
152. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019021.png ; $L ( | p ( z ) | ^ { 2 } ) > 0$ ; confidence 0.997
  
153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200164.png ; $\phi ( z ) = z ^ { k } + \alpha _ { 1 } z ^ { k - 1 } + \ldots + \alpha _ { k } \neq 0$ ; confidence 0.926
+
153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019089.png ; $( X , \sigma )$ ; confidence 0.997
  
154. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008086.png ; $s ^ { 2 } = ( R - m ) ( m - L )$ ; confidence 0.997
  
155. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202007.png ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977
+
155. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900130.png ; $P _ { 1 } \sim P$ ; confidence 0.997
  
156. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020211.png ; $\operatorname { Deg } ( F , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.881
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320110.png ; $T \in L ( p | q )$ ; confidence 0.997
  
157. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020209.png ; $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.961
+
157. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003032.png ; $\{ x : f ( x ) < \alpha \}$ ; confidence 0.997
  
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090106.png ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi$ ; confidence 0.648
+
158. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010035.png ; $R ( X , Y , Z , W )$ ; confidence 0.997
  
159. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090109.png ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E \otimes ^ { \gamma }$ ; confidence 0.166
+
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023047.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.997
  
160. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi } ^ { * } , \Phi ^ { \prime }$ ; confidence 0.924
+
160. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002068.png ; $N = N ( q , r , d )$ ; confidence 0.997
  
161. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011014.png ; $( Op ( a ) u ) ( x ) = \int e ^ { 2 i \pi x . \xi } a ( x , \xi ) \hat { a } ( \xi ) d \xi$ ; confidence 0.079
+
161. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y1200201.png ; $\xi : P \rightarrow M$ ; confidence 0.997
  
162. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080183.png ; $( \kappa \partial _ { \vec { \alpha } } + M _ { \dot { \alpha } } ) \psi = 0$ ; confidence 0.136
+
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202209.png ; $p : X \rightarrow \{ x \}$ ; confidence 0.997
  
163. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
+
163. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028092.png ; $U ^ { \prime } \subset U$ ; confidence 0.997
  
164. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301105.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i \varepsilon }$ ; confidence 0.839
+
164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003038.png ; $\alpha \mapsto P _ { \alpha } ( x )$ ; confidence 0.997
  
165. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w1301009.png ; $W ^ { a } ( t ) = \cup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0$ ; confidence 0.291
+
165. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011028.png ; $A = U ^ { T } D V$ ; confidence 0.997
  
166. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012021.png ; $d _ { H } ( A , B ) = \operatorname { sup } \{ | d ( x , A ) - d ( x , B ) | : x \in X \}$ ; confidence 0.487
+
166. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002048.png ; $\geq [ ( d + 1 ) / 2 ]$ ; confidence 0.997
  
167. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004016.png ; $T ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 0.494
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b11067011.png ; $m = 2 n$ ; confidence 0.997
  
168. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z1300308.png ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w }$ ; confidence 0.779
+
168. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g1200406.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.997
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c0211101.png ; $H ^ { n } ( X ; G ) = \operatorname { lim } _ { \square } H ^ { n } ( \alpha ; G )$ ; confidence 0.237
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026092.png ; $[ f , \Omega , 0 ]$ ; confidence 0.997
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
+
170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070112.png ; $H = L ^ { 2 } ( T , d m )$ ; confidence 0.997
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040736.png ; $^ { * } L D S = \cup \{ \text { Alg } Mod ^ { * } L D S _ { P } : \text { Paset } \}$ ; confidence 0.080
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048056.png ; $D _ { \pi }$ ; confidence 0.997
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042019.png ; $\nu \in R$ ; confidence 0.997
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040320.png ; $\epsilon _ { i , 0 } ( x , y , z , w ) \approx \epsilon _ { i , 1 } ( x , y , z , w )$ ; confidence 0.656
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a1300706.png ; $\sigma ( n ) = 2 n$ ; confidence 0.997
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020077.png ; $T \in L _ { 0 } ( X )$ ; confidence 0.997
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005057.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad s , t \in [ 0 , T ]$ ; confidence 0.997
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016046.png ; $( r \times r )$ ; confidence 0.997
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006044.png ; $P _ { q } ^ { \dagger } ( n ) = \frac { 1 } { n } \sum _ { r | n } \mu ( r ) q ^ { n / r }$ ; confidence 0.230
+
176. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007016.png ; $0 \leq h < k < m \leq n$ ; confidence 0.997
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010034.png ; $\forall x _ { i } \in D ( A ) , y _ { i } \in A x _ { i } , i = 1,2 , \lambda \geq 0$ ; confidence 0.607
+
177. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003059.png ; $l = 2 \pi k \operatorname { sinh } \frac { r } { k }$ ; confidence 0.996
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017041.png ; $\psi _ { t } = \psi ( t , S _ { t } )$ ; confidence 0.996
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017048.png ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013030.png ; $e ( F ( p ) | F )$ ; confidence 0.996
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011340/a0113401.png ; $\alpha _ { 0 } x ^ { n } + \alpha _ { 1 } x ^ { n - 1 } + \ldots + \alpha _ { n } = 0$ ; confidence 0.333
+
180. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300505.png ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } ) , - \infty < x < \infty , t > 0$ ; confidence 0.996
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a1302508.png ; $\{ x y \{ z u v \} \} = \{ x y z \} u v \} + \{ z \{ x y u \} v \} + \{ z u \{ x y v \} \}$ ; confidence 0.800
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190191.png ; $\Phi = ( h _ { 1 } , h _ { 2 } , p , W ^ { + } )$ ; confidence 0.996
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202406.png ; $\sum _ { p } v _ { p } ( f ) \operatorname { log } ( p ) + v _ { \infty } ( f ) = 0$ ; confidence 0.654
+
182. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q1200509.png ; $F ( x ^ { k } ) + D F ( x ^ { k } ) ( x - x ^ { k } ) = 0$ ; confidence 0.996
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027081.png ; $r _ { P } ( \alpha , b ) = r _ { P } ( \alpha ) , r _ { P } ( b ) . ( \alpha , b ) _ { P }$ ; confidence 0.242
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018063.png ; $\tau \in A ( X )$ ; confidence 0.996
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027076.png ; $\rho _ { c \varepsilon } ( g ) = g ( \sqrt { \alpha } ) / \sqrt { \alpha }$ ; confidence 0.179
+
184. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010124.png ; $M _ { 1 } \times S ^ { N }$ ; confidence 0.996
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280122.png ; $M ^ { U } ( E ) = \{ x \in X : \operatorname { sp } _ { U } ( x ) \subseteq E \}$ ; confidence 0.813
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b1205302.png ; $1 < p \leq \infty$ ; confidence 0.996
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
+
186. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160168.png ; $\leq 1 / 3$ ; confidence 0.996
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220112.png ; $\operatorname { det } _ { Q } ^ { - 1 } ( F ^ { i + 1 - m } H _ { DR } ^ { i } ( X / R ) )$ ; confidence 0.087
+
187. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001063.png ; $H ( \pi )$ ; confidence 0.996
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201207.png ; $( M ) \geq \alpha ( n ) ( \frac { \operatorname { inj } M } { \pi } ) ^ { n }$ ; confidence 0.479
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015220/b01522011.png ; $R ( \pi )$ ; confidence 0.996
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012011.png ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975
+
189. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840263.png ; $E ( \Delta ) K$ ; confidence 0.996
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185
+
190. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070133.png ; $f = L F$ ; confidence 0.996
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203002.png ; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in R ^ { N }$ ; confidence 0.363
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024046.png ; $\operatorname { div } ( s )$ ; confidence 0.996
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032066.png ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + \frac { 1 } { F ( s , t ) } ( s y + t z ) \| =$ ; confidence 0.859
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032056.png ; $J = \operatorname { log } ( \frac { 1 - \alpha } { \beta } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.996
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034015.png ; $z ^ { \alpha } = z _ { 1 } ^ { \alpha _ { 1 } } \ldots z _ { n } ^ { \alpha _ { n } }$ ; confidence 0.447
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020017.png ; $| \theta ( z ) | \leq 1$ ; confidence 0.996
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042064.png ; $ev _ { V } ^ { \prime } : V ^ { * } \otimes V \rightarrow \underline { 1 }$ ; confidence 0.221
+
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100123.png ; $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$ ; confidence 0.996
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043013.png ; $( a \otimes c ) ( b \otimes d ) = \alpha . \Psi _ { C , B } ( c \otimes b ) . d$ ; confidence 0.098
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f1301605.png ; $\mu _ { R } ( M )$ ; confidence 0.996
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022020.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
+
196. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018011.png ; $\lambda ^ { k } T ( \lambda g )$ ; confidence 0.996
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049010.png ; $\operatorname { lim } _ { x \rightarrow \infty } m _ { i } ( E _ { n } ) = 0$ ; confidence 0.397
+
197. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150200.png ; $D ( B ) \subset D ( A )$ ; confidence 0.996
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052086.png ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004010.png ; $[ 0 , L ]$ ; confidence 0.996
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001097.png ; $\rho _ { j k } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.727
+
199. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003029.png ; $\operatorname { Ric } ( \omega ) = \omega$ ; confidence 0.996
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002084.png ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982
+
200. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201104.png ; $( x , t ) \rightarrow t$ ; confidence 0.996
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018025.png ; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376
+
201. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120080/e1200805.png ; $( A , \alpha )$ ; confidence 0.996
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180482.png ; $W ( \mathfrak { g } ) = R ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.092
+
202. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003039.png ; $V ^ { \prime } = F _ { K } \circ \Phi ( V )$ ; confidence 0.996
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180405.png ; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.292
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004048.png ; $f : X \rightarrow \overline { G }$ ; confidence 0.996
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025040.png ; $\lambda _ { k } ( t ) = \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta } I _ { k } ( t )$ ; confidence 0.883
+
204. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062060.png ; $m _ { \alpha } ( \lambda )$ ; confidence 0.996
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026023.png ; $\langle d T , \phi \rangle = ( - 1 ) ^ { p + 1 } \langle T , d \phi \rangle$ ; confidence 0.866
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001030.png ; $C ( X , R )$ ; confidence 0.996
  
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031011.png ; $e _ { N } ( F _ { d } ) = \operatorname { inf } _ { Q _ { R } } e ( Q _ { X } , F _ { d } )$ ; confidence 0.073
+
206. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019021.png ; $A ^ { * } P + P A = 0$ ; confidence 0.996
  
207. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230128.png ; $( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } )$ ; confidence 0.665
+
207. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023059.png ; $K ^ { \prime } K$ ; confidence 0.996
  
208. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201208.png ; $f ( \phi | \theta ) = f ( \theta , \phi ) / \int f ( \theta , \phi ) d \phi$ ; confidence 0.994
+
208. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d1301705.png ; $u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } )$ ; confidence 0.996
  
209. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000130.png ; $\epsilon \in [ 0 , ( \sum _ { i = 1 } ^ { \infty } \lambda _ { i } ) ^ { 1 / 2 } ]$ ; confidence 0.996
+
209. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003036.png ; $p ( z ) / q ( z )$ ; confidence 0.996
  
210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140101.png ; $( ( \neg \varphi \rightarrow \varphi ) \rightarrow \varphi ) = 1$ ; confidence 0.999
+
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032083.png ; $n \geq m \geq 2$ ; confidence 0.996
  
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190174.png ; $( h _ { 1 } ^ { \prime } , h _ { 2 } ^ { \prime } , p ^ { \prime } , W ^ { \prime } )$ ; confidence 0.979
+
211. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000132.png ; $\sigma \in T$ ; confidence 0.996
  
212. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230105.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { R } }$ ; confidence 0.342
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280153.png ; $M ^ { U } ( E + \omega )$ ; confidence 0.996
  
213. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007039.png ; $c _ { k } T N ^ { - k } \leq | f ^ { ( k ) } ( x ) | \leq c _ { k } ^ { \prime } T N ^ { - k }$ ; confidence 0.729
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005046.png ; $0 \leq \beta _ { i } < \alpha _ { i } \leq 2$ ; confidence 0.996
  
214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009058.png ; $U _ { N } ^ { ( k ) } ( x ) = x ^ { 1 - n } F _ { N } ^ { ( k ) } ( x ^ { k } ) , n = 1,2 , \ldots$ ; confidence 0.329
+
214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010011.png ; $N _ { p } ( f )$ ; confidence 0.996
  
215. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016012.png ; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \otimes _ { R / P } Q ( R / P ) )$ ; confidence 0.610
+
215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301407.png ; $\sigma ( R )$ ; confidence 0.996
  
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010083.png ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z )$ ; confidence 0.918
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220128.png ; $m = i / 2$ ; confidence 0.996
  
217. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011090.png ; $F _ { \sigma } \in \tilde { O } ( ( \Omega + \Gamma _ { \sigma } ) \cap U )$ ; confidence 0.642
+
217. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d0303308.png ; $H ^ { * } ( E ^ { * } ( M ) )$ ; confidence 0.996
  
218. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150166.png ; $\mu ( A ) = \operatorname { inf } \{ \| 7 \| : \alpha ( A - T ) = \infty \}$ ; confidence 0.341
+
218. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000130.png ; $\epsilon \in [ 0 , ( \sum _ { i = 1 } ^ { \infty } \lambda _ { i } ) ^ { 1 / 2 } ]$ ; confidence 0.996
  
219. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790
+
219. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007059.png ; $k = 1 / \sqrt { 2 }$ ; confidence 0.996
  
220. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040109.png ; $S ( \phi ) = \int \{ \xi ( x ) , \phi ( x ) \} \theta ( x ) d H ^ { m } | _ { R ( x ) }$ ; confidence 0.257
+
220. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l1201907.png ; $B = A ^ { * }$ ; confidence 0.996
  
221. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014040.png ; $b ( z )$ ; confidence 0.996
  
222. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012056.png ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
+
222. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003051.png ; $Q ( A ) = 0$ ; confidence 0.996
  
223. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003079.png ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201
+
223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230122.png ; $d ( z , w ) = \alpha ( z ) \alpha ^ { * } ( w ) - \beta ( z ) \beta ^ { * } ( w )$ ; confidence 0.996
  
224. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) | \Delta ^ { 2 } \alpha _ { k } | < \infty$ ; confidence 0.706
+
224. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b01544011.png ; $\sigma _ { 1 } ^ { 2 }$ ; confidence 0.996
  
225. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006043.png ; $( x ) = \{ y : y < p \text { zfor allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201308.png ; $d A ( z ) = d x d y$ ; confidence 0.996
  
226. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010057.png ; $\cup \{ a , b \}$ ; confidence 0.996
  
227. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002021.png ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } }$ ; confidence 0.917
+
227. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e035800101.png ; $L ( A )$ ; confidence 0.996
  
228. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007011.png ; $u ( x , t ) = i \sum _ { k } \hat { a } _ { k } ( t ) \operatorname { exp } ( i k x )$ ; confidence 0.595
+
228. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500041.png ; $\epsilon _ { N } ( C , X )$ ; confidence 0.996
  
229. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000190.png ; $d \cdot e = \{ b \in B : \exists \beta \subseteq e ( b , \beta ) \in d \}$ ; confidence 0.477
+
229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004019.png ; $y ( x ) = \operatorname { exp } ( - x )$ ; confidence 0.996
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003065.png ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } F _ { p }$ ; confidence 0.771
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440114.png ; $b ^ { G }$ ; confidence 0.996
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002017.png ; $L ( - x ) = - L ( x ) , \quad - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }$ ; confidence 0.996
+
231. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060130.png ; $\forall k > 0$ ; confidence 0.996
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301005.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { lop } } f ( x ) d s : = R f$ ; confidence 0.443
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002035.png ; $\int _ { 0 } ^ { \infty } \mu _ { t } d t / t$ ; confidence 0.996
  
233. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007053.png ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248
+
233. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001019.png ; $f : V \rightarrow X$ ; confidence 0.996
  
234. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110130.png ; $\frac { D v } { D t } = \frac { \partial v } { \partial t } + ( v . \nabla ) v$ ; confidence 0.578
+
234. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167025.png ; $\eta \oplus \sigma$ ; confidence 0.996
  
235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015036.png ; $f _ { X | Y } ( X | Y ) = \frac { f _ { X , Y } ( X , Y ) } { f _ { Y } ( Y ) } , f _ { Y } ( Y ) > 0$ ; confidence 0.492
+
235. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301301.png ; $Q = A K ^ { \alpha } L ^ { 1 - \alpha }$ ; confidence 0.996
  
236. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019023.png ; $m _ { - k } = L ( z ^ { - k } ) = \overline { L ( z ^ { k } ) } = \overline { m } _ { k }$ ; confidence 0.907
+
236. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020172.png ; $U _ { t } = \operatorname { Re } f ( B _ { t } )$ ; confidence 0.996
  
237. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260251.png ; $\sigma : I ( B ) \cap C ^ { \prime } \cap N ^ { \perp } \rightarrow M ( B )$ ; confidence 0.996
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000182.png ; $f : D _ { A } \rightarrow D _ { A }$ ; confidence 0.996
  
238. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002042.png ; $m \mapsto P ( \psi _ { \mu } ( m ) , \mu ) = P ( m , F ) , M _ { F } \rightarrow F$ ; confidence 0.860
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020014.png ; $f \in M$ ; confidence 0.996
  
239. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200307.png ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302305.png ; $P : H \rightarrow U$ ; confidence 0.996
  
240. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663022.png ; $f \in H _ { p } ^ { r } ( M _ { 1 } , \ldots , M _ { n } ; \Omega ) , \quad M _ { l } > 0$ ; confidence 0.088
+
240. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200405.png ; $A \backslash B$ ; confidence 0.996
  
241. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010013.png ; $y _ { 1 } = y _ { 0 } + h \sum _ { l = 1 } ^ { s } b _ { l } f ( x _ { 0 } + c _ { l } h , g _ { z } )$ ; confidence 0.263
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025051.png ; $\angle \Omega O \Omega ^ { \prime } = 2 \omega$ ; confidence 0.996
  
242. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
+
242. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007095.png ; $H \subset H _ { 1 }$ ; confidence 0.996
  
243. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006067.png ; $\| f \| _ { W ^ { k - 1 } } L _ { \Phi } ( \partial \Omega ) ^ { + \text { inf } }$ ; confidence 0.374
+
243. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004063.png ; $\chi ( L ( G ) ) \leq \omega ( L ( G ) ) + 1$ ; confidence 0.996
  
244. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007083.png ; $C ( E , \Omega ) = \operatorname { sup } \{ C ( K ) : K \subset \Omega \}$ ; confidence 0.984
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420122.png ; $\Psi = \tau \circ R$ ; confidence 0.996
  
245. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005068.png ; $v = \sqrt { y ^ { T } H y } ( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } )$ ; confidence 0.291
+
245. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041710/f0417103.png ; $G = G ^ { * }$ ; confidence 0.996
  
246. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005077.png ; $w = \sqrt { s ^ { T } B s } ( \frac { y } { y ^ { T } s } - \frac { B s } { s ^ { T } B s } )$ ; confidence 0.997
+
246. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012011.png ; $\eta \in R$ ; confidence 0.996
  
247. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007073.png ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943
+
247. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240066.png ; $n = 9$ ; confidence 0.996
  
248. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011014.png ; $\xi ( s ) = \xi ( 0 ) \prod _ { \rho } ( 1 - \frac { s } { \rho } ) e ^ { s / \rho }$ ; confidence 0.959
+
248. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400123.png ; $\Phi ^ { + } ( t )$ ; confidence 0.996
  
249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012011.png ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971
+
249. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009046.png ; $E _ { 1 } ( k )$ ; confidence 0.996
  
250. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200207.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) = \tau$ ; confidence 0.993
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040085.png ; $R : G \rightarrow V$ ; confidence 0.996
  
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002010.png ; $L _ { \aleph } \alpha ( x ; t ) = \partial _ { x } \alpha ( g ( x ; t ) * f ( x ) )$ ; confidence 0.108
+
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052092.png ; $B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.996
  
252. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201609.png ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }$ ; confidence 0.588
+
252. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007078.png ; $- \nabla ^ { 2 } + q ( x )$ ; confidence 0.996
  
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572
+
253. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005024.png ; $| \beta | < 1$ ; confidence 0.996
  
254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130570/s13057012.png ; $\sum _ { \operatorname { max } \backslash \leq N } \Delta _ { m } ( f )$ ; confidence 0.086
+
254. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020227.png ; $| \nabla u ( z ) | ^ { 2 } \operatorname { log } \frac { 1 } { | z | } d x d y$ ; confidence 0.996
  
255. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { * } ) )$ ; confidence 0.693
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008035.png ; $\Delta ( \Lambda )$ ; confidence 0.996
  
256. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067093.png ; $\theta \rightarrow g \theta = ( g _ { x } ^ { i } d u ^ { i \varepsilon } )$ ; confidence 0.228
+
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200156.png ; $| g ( k ) | \geq ( \frac { n } { 8 e ( m + n ) } ) ^ { n } | g ( 0 ) |$ ; confidence 0.996
  
257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005013.png ; $\{ e _ { 1 } , \ldots , e _ { i } , i , 1 \leq i _ { 1 } < \ldots < i _ { k } \leq n \}$ ; confidence 0.091
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025048.png ; $n - k + 1$ ; confidence 0.996
  
258. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007011.png ; $g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in R )$ ; confidence 0.991
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040577.png ; $\frac { \varphi , \varphi \rightarrow \psi } { \psi }$ ; confidence 0.996
  
259. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060100.png ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { TF } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 )$ ; confidence 0.448
+
259. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018064.png ; $L ^ { 3 } ( X , m )$ ; confidence 0.996
  
260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013031.png ; $\times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - w - 1 } d z$ ; confidence 0.124
+
260. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009017.png ; $F \mu ( \zeta )$ ; confidence 0.996
  
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019019.png ; $t ( r + 1 , r ) \leq \frac { \operatorname { ln } r } { 2 r } ( 1 + \circ ( 1 ) )$ ; confidence 0.345
+
261. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007018.png ; $A ( \alpha ^ { \prime } , \alpha , k )$ ; confidence 0.996
  
262. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200138.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
+
262. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500087.png ; $( X , \mu )$ ; confidence 0.996
  
263. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020010.png ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
+
263. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005024.png ; $b ( k )$ ; confidence 0.996
  
264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202008.png ; $M _ { 4 } = \operatorname { min } _ { 1 \leq j < k \leq n } | z _ { j } - z _ { k } |$ ; confidence 0.878
+
264. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009021.png ; $F ( \tau )$ ; confidence 0.996
  
265. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020199.png ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007096.png ; $m \neq 1$ ; confidence 0.996
  
266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w1300406.png ; $\sum _ { j = 1 } ^ { n } ( \frac { \partial X _ { j } } { \partial z } ) ^ { 2 } = 0$ ; confidence 0.911
+
266. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002017.png ; $L ( - x ) = - L ( x ) , \quad - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }$ ; confidence 0.996
  
267. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759027.png ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } )$ ; confidence 0.456
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016027.png ; $\xi \oplus \eta$ ; confidence 0.996
  
268. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005058.png ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284
+
268. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578012.png ; $\int _ { 0 } ^ { \infty } F _ { 1 } ( \tau ) F _ { 2 } ( \tau ) d \tau = \int _ { 0 } ^ { \infty } f _ { 1 } ( x ) f _ { 2 } ( x ) d x$ ; confidence 0.996
  
269. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008012.png ; $W ( f ) = \frac { 1 } { 2 \pi } \int _ { R ^ { 2 n } } f ( q , p ) \Omega ( q , p ) d q d p$ ; confidence 0.965
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043099.png ; $( H , R )$ ; confidence 0.996
  
270. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201804.png ; $E W ^ { ( N ) } ( t ) W ^ { ( N ) } ( s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i }$ ; confidence 0.398
+
270. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r1300403.png ; $0 < \lambda _ { 1 } ( \Omega ) < \lambda _ { 2 } ( \Omega ) \leq \lambda _ { 3 } ( \Omega ) \leq$ ; confidence 0.996
  
271. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010100.png ; $\sigma U , V ^ { \prime } ( u \otimes v ) = u ^ { ( 2 ) } , v \otimes u ^ { ( 1 ) }$ ; confidence 0.164
+
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260134.png ; $( \theta , X )$ ; confidence 0.996
  
272. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
+
272. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230139.png ; $P : T M \rightarrow T M$ ; confidence 0.996
  
273. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001010.png ; $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$ ; confidence 0.960
+
273. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840387.png ; $y = P ( A - \lambda I ) ^ { - 1 } f$ ; confidence 0.996
  
274. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008047.png ; $V _ { n } = \operatorname { span } \{ V _ { n } ^ { n - 2 j } : 0 \leq j \leq n \}$ ; confidence 0.994
+
274. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120106.png ; $f ( \phi | \theta )$ ; confidence 0.996
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040245.png ; $x \approx y = | \operatorname { K } K ( E ( x , y ) ) \approx L ( E ( x , y ) )$ ; confidence 0.366
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180111.png ; $\mu ( x , 1 )$ ; confidence 0.996
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040543.png ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n } - 1 ) \} )$ ; confidence 0.663
+
276. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009012.png ; $f \in C ^ { \infty } ( M )$ ; confidence 0.996
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040232.png ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632
+
277. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007093.png ; $( f , g ) _ { H _ { 1 } } = ( f , g ) _ { H }$ ; confidence 0.996
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050148.png ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ { x _ { 2 } } | ^ { - r _ { m } z } =$ ; confidence 0.052
+
278. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006057.png ; $T _ { A } M \rightarrow M$ ; confidence 0.996
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200602.png ; $u ( x , t ) \in P ( x ) , \quad ( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.999
+
279. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015033.png ; $f _ { X } ( X ) = \int _ { Y } f _ { X , Y } ( X , Y ) d Y$ ; confidence 0.996
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201005.png ; $S ( t ) = e ^ { - t A } = \sum _ { m = 0 } ^ { \infty } \frac { ( - t A ) ^ { m } } { m ! }$ ; confidence 0.645
+
280. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006075.png ; $0 \leq z _ { i } < p$ ; confidence 0.996
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180137.png ; $Id = \{ \langle \alpha , \ldots , \alpha \rangle : \alpha \in U \}$ ; confidence 0.152
+
281. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012036.png ; $\alpha _ { k } = \int _ { 0 } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.996
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023035.png ; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { N } e ^ { i t p _ { N } } ) \in \Omega$ ; confidence 0.175
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202508.png ; $k \leq q + 2$ ; confidence 0.996
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023083.png ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \Omega } | z ^ { \not q } |$ ; confidence 0.259
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021090.png ; $f : X \rightarrow X$ ; confidence 0.996
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027036.png ; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020017.png ; $( M , \xi )$ ; confidence 0.996
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027035.png ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461
+
285. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e1300504.png ; $\alpha + \beta < 1$ ; confidence 0.996
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a1202706.png ; $\Lambda ( s , \rho ) = W ( \rho ) . \Lambda ( 1 - s , \overline { \rho } )$ ; confidence 0.837
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015060.png ; $G = U ( n )$ ; confidence 0.996
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010038.png ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } ) F _ { n } ( x _ { 1 } , \dots , x _ { n } ) =$ ; confidence 0.537
+
287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090212.png ; $M ( k ^ { \prime } )$ ; confidence 0.996
  
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009026.png ; $p ( f , \tau ) = 1 + \alpha _ { 1 } ( \tau ) f + \alpha _ { 2 } ( \tau ) f ^ { 2 } +$ ; confidence 0.997
+
288. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020107.png ; $I \subset [ - \pi , \pi ]$ ; confidence 0.996
  
289. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014051.png ; $t \geq \operatorname { deg } s _ { i } > \operatorname { deg } r _ { i }$ ; confidence 0.489
+
289. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026071.png ; $( b _ { \mu } )$ ; confidence 0.996
  
290. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012076.png ; $\Delta _ { \varepsilon } ( t + 2 \pi ) = \Delta _ { \varepsilon } ( t )$ ; confidence 0.837
+
290. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z1301201.png ; $\sigma \in R$ ; confidence 0.996
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202201.png ; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon }$ ; confidence 0.818
+
291. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009026.png ; $P _ { \Omega } ( x , \xi )$ ; confidence 0.996
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022070.png ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi$ ; confidence 0.668
+
292. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200504.png ; $A = R$ ; confidence 0.996
  
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022093.png ; $D _ { \xi } = ( 1 , v _ { 1 } , \dots , v _ { N } , | v | ^ { 2 } / 2 + I ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.344
+
293. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010045.png ; $( 2 \pi ) ^ { 12 } \tau ( n )$ ; confidence 0.996
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019033.png ; $\rho ( f ^ { \prime } ) = [ f ^ { \prime } ] - f ^ { \prime } + \frac { 1 } { 2 }$ ; confidence 1.000
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006019.png ; $\Delta _ { 3 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }$ ; confidence 0.996
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200187.png ; $( \rho | \alpha _ { i } ) = \frac { 1 } { 2 } ( \alpha _ { i } | \alpha _ { i } )$ ; confidence 0.998
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012028.png ; $k = s \mu , v = s ^ { 2 } \mu , \lambda = \frac { s \mu - 1 } { \mu - 1 } , r = \frac { s ^ { 2 } \mu - 1 } { \mu - 1 }$ ; confidence 0.996
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200189.png ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314
+
296. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014054.png ; $E ( 7,49 m + 15 )$ ; confidence 0.996
  
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400125.png ; $\delta : = ( 1 / 2 ) \sum _ { \alpha \in S ^ { + } } \alpha \in b _ { R } ^ { * }$ ; confidence 0.394
+
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005065.png ; $\delta _ { 0 }$ ; confidence 0.996
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042013.png ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \varnothing )$ ; confidence 0.496
+
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013027.png ; $W _ { 1 } ( x , y ) W _ { 1 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } = W _ { 2 } ( x , y ) W _ { 2 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 }$ ; confidence 0.996
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049018.png ; $\operatorname { lim } _ { x \rightarrow \infty } m _ { x } ( E ) = m ( E )$ ; confidence 0.378
+
299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180453.png ; $t ^ { 2 } g ( P )$ ; confidence 0.996
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010153.png ; $s _ { 1 } ( \zeta ) d \zeta _ { 1 } + \ldots + s _ { n } ( \zeta ) d \zeta _ { n }$ ; confidence 0.956
+
300. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f1201403.png ; $z = ( x + i y )$ ; confidence 0.996

Revision as of 00:10, 13 February 2020

List

1. a12008054.png ; $A ( t )$ ; confidence 0.997

2. a110010291.png ; $G ( A )$ ; confidence 0.997

3. a130240503.png ; $j = 1,2,3$ ; confidence 0.997

4. w13007025.png ; $( \alpha _ { k } | \alpha _ { l } ) = ( \beta _ { k } | \beta _ { l } ) = 0$ ; confidence 0.997

5. m12021021.png ; $K = L + M$ ; confidence 0.997

6. d12015028.png ; $t > 1$ ; confidence 0.997

7. j13002031.png ; $p _ { i } = p = p ( n )$ ; confidence 0.997

8. n067520334.png ; $\Gamma ( H )$ ; confidence 0.997

9. e12007092.png ; $1 \leq h \leq t$ ; confidence 0.997

10. p0754806.png ; $p \supset ( p \vee q )$ ; confidence 0.997

11. p12015057.png ; $n = 2$ ; confidence 0.997

12. i13006069.png ; $T : q \rightarrow S$ ; confidence 0.997

13. h13005027.png ; $L ^ { 2 } ( - \infty , \infty )$ ; confidence 0.997

14. z13005010.png ; $\delta : R \rightarrow R$ ; confidence 0.997

15. t13015065.png ; $E : L ^ { 2 } ( S ) \rightarrow H ^ { 2 } ( S )$ ; confidence 0.997

16. p130070117.png ; $G = W$ ; confidence 0.997

17. h12012049.png ; $\varphi ^ { 2 } = 0$ ; confidence 0.997

18. h13005021.png ; $\lambda = k ^ { 2 }$ ; confidence 0.997

19. t1201504.png ; $( \xi | \eta )$ ; confidence 0.997

20. x120010110.png ; $\Phi _ { \sigma } \neq 0$ ; confidence 0.997

21. k055840281.png ; $N = N ^ { + }$ ; confidence 0.997

22. n1300209.png ; $A \times Y$ ; confidence 0.997

23. h120120147.png ; $T ( \nabla ) _ { \infty } : \overline { B } ( H ( Y ) ) \rightarrow \overline { B } ( Y )$ ; confidence 0.997

24. g12004069.png ; $( x , t \xi ) \in \Gamma$ ; confidence 0.997

25. d12012017.png ; $O G$ ; confidence 0.997

26. m12023059.png ; $f _ { t - s } \leq f _ { t , s } \leq f$ ; confidence 0.997

27. i12010045.png ; $m = 7$ ; confidence 0.997

28. v13011057.png ; $A ^ { 2 } \leq C ^ { 2 }$ ; confidence 0.997

29. l06120017.png ; $\delta < 1$ ; confidence 0.997

30. r13007042.png ; $( u , v ) +$ ; confidence 0.997

31. b12027068.png ; $R ^ { + } \equiv [ 0 , \infty ) \rightarrow R$ ; confidence 0.997

32. a01419020.png ; $\phi ( t )$ ; confidence 0.997

33. l0600308.png ; $P B \perp P Q$ ; confidence 0.997

34. d1101802.png ; $u \rho ^ { \prime } ( u ) = - \rho ( u - 1 ) \quad ( u > 1 )$ ; confidence 0.997

35. b12013048.png ; $C _ { \mu } ( z ) = \int \frac { 1 } { z - w } d \mu ( w )$ ; confidence 0.997

36. a12012050.png ; $0 \leq y ^ { \prime } \leq y$ ; confidence 0.997

37. a12026023.png ; $u : A \rightarrow A ^ { \prime }$ ; confidence 0.997

38. e120260129.png ; $\alpha ( d \theta )$ ; confidence 0.997

39. g04337018.png ; $f ^ { \prime } ( x ) h = D f ( x , h )$ ; confidence 0.997

40. s08602050.png ; $\Phi ^ { + } ( z )$ ; confidence 0.997

41. c120180293.png ; $C ^ { \infty } ( M )$ ; confidence 0.997

42. k12003011.png ; $\operatorname { Ric } ( \omega ) = 0$ ; confidence 0.997

43. k055840108.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.997

44. c130070248.png ; $\phi : k ( C _ { 1 } ) \rightarrow k ( C _ { 2 } )$ ; confidence 0.997

45. a1202307.png ; $H ( D ) \cap C ( \overline { D } )$ ; confidence 0.997

46. v12004070.png ; $\omega ( G )$ ; confidence 0.997

47. a13004078.png ; $h ( \varphi ) \in F$ ; confidence 0.997

48. m130260252.png ; $\sigma = B ^ { \perp } \cap C ^ { \prime } \cap N ^ { \perp }$ ; confidence 0.997

49. r12002021.png ; $A ( q ) \ddot { q } + b ( q , \dot { q } ) = 0$ ; confidence 0.997

50. d13017022.png ; $\lambda _ { 1 } ( \Omega )$ ; confidence 0.997

51. c13009037.png ; $0 \leq n < N - 1$ ; confidence 0.997

52. d03101075.png ; $4 k$ ; confidence 0.997

53. a12017018.png ; $K ( t ) = \beta ( t ) \Pi ( t )$ ; confidence 0.997

54. f13024028.png ; $U ( \varepsilon ) \oplus U ( \varepsilon )$ ; confidence 0.997

55. l13010054.png ; $B f$ ; confidence 0.997

56. c02583082.png ; $T ( K ^ { \prime } ) \subset K ^ { \prime }$ ; confidence 0.997

57. k055840167.png ; $E _ { \lambda }$ ; confidence 0.997

58. c02640027.png ; $\Phi ( M )$ ; confidence 0.997

59. w12021080.png ; $n = 33,35,39$ ; confidence 0.997

60. m13025044.png ; $F ( \varphi u )$ ; confidence 0.997

61. k055840169.png ; $\operatorname { dim } R ( E _ { \lambda } ) < \infty$ ; confidence 0.997

62. s13036015.png ; $Y _ { t } \geq 0$ ; confidence 0.997

63. h04601054.png ; $( W , M _ { 0 } )$ ; confidence 0.997

64. c13026025.png ; $d = \partial + \overline { \partial }$ ; confidence 0.997

65. c12008056.png ; $E A = A E$ ; confidence 0.997

66. c120180269.png ; $0 \leq p \leq r$ ; confidence 0.997

67. e120190185.png ; $W = W ^ { + }$ ; confidence 0.997

68. p12015045.png ; $K = \{ \overline { \Omega } \}$ ; confidence 0.997

69. s12025021.png ; $h ( x ) = ( 1 - x ^ { 2 } ) ^ { - 1 / 2 }$ ; confidence 0.997

70. a12020090.png ; $P ( T ) \in J$ ; confidence 0.997

71. g13005024.png ; $r ( 1,2 )$ ; confidence 0.997

72. v11006017.png ; $\{ ( x , y , z ) : ( x , y ) \in \Omega , | z | \leq h / 2 \}$ ; confidence 0.997

73. a11008015.png ; $x = 0$ ; confidence 0.997

74. l057000203.png ; $y \neq x$ ; confidence 0.997

75. b1201503.png ; $( \Omega , A , P )$ ; confidence 0.997

76. b13026033.png ; $[ f , \Omega , y ]$ ; confidence 0.997

77. i13006072.png ; $\delta \Leftrightarrow F \Leftrightarrow A \Leftrightarrow q$ ; confidence 0.997

78. e12019041.png ; $( P , \equiv )$ ; confidence 0.997

79. h12002077.png ; $\rho \geq \| H _ { \phi } \|$ ; confidence 0.997

80. l12006078.png ; $z f ( z ) = H f ( z )$ ; confidence 0.997

81. f040820210.png ; $F ( X , Y )$ ; confidence 0.997

82. c12021034.png ; $\{ m \} \subseteq \{ n \}$ ; confidence 0.997

83. m1301802.png ; $\{ z : x \leq z \leq y \}$ ; confidence 0.997

84. a12018074.png ; $\Delta ^ { 2 }$ ; confidence 0.997

85. e120010116.png ; $f : X \rightarrow G A$ ; confidence 0.997

86. n067520298.png ; $H = \sum \oplus H _ { \alpha }$ ; confidence 0.997

87. l06003020.png ; $U U ^ { \prime }$ ; confidence 0.997

88. z13001022.png ; $Z [ x ( n - k ) ] = z ^ { - k } Z ( x ( n ) )$ ; confidence 0.997

89. l11002036.png ; $\varphi \preceq \psi$ ; confidence 0.997

90. j13004030.png ; $41$ ; confidence 0.997

91. m13001063.png ; $h ( x _ { i } ) \neq f ( x _ { i } )$ ; confidence 0.997

92. m120130134.png ; $F _ { 0 } = \xi$ ; confidence 0.997

93. e12015028.png ; $\xi ^ { i } ( t )$ ; confidence 0.997

94. b13007031.png ; $| m | , | n | \neq 1$ ; confidence 0.997

95. d11022021.png ; $\| p _ { k } \|$ ; confidence 0.997

96. w120090248.png ; $\Phi = \Phi ^ { + } \cup \Phi ^ { - }$ ; confidence 0.997

97. c02106012.png ; $| \alpha | ^ { 2 } + | \beta | ^ { 2 } = 1$ ; confidence 0.997

98. b11026022.png ; $\delta = \operatorname { exp } ( - 2 \pi \rho / \omega )$ ; confidence 0.997

99. d12028018.png ; $A ( D ) ^ { * }$ ; confidence 0.997

100. s1202403.png ; $p : ( X , A ) \rightarrow ( X / A , * )$ ; confidence 0.997

101. s13002029.png ; $Q \subset U M$ ; confidence 0.997

102. b13017026.png ; $( \phi _ { t } , \psi _ { t } )$ ; confidence 0.997

103. y12003036.png ; $F _ { A } ^ { + } = i \sigma ( \phi , \phi )$ ; confidence 0.997

104. b12030059.png ; $\eta \in Y ^ { \prime }$ ; confidence 0.997

105. e13006046.png ; $t : A \rightarrow X$ ; confidence 0.997

106. v0969006.png ; $T \in B ( H )$ ; confidence 0.997

107. k1200301.png ; $\operatorname { Ric } ( \omega )$ ; confidence 0.997

108. k13007033.png ; $L = 100$ ; confidence 0.997

109. b12030077.png ; $L ^ { 2 } ( R ^ { N } )$ ; confidence 0.997

110. b120150101.png ; $N \cup \{ 0 \}$ ; confidence 0.997

111. w12012034.png ; $R = 0$ ; confidence 0.997

112. a12005057.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad s , t \in [ 0 , T ]$ ; confidence 0.997

113. m13019016.png ; $L ( p ^ { 2 } ( x ) ) > 0$ ; confidence 0.997

114. d12018096.png ; $\phi \in C ( X )$ ; confidence 0.997

115. b1202005.png ; $\sum _ { n = 0 } ^ { \infty } | a _ { n } | ^ { 2 } < \infty$ ; confidence 0.997

116. b13010055.png ; $\varphi \in L ^ { 1 } ( D , d A )$ ; confidence 0.997

117. t12014052.png ; $\phi ( D )$ ; confidence 0.997

118. z12001072.png ; $\psi : O _ { 1 } ( m ) \rightarrow O _ { 1 } ( m )$ ; confidence 0.997

119. f12002052.png ; $R \in L ( X )$ ; confidence 0.997

120. m12003043.png ; $\Psi ( x , \theta ) = \psi ( x - \theta )$ ; confidence 0.997

121. w12001025.png ; $\operatorname { deg } ( C ) = 0$ ; confidence 0.997

122. f11001057.png ; $x ^ { - 1 }$ ; confidence 0.997

123. f12001010.png ; $i : X \rightarrow U$ ; confidence 0.997

124. b13006072.png ; $| \mu - \lambda | < \| E \|$ ; confidence 0.997

125. b1202103.png ; $U ( \mathfrak { g } )$ ; confidence 0.997

126. n06783041.png ; $L ( H ) \rightarrow \overline { A }$ ; confidence 0.997

127. d12031015.png ; $f ( T ) g ( T ) = ( f g ) ( T ) , f ( \sigma ( T ) ) = \sigma ( f ( T ) )$ ; confidence 0.997

128. w13010018.png ; $( - \Delta / 2 ) ^ { - 1 }$ ; confidence 0.997

129. c12026031.png ; $0 \leq n \leq N - 1$ ; confidence 0.997

130. f1101606.png ; $L ( 0 )$ ; confidence 0.997

131. b12032046.png ; $L ^ { \infty } ( \mu )$ ; confidence 0.997

132. q12005077.png ; $w = \sqrt { s ^ { T } B s } ( \frac { y } { y ^ { T } s } - \frac { B s } { s ^ { T } B s } )$ ; confidence 0.997

133. n1200309.png ; $f : N \times A \rightarrow B$ ; confidence 0.997

134. b13019038.png ; $y = f ^ { \prime } ( x )$ ; confidence 0.997

135. c12029028.png ; $( \mu )$ ; confidence 0.997

136. e120070113.png ; $\alpha ( g )$ ; confidence 0.997

137. e1202105.png ; $x \rightarrow \frac { 1 } { x }$ ; confidence 0.997

138. v096900126.png ; $P _ { 1 } \leq Q$ ; confidence 0.997

139. n1300606.png ; $- \Delta u = \mu u \text { in } \Omega$ ; confidence 0.997

140. f1100105.png ; $x + z \leq y + z$ ; confidence 0.997

141. n067520218.png ; $( C , D ) \in G$ ; confidence 0.997

142. h0460206.png ; $F ( i \omega )$ ; confidence 0.997

143. x120010114.png ; $\Phi _ { \sigma } = 0$ ; confidence 0.997

144. b13001091.png ; $V ^ { * } = X ^ { * } / \Gamma$ ; confidence 0.997

145. h12007011.png ; $0 \leq k < m \leq n$ ; confidence 0.997

146. h04807046.png ; $( ( n - k + 1 ) / n k ) T ^ { 2 }$ ; confidence 0.997

147. a130040576.png ; $\frac { \varphi } { \square \varphi }$ ; confidence 0.997

148. f11005043.png ; $h ( z )$ ; confidence 0.997

149. i13007041.png ; $v ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ ; confidence 0.997

150. f12011097.png ; $\varphi ( x )$ ; confidence 0.997

151. t12006046.png ; $\Phi ( x ) \geq 0$ ; confidence 0.997

152. m13019021.png ; $L ( | p ( z ) | ^ { 2 } ) > 0$ ; confidence 0.997

153. e12019089.png ; $( X , \sigma )$ ; confidence 0.997

154. a13008086.png ; $s ^ { 2 } = ( R - m ) ( m - L )$ ; confidence 0.997

155. v096900130.png ; $P _ { 1 } \sim P$ ; confidence 0.997

156. s120320110.png ; $T \in L ( p | q )$ ; confidence 0.997

157. d12003032.png ; $\{ x : f ( x ) < \alpha \}$ ; confidence 0.997

158. i12010035.png ; $R ( X , Y , Z , W )$ ; confidence 0.997

159. s12023047.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.997

160. h13002068.png ; $N = N ( q , r , d )$ ; confidence 0.997

161. y1200201.png ; $\xi : P \rightarrow M$ ; confidence 0.997

162. c1202209.png ; $p : X \rightarrow \{ x \}$ ; confidence 0.997

163. d12028092.png ; $U ^ { \prime } \subset U$ ; confidence 0.997

164. w12003038.png ; $\alpha \mapsto P _ { \alpha } ( x )$ ; confidence 0.997

165. l12011028.png ; $A = U ^ { T } D V$ ; confidence 0.997

166. g13002048.png ; $\geq [ ( d + 1 ) / 2 ]$ ; confidence 0.997

167. b11067011.png ; $m = 2 n$ ; confidence 0.997

168. g1200406.png ; $f \in C ^ { \infty } ( \Omega )$ ; confidence 0.997

169. b13026092.png ; $[ f , \Omega , 0 ]$ ; confidence 0.997

170. r130070112.png ; $H = L ^ { 2 } ( T , d m )$ ; confidence 0.997

171. s13048056.png ; $D _ { \pi }$ ; confidence 0.997

172. b11042019.png ; $\nu \in R$ ; confidence 0.997

173. a1300706.png ; $\sigma ( n ) = 2 n$ ; confidence 0.997

174. a12020077.png ; $T \in L _ { 0 } ( X )$ ; confidence 0.997

175. c12016046.png ; $( r \times r )$ ; confidence 0.997

176. h12007016.png ; $0 \leq h < k < m \leq n$ ; confidence 0.997

177. l06003059.png ; $l = 2 \pi k \operatorname { sinh } \frac { r } { k }$ ; confidence 0.996

178. b13017041.png ; $\psi _ { t } = \psi ( t , S _ { t } )$ ; confidence 0.996

179. s13013030.png ; $e ( F ( p ) | F )$ ; confidence 0.996

180. h1300505.png ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } ) , - \infty < x < \infty , t > 0$ ; confidence 0.996

181. e120190191.png ; $\Phi = ( h _ { 1 } , h _ { 2 } , p , W ^ { + } )$ ; confidence 0.996

182. q1200509.png ; $F ( x ^ { k } ) + D F ( x ^ { k } ) ( x - x ^ { k } ) = 0$ ; confidence 0.996

183. d13018063.png ; $\tau \in A ( X )$ ; confidence 0.996

184. h046010124.png ; $M _ { 1 } \times S ^ { N }$ ; confidence 0.996

185. b1205302.png ; $1 < p \leq \infty$ ; confidence 0.996

186. c130160168.png ; $\leq 1 / 3$ ; confidence 0.996

187. q12001063.png ; $H ( \pi )$ ; confidence 0.996

188. b01522011.png ; $R ( \pi )$ ; confidence 0.996

189. k055840263.png ; $E ( \Delta ) K$ ; confidence 0.996

190. r130070133.png ; $f = L F$ ; confidence 0.996

191. a12024046.png ; $\operatorname { div } ( s )$ ; confidence 0.996

192. a13032056.png ; $J = \operatorname { log } ( \frac { 1 - \alpha } { \beta } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.996

193. b12020017.png ; $| \theta ( z ) | \leq 1$ ; confidence 0.996

194. l120100123.png ; $( | i \nabla + A | ^ { 2 } + E ) ^ { - 1 }$ ; confidence 0.996

195. f1301605.png ; $\mu _ { R } ( M )$ ; confidence 0.996

196. c12018011.png ; $\lambda ^ { k } T ( \lambda g )$ ; confidence 0.996

197. f120150200.png ; $D ( B ) \subset D ( A )$ ; confidence 0.996

198. l12004010.png ; $[ 0 , L ]$ ; confidence 0.996

199. k12003029.png ; $\operatorname { Ric } ( \omega ) = \omega$ ; confidence 0.996

200. m1201104.png ; $( x , t ) \rightarrow t$ ; confidence 0.996

201. e1200805.png ; $( A , \alpha )$ ; confidence 0.996

202. t12003039.png ; $V ^ { \prime } = F _ { K } \circ \Phi ( V )$ ; confidence 0.996

203. f12004048.png ; $f : X \rightarrow \overline { G }$ ; confidence 0.996

204. s13062060.png ; $m _ { \alpha } ( \lambda )$ ; confidence 0.996

205. l11001030.png ; $C ( X , R )$ ; confidence 0.996

206. l12019021.png ; $A ^ { * } P + P A = 0$ ; confidence 0.996

207. s12023059.png ; $K ^ { \prime } K$ ; confidence 0.996

208. d1301705.png ; $u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } )$ ; confidence 0.996

209. h13003036.png ; $p ( z ) / q ( z )$ ; confidence 0.996

210. b12032083.png ; $n \geq m \geq 2$ ; confidence 0.996

211. l057000132.png ; $\sigma \in T$ ; confidence 0.996

212. a120280153.png ; $M ^ { U } ( E + \omega )$ ; confidence 0.996

213. a12005046.png ; $0 \leq \beta _ { i } < \alpha _ { i } \leq 2$ ; confidence 0.996

214. f13010011.png ; $N _ { p } ( f )$ ; confidence 0.996

215. r1301407.png ; $\sigma ( R )$ ; confidence 0.996

216. b110220128.png ; $m = i / 2$ ; confidence 0.996

217. d0303308.png ; $H ^ { * } ( E ^ { * } ( M ) )$ ; confidence 0.996

218. e035000130.png ; $\epsilon \in [ 0 , ( \sum _ { i = 1 } ^ { \infty } \lambda _ { i } ) ^ { 1 / 2 } ]$ ; confidence 0.996

219. k13007059.png ; $k = 1 / \sqrt { 2 }$ ; confidence 0.996

220. l1201907.png ; $B = A ^ { * }$ ; confidence 0.996

221. b12014040.png ; $b ( z )$ ; confidence 0.996

222. l11003051.png ; $Q ( A ) = 0$ ; confidence 0.996

223. d120230122.png ; $d ( z , w ) = \alpha ( z ) \alpha ^ { * } ( w ) - \beta ( z ) \beta ^ { * } ( w )$ ; confidence 0.996

224. b01544011.png ; $\sigma _ { 1 } ^ { 2 }$ ; confidence 0.996

225. b1201308.png ; $d A ( z ) = d x d y$ ; confidence 0.996

226. z13010057.png ; $\cup \{ a , b \}$ ; confidence 0.996

227. e035800101.png ; $L ( A )$ ; confidence 0.996

228. e03500041.png ; $\epsilon _ { N } ( C , X )$ ; confidence 0.996

229. t13004019.png ; $y ( x ) = \operatorname { exp } ( - x )$ ; confidence 0.996

230. b120440114.png ; $b ^ { G }$ ; confidence 0.996

231. i130060130.png ; $\forall k > 0$ ; confidence 0.996

232. c12002035.png ; $\int _ { 0 } ^ { \infty } \mu _ { t } d t / t$ ; confidence 0.996

233. h12001019.png ; $f : V \rightarrow X$ ; confidence 0.996

234. d03167025.png ; $\eta \oplus \sigma$ ; confidence 0.996

235. c1301301.png ; $Q = A K ^ { \alpha } L ^ { 1 - \alpha }$ ; confidence 0.996

236. j120020172.png ; $U _ { t } = \operatorname { Re } f ( B _ { t } )$ ; confidence 0.996

237. l057000182.png ; $f : D _ { A } \rightarrow D _ { A }$ ; confidence 0.996

238. b12020014.png ; $f \in M$ ; confidence 0.996

239. a1302305.png ; $P : H \rightarrow U$ ; confidence 0.996

240. h1200405.png ; $A \backslash B$ ; confidence 0.996

241. b13025051.png ; $\angle \Omega O \Omega ^ { \prime } = 2 \omega$ ; confidence 0.996

242. r13007095.png ; $H \subset H _ { 1 }$ ; confidence 0.996

243. v12004063.png ; $\chi ( L ( G ) ) \leq \omega ( L ( G ) ) + 1$ ; confidence 0.996

244. b120420122.png ; $\Psi = \tau \circ R$ ; confidence 0.996

245. f0417103.png ; $G = G ^ { * }$ ; confidence 0.996

246. z13012011.png ; $\eta \in R$ ; confidence 0.996

247. c02240066.png ; $n = 9$ ; confidence 0.996

248. b017400123.png ; $\Phi ^ { + } ( t )$ ; confidence 0.996

249. i13009046.png ; $E _ { 1 } ( k )$ ; confidence 0.996

250. b12040085.png ; $R : G \rightarrow V$ ; confidence 0.996

251. b12052092.png ; $B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.996

252. i13007078.png ; $- \nabla ^ { 2 } + q ( x )$ ; confidence 0.996

253. e13005024.png ; $| \beta | < 1$ ; confidence 0.996

254. j120020227.png ; $| \nabla u ( z ) | ^ { 2 } \operatorname { log } \frac { 1 } { | z | } d x d y$ ; confidence 0.996

255. c12008035.png ; $\Delta ( \Lambda )$ ; confidence 0.996

256. t120200156.png ; $| g ( k ) | \geq ( \frac { n } { 8 e ( m + n ) } ) ^ { n } | g ( 0 ) |$ ; confidence 0.996

257. b11025048.png ; $n - k + 1$ ; confidence 0.996

258. a130040577.png ; $\frac { \varphi , \varphi \rightarrow \psi } { \psi }$ ; confidence 0.996

259. d12018064.png ; $L ^ { 3 } ( X , m )$ ; confidence 0.996

260. f12009017.png ; $F \mu ( \zeta )$ ; confidence 0.996

261. i13007018.png ; $A ( \alpha ^ { \prime } , \alpha , k )$ ; confidence 0.996

262. e03500087.png ; $( X , \mu )$ ; confidence 0.996

263. h13005024.png ; $b ( k )$ ; confidence 0.996

264. k12009021.png ; $F ( \tau )$ ; confidence 0.996

265. b13007096.png ; $m \neq 1$ ; confidence 0.996

266. l06002017.png ; $L ( - x ) = - L ( x ) , \quad - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }$ ; confidence 0.996

267. f13016027.png ; $\xi \oplus \eta$ ; confidence 0.996

268. k05578012.png ; $\int _ { 0 } ^ { \infty } F _ { 1 } ( \tau ) F _ { 2 } ( \tau ) d \tau = \int _ { 0 } ^ { \infty } f _ { 1 } ( x ) f _ { 2 } ( x ) d x$ ; confidence 0.996

269. b12043099.png ; $( H , R )$ ; confidence 0.996

270. r1300403.png ; $0 < \lambda _ { 1 } ( \Omega ) < \lambda _ { 2 } ( \Omega ) \leq \lambda _ { 3 } ( \Omega ) \leq$ ; confidence 0.996

271. e120260134.png ; $( \theta , X )$ ; confidence 0.996

272. f120230139.png ; $P : T M \rightarrow T M$ ; confidence 0.996

273. k055840387.png ; $y = P ( A - \lambda I ) ^ { - 1 } f$ ; confidence 0.996

274. e120120106.png ; $f ( \phi | \theta )$ ; confidence 0.996

275. m130180111.png ; $\mu ( x , 1 )$ ; confidence 0.996

276. l12009012.png ; $f \in C ^ { \infty } ( M )$ ; confidence 0.996

277. r13007093.png ; $( f , g ) _ { H _ { 1 } } = ( f , g ) _ { H }$ ; confidence 0.996

278. w12006057.png ; $T _ { A } M \rightarrow M$ ; confidence 0.996

279. m12015033.png ; $f _ { X } ( X ) = \int _ { Y } f _ { X , Y } ( X , Y ) d Y$ ; confidence 0.996

280. l13006075.png ; $0 \leq z _ { i } < p$ ; confidence 0.996

281. k12012036.png ; $\alpha _ { k } = \int _ { 0 } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.996

282. a1202508.png ; $k \leq q + 2$ ; confidence 0.996

283. b11021090.png ; $f : X \rightarrow X$ ; confidence 0.996

284. c12020017.png ; $( M , \xi )$ ; confidence 0.996

285. e1300504.png ; $\alpha + \beta < 1$ ; confidence 0.996

286. a12015060.png ; $G = U ( n )$ ; confidence 0.996

287. i130090212.png ; $M ( k ^ { \prime } )$ ; confidence 0.996

288. j120020107.png ; $I \subset [ - \pi , \pi ]$ ; confidence 0.996

289. m13026071.png ; $( b _ { \mu } )$ ; confidence 0.996

290. z1301201.png ; $\sigma \in R$ ; confidence 0.996

291. p13009026.png ; $P _ { \Omega } ( x , \xi )$ ; confidence 0.996

292. w1200504.png ; $A = R$ ; confidence 0.996

293. f12010045.png ; $( 2 \pi ) ^ { 12 } \tau ( n )$ ; confidence 0.996

294. b12006019.png ; $\Delta _ { 3 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }$ ; confidence 0.996

295. a13012028.png ; $k = s \mu , v = s ^ { 2 } \mu , \lambda = \frac { s \mu - 1 } { \mu - 1 } , r = \frac { s ^ { 2 } \mu - 1 } { \mu - 1 }$ ; confidence 0.996

296. p12014054.png ; $E ( 7,49 m + 15 )$ ; confidence 0.996

297. b12005065.png ; $\delta _ { 0 }$ ; confidence 0.996

298. t12013027.png ; $W _ { 1 } ( x , y ) W _ { 1 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } = W _ { 2 } ( x , y ) W _ { 2 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 }$ ; confidence 0.996

299. c120180453.png ; $t ^ { 2 } g ( P )$ ; confidence 0.996

300. f1201403.png ; $z = ( x + i y )$ ; confidence 0.996

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/10&oldid=44498