Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/5"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 5 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 5 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028026.png ; $\operatorname { crs } ( A \otimes B , C ) \cong \operatorname { Crs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.776
+
1. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007079.png ; $q = p + 1 / 2$ ; confidence 0.999
  
2. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031031.png ; $e _ { N } ( C _ { d } ^ { k } ) \asymp n ^ { - k / d } \text { or } n ( \epsilon , C _ { d } ^ { k } ) \asymp \epsilon ^ { - d / k }$ ; confidence 0.172
+
2. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010032.png ; $r ( P , m )$ ; confidence 0.999
  
3. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019014.png ; $\operatorname { Dom } ( ( - \Delta _ { Dir } ) ^ { 1 / 2 } ) = \operatorname { Dom } ( E ) = H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.729
+
3. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070106.png ; $n \neq - 1$ ; confidence 0.999
  
4. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210106.png ; $= z ^ { \lambda } \sum _ { j = 0 } ^ { \infty } z ^ { j } [ \sum _ { i + k = j } c _ { k } ( \lambda ) p _ { i } ( \lambda + k ) ] =$ ; confidence 0.949
+
4. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003020.png ; $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$ ; confidence 0.999
  
5. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001058.png ; $\operatorname { Tr } _ { E / F } ( \beta _ { i } \gamma _ { j } ) = \delta _ { i j } \text { for } i , j = 0 , \dots , n - 1$ ; confidence 0.218
+
5. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010017.png ; $c ( 0 ) = 0$ ; confidence 0.999
  
6. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040186.png ; $\| u \| _ { T } ^ { 2 } = \sum _ { \xi \in Z ^ { n } } ( 1 + | \xi | ) ^ { 2 r } e ^ { 2 T | \xi | ^ { 1 / s } } | \hat { u } ( \xi ) | ^ { 2 }$ ; confidence 0.405
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006045.png ; $\delta > 0$ ; confidence 0.999
  
7. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006045.png ; $( D \alpha D ) ( D \beta D ) = D \alpha D \beta D = D \alpha ( \cup _ { \beta ^ { \prime } } D \beta ^ { \prime } ) =$ ; confidence 0.896
+
7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024054.png ; $[ - h ( t ) , - g ( t ) ]$ ; confidence 0.999
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005094.png ; $q \in L _ { 1,2 } : = \{ q : q = \overline { q } , \int _ { - \infty } ^ { \infty } ( 1 + x ^ { 2 } ) | q ( x ) | d x < \infty \}$ ; confidence 0.659
+
8. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009082.png ; $L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.999
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007054.png ; $( \nabla ^ { 2 } + \dot { k } ^ { 2 } 0 + \dot { k } ^ { 2 } 0 v ( x ) ) u ( x , y , k _ { 0 } ) = - \delta ( x - y ) \text { in } R ^ { 3 }$ ; confidence 0.122
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005096.png ; $Y \subset D ( A ( t ) )$ ; confidence 0.999
  
10. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840274.png ; $\sigma ( A | _ { ( I - E ( \Delta ) ) K } ) \subset \overline { ( R \backslash \Delta ) } \cup \sigma _ { 0 } ( A )$ ; confidence 0.327
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007023.png ; $F ( 2,6 )$ ; confidence 0.999
  
11. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584021.png ; $\kappa = \operatorname { min } ( \operatorname { dim } K _ { + } , \operatorname { dim } K _ { - } ) < \infty$ ; confidence 0.992
+
11. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013024.png ; $\theta > 1$ ; confidence 0.999
  
12. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170255.png ; $B _ { 2 } \stackrel { d } { \rightarrow } B _ { 1 } \stackrel { d _ { 1 } } { \rightarrow } B _ { 0 } \rightarrow 0$ ; confidence 0.085
+
12. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070100/o07010010.png ; $P \cup P ^ { - 1 } = G$ ; confidence 0.999
  
13. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003098.png ; $M = \int ( \partial / \partial e ) \eta ( \vec { x } , e ) \vec { x X } ^ { t } d H _ { \vec { \theta } } ( \vec { x } , y )$ ; confidence 0.495
+
13. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892079.png ; $\alpha < 1 / 2$ ; confidence 0.999
  
14. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001043.png ; $\hat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = F f$ ; confidence 0.825
+
14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015091.png ; $i ( A + T ) = i ( A )$ ; confidence 0.999
  
15. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070126.png ; $\delta ( z , w ) = \operatorname { inf } _ { f \in F } \{ \operatorname { log } | \xi | : f ( \xi ) = z , f ( 0 ) = w \}$ ; confidence 0.991
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028042.png ; $B ( 2 n ) \simeq B ( 2 n + 1 )$ ; confidence 0.999
  
16. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080126.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973
+
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003060.png ; $\| \psi \| = K \| \varphi \|$ ; confidence 0.999
  
17. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r1301104.png ; $\zeta ( s ) : = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } } = \prod _ { p } \frac { 1 } { 1 - \frac { 1 } { p ^ { s } } }$ ; confidence 0.961
+
17. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017032.png ; $f ( d ) = 0$ ; confidence 0.999
  
18. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602018.png ; $\Phi ^ { + } ( t _ { 0 } ) + \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t 0 }$ ; confidence 0.421
+
18. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230124.png ; $( ( X , B ) , f )$ ; confidence 0.999
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022075.png ; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( d i m M ) } )$ ; confidence 0.633
+
19. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030042.png ; $\psi ( T ) =$ ; confidence 0.999
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050029.png ; $\sum _ { k = 0 } ^ { n } \frac { f _ { k } } { \left( \begin{array} { l } { n } \\ { k } \end{array} \right) } \leq 1$ ; confidence 0.907
+
20. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001057.png ; $= \frac { - 4 z } { z + 2 } + \frac { 4 z } { ( z + 2 ) ^ { 2 } } - \frac { 3 z } { ( z + 2 ) ^ { 3 } } + \frac { 4 z } { z + 3 }$ ; confidence 0.999
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035027.png ; $P = \operatorname { lim } _ { N \rightarrow \infty } N \cdot \operatorname { Cov } ( \hat { \theta } N ) =$ ; confidence 0.274
+
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202406.png ; $x ( t ) = y ( s )$ ; confidence 0.999
  
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005088.png ; $( p - n + i _ { 1 } ) \cdot \mu _ { i _ { 1 } , \dots , i _ { r } } - ( i _ { 1 } - i _ { 2 } ) \cdot \mu _ { i _ { 2 } , \dots , i _ { r } }$ ; confidence 0.578
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027044.png ; $W ( \rho ) = 1$ ; confidence 0.999
  
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006094.png ; $\operatorname { lim } _ { Z \rightarrow \infty } \frac { E ^ { TF } ( \lambda Z ) } { E ^ { Q } ( \lambda Z ) } = 1$ ; confidence 0.392
+
23. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049061.png ; $z = ( \operatorname { log } F ) / 2$ ; confidence 0.999
  
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007027.png ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + \alpha _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.614
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006080.png ; $A + E$ ; confidence 0.999
  
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013028.png ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) x$ ; confidence 0.671
+
25. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015026.png ; $( G , P )$ ; confidence 0.999
  
26. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090249.png ; $g = \sum _ { a \in \Phi ^ { - } } \oplus _ { g _ { a } } \oplus D _ { \gamma \in \Phi ^ { + } } \oplus _ { g _ { \gamma } }$ ; confidence 0.105
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027030.png ; $\pi ( T ^ { * } )$ ; confidence 0.999
  
27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
+
27. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520498.png ; $i ( P , \Omega ) + ( Q , \Lambda ) = 0$ ; confidence 0.999
  
28. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003027.png ; $( Z f ) ( t , w ) = ( 2 \gamma ) ^ { 1 / 4 } e ^ { - \pi \gamma t ^ { 2 } } \theta _ { 3 } ( w - i \gamma t , e ^ { - \pi \gamma } )$ ; confidence 0.985
+
28. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028024.png ; $F ( f ) = F _ { \phi } ( f ) = \int _ { \Gamma } f ( z ) \phi ( z ) d z$ ; confidence 0.999
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c1201606.png ; $A = X ^ { T } X$ ; confidence 0.999
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201
+
30. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130131.png ; $\delta \approx 0$ ; confidence 0.999
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032022.png ; $A _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { k + 1 } ^ { ( i ) } ( c _ { l } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( l ) }$ ; confidence 0.263
+
31. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005021.png ; $\phi = \rho = 1$ ; confidence 0.999
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032055.png ; $K = \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.994
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032240/d03224051.png ; $d \omega = 0$ ; confidence 0.999
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032056.png ; $J = \operatorname { log } ( \frac { 1 - \alpha } { \beta } ) ( \operatorname { log } \frac { q } { p } ) ^ { - 1 }$ ; confidence 0.996
+
33. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005061.png ; $y \geq x$ ; confidence 0.999
  
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003041.png ; $\| \operatorname { ltg } ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } \geq ( 4 \pi ) ^ { - 1 } \| g \| _ { 2 } ^ { 2 }$ ; confidence 0.075
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d0303309.png ; $E ^ { * } ( M )$ ; confidence 0.999
  
35. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006013.png ; $| x | _ { 2 } = ( \sum _ { i } | x _ { i } | ^ { 2 } ) ^ { 1 / 2 } , \| x \| _ { \infty } = \operatorname { max } _ { i } | x _ { i } |$ ; confidence 0.344
+
35. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002016.png ; $\geq \frac { 1 } { 16 \pi ^ { 2 } }$ ; confidence 0.999
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006011.png ; $\| A \| = \operatorname { max } _ { x \neq 0 } \| A x \| / \| x \| = \operatorname { max } _ { | x | } \| = 1 \| A x \|$ ; confidence 0.050
+
36. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005041.png ; $f ( x ) = R ^ { - 1 } D ^ { T } f ( x )$ ; confidence 0.999
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009040.png ; $p _ { 1 } ( \xi ) = 1 + \beta _ { 1 } \xi + \beta _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 1 } ( \xi ) > 0 )$ ; confidence 0.869
+
37. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010113.png ; $W \approx W ^ { \prime }$ ; confidence 0.999
  
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009091.png ; $f ( z ) = \{ \int _ { 0 } ^ { z } g ^ { \alpha } ( \xi ) h ( \xi ) \xi ^ { i \beta - 1 } d \xi \} ^ { 1 / ( \alpha + i \beta ) }$ ; confidence 0.544
+
38. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340153.png ; $: [ 0,1 ] \rightarrow M$ ; confidence 0.999
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b12008023.png ; $\operatorname { log } ( 1 / \epsilon )$ ; confidence 0.999
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220243.png ; $\phi _ { i } : CH ^ { i } ( X ) ^ { 0 } \rightarrow \operatorname { Ext } _ { H } ^ { 1 } ( Z ( 0 ) , h ^ { 2 i - 1 } ( X ) ( i ) )$ ; confidence 0.139
+
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150167.png ; $A \in B ( X , Y )$ ; confidence 0.999
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430168.png ; $\partial _ { q } f ( x ) = \frac { f ( x ) - f ( q x ) } { x ( 1 - q ) } , \quad \partial _ { q } x ^ { n } = [ n ] _ { q } x ^ { n - 1 }$ ; confidence 0.833
+
41. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002049.png ; $p = 10 ^ { 5 } n ^ { - 2 / 3 }$ ; confidence 0.999
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043077.png ; $\Psi ( x _ { i } \otimes x _ { j } ) = x _ { b } \otimes x _ { k } R ^ { \alpha } \square _ { i } \square ^ { b } \square$ ; confidence 0.087
+
42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010031.png ; $m = 5$ ; confidence 0.999
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050048.png ; $= \operatorname { exp } ( - x \int _ { 0 } ^ { \infty } ( 1 - e ^ { - u v } ) \frac { 1 } { \sqrt { 2 \pi v ^ { 3 } } } d v ) =$ ; confidence 0.843
+
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150108.png ; $F ( x ) + K ( x )$ ; confidence 0.999
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002048.png ; $\mathfrak { c } _ { \mathfrak { g } } = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t$ ; confidence 0.509
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006014.png ; $\sigma ^ { \pm } = \varphi [ T ^ { \pm 1 } ( \varphi ) ] ^ { - 1 }$ ; confidence 0.999
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004062.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) [ CF ( \zeta - z , w ) +$ ; confidence 0.809
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298054.png ; $N \rightarrow \infty$ ; confidence 0.999
  
46. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004016.png ; $Cl _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } | 2 \operatorname { sin } ( \frac { 1 } { 2 } t ) | d t =$ ; confidence 0.745
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240378.png ; $p ^ { - 1 } ( n - r - p + 1 ) F$ ; confidence 0.999
  
47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080110.png ; $\Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] =$ ; confidence 0.932
+
47. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690048.png ; $B = U A U ^ { - 1 }$ ; confidence 0.999
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202503.png ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }$ ; confidence 0.661
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a01180073.png ; $n ^ { 2 }$ ; confidence 0.999
  
49. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013018.png ; $A _ { \phi } ^ { \pm } = \frac { g } { \operatorname { rin } \theta } ( \pm 1 - \operatorname { cos } \theta )$ ; confidence 0.472
+
49. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110225.png ; $- K$ ; confidence 0.999
  
50. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017074.png ; $\lambda _ { 1 } ( \Omega _ { t } ) \leq t \lambda _ { 1 } ( \Omega _ { 1 } ) + ( 1 - t ) \lambda _ { 2 } ( \Omega _ { 2 } )$ ; confidence 0.998
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017073.png ; $\Omega _ { t } = t \Omega _ { 1 } + ( 1 - t ) \Omega _ { 2 }$ ; confidence 0.999
  
51. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002053.png ; $( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702
+
51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020041.png ; $d \in [ 0,3 ]$ ; confidence 0.999
  
52. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004035.png ; $f ^ { b ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ - [ - \varphi ( x , w ) \odot f ( x ) ] \} ( w \in W )$ ; confidence 0.466
+
52. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100607.png ; $\Delta ^ { 2 } \Phi = - \frac { 1 } { 2 } E [ w , w ]$ ; confidence 0.999
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110126.png ; $F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 0.622
+
53. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011019.png ; $\Phi = \phi - i \psi$ ; confidence 0.999
  
54. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021041.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots , \ldots , u ( z , \lambda _ { N } ) = z ^ { \lambda _ { N } } +$ ; confidence 0.410
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149025.png ; $y = f ( x )$ ; confidence 0.999
  
55. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010140.png ; $W \times S ^ { 1 } \approx M _ { 0 } \times S ^ { 1 } \times [ 0,1 ] \approx M _ { 1 } \times S ^ { 1 } \times [ 0,1 ]$ ; confidence 0.986
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009013.png ; $P ( D ) ( u ) = g$ ; confidence 0.999
  
56. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001022.png ; $d ( n ) ( A ) = \operatorname { per } ( A ) = \sum _ { \sigma \in S _ { n } } \prod _ { i = 1 } ^ { n } a _ { i \sigma ( i ) }$ ; confidence 0.067
+
56. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203402.png ; $\phi : ( M , \omega ) \rightarrow ( M , \omega )$ ; confidence 0.999
  
57. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009099.png ; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } }$ ; confidence 0.457
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070109.png ; $D ( A ( t ) ) =$ ; confidence 0.999
  
58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090226.png ; $X ^ { \omega } \chi ^ { - 1 } = \{ x \in X : \delta x = \omega \chi ^ { - 1 } ( \delta ) x f o r \delta \in \Delta \}$ ; confidence 0.193
+
58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012038.png ; $f _ { i } > 0$ ; confidence 0.999
  
59. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004096.png ; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { 3 } ( v , z ) - 1 )$ ; confidence 0.445
+
59. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017029.png ; $p ( E ) ( \gamma )$ ; confidence 0.999
  
60. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040133.png ; $P ( i , i \sqrt { 2 } ) = ( - \sqrt { 2 } ) ^ { \operatorname { com } ( L ) - 1 } ( - 1 ) ^ { \operatorname { Arf } ( L ) }$ ; confidence 0.618
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005017.png ; $0 \leq s \leq t \leq T$ ; confidence 0.999
  
61. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578012.png ; $\int _ { 0 } ^ { \infty } F _ { 1 } ( \tau ) F _ { 2 } ( \tau ) d \tau = \int _ { 0 } ^ { \infty } f _ { 1 } ( x ) f _ { 2 } ( x ) d x$ ; confidence 0.996
+
61. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302408.png ; $\gamma ( t ) \rightarrow 0$ ; confidence 0.999
  
62. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006033.png ; $\langle \lambda | G ( z ) \phi ) = \frac { 1 } { z - \lambda } \langle \lambda | V \phi ) ( \phi , G ( z ) \phi )$ ; confidence 0.515
+
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009012.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) p ( z , t )$ ; confidence 0.999
  
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201008.png ; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440
+
63. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230100.png ; $G \in O ( p )$ ; confidence 0.999
  
64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140141.png ; $\Delta _ { n } = \{ ( t _ { 2 } , \dots , t _ { n } ) : t _ { 2 } , \dots , t _ { n } \geq 0 , t _ { 2 } + \dots + t _ { n } \leq 1 \}$ ; confidence 0.383
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170102.png ; $M \equiv M ( \infty )$ ; confidence 0.999
  
65. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { k } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 0.691
+
65. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007049.png ; $A ( - \alpha , \alpha , k )$ ; confidence 0.999
  
66. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007030.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty , | \varphi _ { j } ( x ) | < c , \forall j , x$ ; confidence 0.905
+
66. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180144.png ; $( - 1 ) ^ { k } \mu ( 0 , X )$ ; confidence 0.999
  
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041026.png ; $\langle p , q \rangle = \int _ { R } p q d \mu _ { 0 } + \lambda \int _ { R } p ^ { \prime } q ^ { \prime } d \mu _ { 1 }$ ; confidence 0.381
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304801.png ; $\alpha : E ( \alpha ) \rightarrow M$ ; confidence 0.999
  
68. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022069.png ; $\sum _ { k } ( z + \lambda _ { k } ) ^ { - s } , \operatorname { Re } ( s ) > \frac { 1 } { 2 } \operatorname { dim } M$ ; confidence 0.959
+
68. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110060/c11006030.png ; $| \alpha | < 1$ ; confidence 0.999
  
69. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026055.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s$ ; confidence 0.926
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b0174009.png ; $u ( x , y )$ ; confidence 0.999
  
70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620110.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 + } \operatorname { Im } m _ { + } ( \lambda ) = \infty$ ; confidence 0.934
+
70. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170144.png ; $M ( 1 ) \geq 0$ ; confidence 0.999
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340184.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } ( \sigma \cdot \varphi _ { i } ( s , t ) ) = x _ { i } ( t )$ ; confidence 0.765
+
71. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110940/b11094042.png ; $F ( x ) = 0$ ; confidence 0.999
  
72. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
+
72. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019016.png ; $G = N H$ ; confidence 0.999
  
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200181.png ; $B = \frac { 1 } { 6 K } ( \frac { K } { 4 e ( m + 2 K ) } ) ^ { 2 K } | \operatorname { Re } \sum _ { j = 0 } ^ { n } P _ { j } ( 0 ) |$ ; confidence 0.890
+
73. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900132.png ; $P _ { 1 } = P$ ; confidence 0.999
  
74. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011029.png ; $= - \frac { i \Gamma } { 2 \pi } \operatorname { log } [ \operatorname { sin } \frac { \pi z } { l } ] + const$ ; confidence 0.541
+
74. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012070.png ; $\nu \in R ^ { + }$ ; confidence 0.999
  
75. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
+
75. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015084.png ; $A + K \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.999
  
76. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008031.png ; $\overline { u } ( x , t ) = \frac { 1 } { 2 } \sum _ { i = 0 } ^ { 2 g } \lambda _ { i } - \sum _ { j = 0 } ^ { g } \alpha _ { j }$ ; confidence 0.953
+
76. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c027210175.png ; $m = 1,2$ ; confidence 0.999
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090108.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | g _ { n } | _ { L } ^ { 2 } 2 _ { ( [ 0,1 ] ^ { n } ) }$ ; confidence 0.209
+
77. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007083.png ; $\angle F ^ { \prime } ( z )$ ; confidence 0.999
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971
+
78. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006029.png ; $G ( z ) = G _ { 0 } ( z ) + G _ { 0 } ( z ) V G ( z )$ ; confidence 0.999
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016080.png ; $y _ { i } = \Delta \text { sales } = ( \frac { c _ { 1 } } { 1 - \lambda } ) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093032.png ; $n + 1$ ; confidence 0.999
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009070.png ; $\operatorname { Re } \{ \frac { z f ^ { \prime } ( z ) } { f ( z ) ^ { 1 - \beta } g ( z ) ^ { \beta } } \} > 0 ( z \in U )$ ; confidence 0.962
+
80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png ; $4 n$ ; confidence 0.999
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301708.png ; $d _ { 2 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r - \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.952
+
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png ; $\xi ( \tau )$ ; confidence 0.999
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301707.png ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.946
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png ; $\sigma \delta$ ; confidence 0.999
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027076.png ; $\sum _ { n = 0 } ^ { \infty } ( | \overline { m } _ { n } ( h ) | + | m \underline { \square } _ { n } ( h ) | ) < \infty$ ; confidence 0.546
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001020.png ; $\frac { d u } { d t } - i \frac { d v } { d t } = 2 e ^ { i \lambda } \operatorname { sin } ( \frac { 1 } { 2 } ( u + i v ) )$ ; confidence 0.975
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022012.png ; $1 \leq p < \infty$ ; confidence 0.999
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002045.png ; $( I ^ { \alpha } f ) ( x ) = c _ { \mu , \alpha } \int _ { 0 } ^ { \infty } ( f ^ { * } \mu _ { t } ) ( x ) t ^ { \alpha - 1 } d t$ ; confidence 0.931
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007033.png ; $< 1$ ; confidence 0.999
  
86. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007095.png ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007015.png ; $\pi ( m )$ ; confidence 0.999
  
87. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211035.png ; $X ^ { 2 } ( \theta ) = \sum _ { l = 1 } ^ { k } \frac { [ \nu _ { l } - n p _ { l } ( \theta ) ] ^ { 2 } } { n p _ { l } ( \theta ) }$ ; confidence 0.269
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016015.png ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { Q ( 1 ) } ]$ ; confidence 0.667
+
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036013.png ; $E$ ; confidence 0.999
  
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180198.png ; $A ( g ) = \frac { 1 } { n - 2 } ( \operatorname { Ric } ( g ) - \frac { 1 } { 2 } \frac { S ( g ) } { n - 1 } g ) \in S ^ { 2 } E$ ; confidence 0.397
+
89. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030089.png ; $n \geq 2 ^ { 13 }$ ; confidence 0.999
  
90. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026049.png ; $\| \Delta V ^ { n } \| ^ { 2 } \leq \| \Delta V ^ { 0 } \| ^ { 2 } + \sum _ { m = 1 } ^ { n } k \| ( L _ { h k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.486
+
90. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202308.png ; $M = \overline { U }$ ; confidence 0.999
  
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028022.png ; $A _ { 0 } ( \overline { C } \backslash D ) = \{ f : f \in A ( \overline { C } \backslash D ) , f ( \infty ) = 0 \}$ ; confidence 0.965
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f1200408.png ; $( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$ ; confidence 0.999
  
92. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012052.png ; $f _ { i } ( t + 1 ) = f _ { i } ( t ) \sum _ { j } ( \frac { h _ { i j } } { \sum _ { k } f _ { k } ( t ) h _ { k j } ) } ) g _ { j } , t = 1,2 ,$ ; confidence 0.176
+
92. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150156.png ; $\beta ( A - K ) < \infty$ ; confidence 0.999
  
93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010046.png ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \cdot ( S - v ( P E ) )$ ; confidence 0.190
+
93. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012038.png ; $| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$ ; confidence 0.999
  
94. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005030.png ; $\| \sum _ { j = 1 } ^ { m } w _ { j } \cdot \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \| \leq w _ { i } , i \neq j$ ; confidence 0.297
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b110390108.png ; $K > 0$ ; confidence 0.999
  
95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005046.png ; $\frac { \partial A } { \partial \tau } = \frac { \partial \mu _ { 0 } } { \partial R } ( k _ { c } , R _ { c } ) A +$ ; confidence 0.480
+
95. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
  
96. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300107.png ; $d _ { \chi } ^ { G } ( A ) : = \sum _ { \sigma \in G } \chi ( \sigma ) \prod _ { l = 1 } ^ { n } \alpha _ { \sigma ( l ) }$ ; confidence 0.240
+
96. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008061.png ; $H = 0$ ; confidence 0.999
  
97. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002012.png ; $P ( A _ { 1 } \cap \ldots \cap A _ { n } ) = 1 - P ( \overline { A } _ { 1 } \cup \ldots \cup \overline { A } _ { n } )$ ; confidence 0.319
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999
  
98. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005037.png ; $| a ( k ) | ^ { 2 } = 1 + | b ( k ) | ^ { 2 } , r _ { - } ( k ) = \frac { b ( k ) } { a ( k ) } , r _ { + } ( k ) = - \frac { b ( - k ) } { a ( k ) }$ ; confidence 0.272
+
98. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999
  
99. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008072.png ; $\operatorname { exp } \{ \frac { 1 } { k _ { S } T } [ J S _ { i } S _ { + 1 } + \frac { H } { 2 } ( S _ { i } + S _ { + 1 } ) ] \} =$ ; confidence 0.764
+
99. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009064.png ; $P ^ { * } ( D )$ ; confidence 0.999
  
100. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { p | p } ( 1 - \chi \omega ^ { - n } ( p ) N p ^ { n - 1 } )$ ; confidence 0.497
+
100. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024670/c02467021.png ; $A _ { 3 }$ ; confidence 0.999
  
101. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002038.png ; $\varphi ( \vartheta ) = | \operatorname { log } | \operatorname { tan } \frac { 1 } { 2 } \vartheta \|$ ; confidence 0.558
+
101. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250103.png ; $s > n / 2$ ; confidence 0.999
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008048.png ; $K _ { p } ( f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 } \cdots D _ { x } - p _ { r - 1 } f }$ ; confidence 0.151
+
102. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011011.png ; $\xi ( x ) = 1$ ; confidence 0.999
  
103. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013043.png ; $\frac { d N ^ { i } } { d t } = \lambda _ { ( i ) } N ^ { i } ( 1 - \frac { N ^ { i } } { K _ { ( i ) } } ) , \quad i = 1 , \ldots , n$ ; confidence 0.380
+
103. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520122.png ; $j \geq q + 1$ ; confidence 0.999
  
104. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186
+
104. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013011.png ; $n > 1$ ; confidence 0.999
  
105. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019011.png ; $F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma ( \frac { 1 } { 2 } - k + i \tau )$ ; confidence 0.763
+
105. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005052.png ; $H _ { k + 1 } y ^ { k } = s ^ { k }$ ; confidence 0.999
  
106. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002026.png ; $P ( \theta , \mu ) = \operatorname { exp } [ \langle \theta , x \rangle - k _ { \mu } ( \theta ) ] \mu ( d x )$ ; confidence 0.554
+
106. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020420/c0204203.png ; $E \times E$ ; confidence 0.999
  
107. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o1300605.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , H , \Phi , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.587
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015260/b0152609.png ; $D \cup \Gamma$ ; confidence 0.999
  
108. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006050.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , H , \Phi , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \tilde { \gamma } )$ ; confidence 0.888
+
108. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002013.png ; $J ( q ) ^ { T }$ ; confidence 0.999
  
109. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007096.png ; $\sum g ( 1 ) h _ { ( 1 ) } R ( h _ { ( 2 ) } \otimes g _ { ( 2 ) } ) = \sum R ( h _ { ( 1 ) } \otimes g _ { ( 1 ) } ) h _ { ( 2 ) } g ( 2 )$ ; confidence 0.130
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300707.png ; $\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$ ; confidence 0.999
  
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006083.png ; $H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U$ ; confidence 0.862
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005053.png ; $\sigma ^ { \prime } ( A )$ ; confidence 0.999
  
111. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015057.png ; $A _ { 0 } \equiv \{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in C } D ( \Delta ^ { \alpha } ) \}$ ; confidence 0.479
+
111. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014052.png ; $( Q )$ ; confidence 0.999
  
112. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020031.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 1 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.434
+
112. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011069.png ; $\theta = 2 \pi$ ; confidence 0.999
  
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020073.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { j = 1 , \ldots , n } 2 | s _ { j } | \geq \sqrt { n }$ ; confidence 0.375
+
113. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690074.png ; $\phi ( U T U ^ { - 1 } ) = \phi ( T )$ ; confidence 0.999
  
114. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712
+
114. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999
  
115. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020032.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 2 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.382
+
115. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
  
116. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005012.png ; $W ( G , K ) = \{ \bigwedge ( \mathfrak { g } / \mathfrak { k } ) ^ { * } \otimes S \mathfrak { g } ^ { * } \} ^ { K }$ ; confidence 0.169
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a010290104.png ; $A B$ ; confidence 0.999
  
117. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017057.png ; $\int _ { - \pi } ^ { \pi } \operatorname { log } \operatorname { det } f ( \lambda ) d \lambda > - \infty$ ; confidence 0.999
+
117. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900157.png ; $f ( \zeta ) = f _ { p } ( \zeta )$ ; confidence 0.999
  
118. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100103.png ; $\downarrow \forall x \exists y \forall w ( w \in y \leftrightarrow \exists v ( v \in x / \varphi ) )$ ; confidence 0.744
+
118. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003015.png ; $N ^ { k } \rightarrow N$ ; confidence 0.999
  
119. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011040.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \Delta \frac { 1 } { x } = \frac { 1 } { x ( x + 1 ) } , x = 1,2 , \dots$ ; confidence 0.338
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001027.png ; $\{ A , \preceq \}$ ; confidence 0.999
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050185.png ; $\zeta _ { A } ( z ) = \prod _ { r \geq 1 } \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z )$ ; confidence 0.281
+
120. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190168.png ; $W ^ { - } ( h _ { 1 } , h _ { 2 } , p )$ ; confidence 0.999
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017017.png ; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } d \alpha$ ; confidence 0.634
+
121. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507074.png ; $M ^ { 4 } \times K$ ; confidence 0.999
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010031.png ; $( A ^ { * } f ) _ { n } ( X ) = \sum _ { i = 1 } ^ { n } f _ { n - 1 } ( x _ { 1 } , \dots , x _ { i } - 1 , x _ { i } + 1 , \dots , x _ { n } )$ ; confidence 0.118
+
122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003071.png ; $g \in L ^ { 2 } ( R )$ ; confidence 0.999
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010025.png ; $S _ { + } ^ { \nu - 1 } = \{ \eta \in R ^ { \nu } : | \eta | = 1 , \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle > 0 \}$ ; confidence 0.766
+
123. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006095.png ; $0 \leq x < \infty$ ; confidence 0.999
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003013.png ; $A \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n \in Z } \sum _ { m \in Z } \| f , g _ { n } , m \} | ^ { 2 } \leq B \| f \| _ { 2 } ^ { 2 }$ ; confidence 0.277
+
124. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015089.png ; $\alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.999
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002091.png ; $x ^ { * } : = 2 ( 1 | x ) 1 - \sigma ( x ) , \| x | ^ { 2 } : = ( x | x ) + ( ( x | x ) ^ { 2 } - | ( x | \sigma ( x ) ) | ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.365
+
125. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201907.png ; $f ( x ) = \frac { 2 x } { \pi } x$ ; confidence 0.999
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009042.png ; $= ( p _ { 0 } ( \xi ) - a i ) \frac { \tau } { \xi } + ( p _ { 1 } ( \xi ) + p _ { 0 } ( \xi ) ) \frac { \tau ^ { m + 1 } } { \xi }$ ; confidence 0.730
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020020.png ; $( \phi , \psi )$ ; confidence 0.999
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220165.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454
+
127. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200309.png ; $\tau ( \varphi )$ ; confidence 0.999
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019051.png ; $\sum _ { m = 1 } b ( m ) e ( \frac { m a } { q } ) g ( m ) = \sum _ { N } b ( n ) e ( - n \frac { \overline { a } } { q } ) L g ( n )$ ; confidence 0.068
+
128. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005026.png ; $h ( u ) = h ( v )$ ; confidence 0.999
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha } + \beta$ ; confidence 0.789
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a01298065.png ; $1 < p < \infty$ ; confidence 0.999
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008022.png ; $\operatorname { det } [ I _ { N } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.152
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146063.png ; $p > 1$ ; confidence 0.999
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008044.png ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] \in C ^ { ( m n + p ) \times m }$ ; confidence 0.801
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501015.png ; $( B _ { n } , \phi _ { n } )$ ; confidence 0.999
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008015.png ; $\operatorname { det } [ I _ { N } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 )$ ; confidence 0.473
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006096.png ; $E = B - A$ ; confidence 0.999
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008043.png ; $\sum _ { l = 0 } ^ { m } ( l _ { m } \otimes D _ { m - i } ) [ A _ { 1 } ^ { i + 1 } , A _ { 1 } ^ { i } A _ { 2 } ] = 0 ( D _ { 0 } = I _ { n } )$ ; confidence 0.213
+
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205001.png ; $W = \{ W _ { t } : t \geq 0 \}$ ; confidence 0.999
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180394.png ; $( \vec { \nabla } ^ { \psi _ { 1 } } R ( g ) \otimes \ldots \otimes \overline { \nabla } ^ { \psi m } R ( g ) )$ ; confidence 0.056
+
134. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807028.png ; $( \nu , \Sigma )$ ; confidence 0.999
  
135. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201409.png ; $D _ { N } ( x , a ) = ( \frac { x + \sqrt { x ^ { 2 } - 4 a } } { 2 } ) ^ { n } + ( \frac { x - \sqrt { x ^ { 2 } - 4 a } } { 2 } ) ^ { n }$ ; confidence 0.437
+
135. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008094.png ; $W ^ { * } ( G )$ ; confidence 0.999
  
136. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012086.png ; $L ( \mu , \Sigma | Y _ { aug } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu , q _ { k } ) f ( q _ { i } | \nu )$ ; confidence 0.649
+
136. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003081.png ; $T _ { E } M ^ { * } = M ^ { * }$ ; confidence 0.999
  
137. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010065.png ; $\lambda ^ { p } ( \mu ) [ \varphi ] = [ \varphi ^ { * } \Delta _ { G } ^ { 1 / p ^ { \prime } } \not \sim \rceil ]$ ; confidence 0.066
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028018.png ; $r ^ { 2 } = \operatorname { cos } ( 2 \phi )$ ; confidence 0.999
  
138. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080150.png ; $f _ { k } \in L _ { p } ( G ) , g _ { k } \in L _ { q } ( G ) , \sum _ { k = 1 } ^ { \infty } \| f _ { k } \| \| g _ { k } \| < \infty$ ; confidence 0.421
+
138. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010051.png ; $\sigma ( 1 ) = 1$ ; confidence 0.999
  
139. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T$ ; confidence 0.572
+
139. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222056.png ; $p \leq n - 2$ ; confidence 0.999
  
140. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
+
140. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433709.png ; $h \rightarrow D f ( x _ { 0 } , h )$ ; confidence 0.999
  
141. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005091.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n ) \text { as } n \rightarrow \infty$ ; confidence 0.716
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601075.png ; $\tau ( W , M _ { 1 } )$ ; confidence 0.999
  
142. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007014.png ; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k \gamma } } { r } + o ( \frac { 1 } { r } )$ ; confidence 0.638
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006024.png ; $R = R ( K )$ ; confidence 0.999
  
143. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090225.png ; $\Delta = \text { Gal } ( k _ { \infty } ^ { \prime } / k _ { \infty } ) \cong \text { Gal } ( k ^ { \prime } / k )$ ; confidence 0.471
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060101.png ; $0 < \lambda < 1$ ; confidence 0.999
  
144. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002013.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta } | ^ { 2 } }$ ; confidence 0.913
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014011.png ; $d _ { 1 } ( x , y ) = r$ ; confidence 0.999
  
145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120010/l12001040.png ; $T = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { 0 } \\ { 1 } & { - 1 } & { 0 } & { 1 } \end{array} \right)$ ; confidence 0.985
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008026.png ; $f ( x ) \leq \alpha g ( x ; m , s )$ ; confidence 0.999
  
146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002053.png ; $b ( u , u ) \neq 0$ ; confidence 0.999
  
147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010025.png ; $L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }$ ; confidence 0.725
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150131.png ; $F _ { \pm } ( X , Y )$ ; confidence 0.999
  
148. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006069.png ; $W _ { 2 } ^ { * } = \frac { 1 } { D _ { 2 } ^ { * } } = \operatorname { min } _ { i } \sqrt { m _ { i } ^ { 2 } + p _ { 2 } ^ { 2 } }$ ; confidence 0.681
+
148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005030.png ; $\phi _ { T } = T F ^ { 0 } + F$ ; confidence 0.999
  
149. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003027.png ; $\operatorname { exp } ( i \alpha ) = \operatorname { cos } \alpha + i \operatorname { sin } \alpha$ ; confidence 0.999
+
149. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005012.png ; $F = D ^ { T } f$ ; confidence 0.999
  
150. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010033.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq \nu \| y - z \| ^ { 2 } , y , z \in C ^ { n }$ ; confidence 0.735
+
150. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026069.png ; $\Phi ( t ) = \int _ { 0 } ^ { t } K ( t , s ) \phi ( s ) d B ( s + )$ ; confidence 0.999
  
151. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001026.png ; $\frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } =$ ; confidence 0.939
+
151. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320138.png ; $R R ^ { 21 } = 1 \otimes 1$ ; confidence 0.999
  
152. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548015.png ; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B$ ; confidence 0.971
+
152. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010086.png ; $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$ ; confidence 0.999
  
153. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017029.png ; $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A } ^ { * } , B ^ { * }$ ; confidence 0.611
+
153. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013061.png ; $n - r ( \lambda )$ ; confidence 0.999
  
154. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008064.png ; $+ \frac { R ( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in G , L } \rho _ { p } ^ { 2 } ) } { 2 ( 1 - \rho ) }$ ; confidence 0.713
+
154. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011050.png ; $\forall \alpha \in ( 0,1 ]$ ; confidence 0.999
  
155. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004058.png ; $\frac { 1 } { \mu _ { 2 } ( \Omega ) } + \frac { 1 } { \mu _ { 3 } ( \Omega ) } \geq \frac { 2 A } { \pi p _ { 1 } ^ { 2 } }$ ; confidence 0.999
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300902.png ; $x = \operatorname { cos } \theta$ ; confidence 0.999
  
156. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r1200201.png ; $\frac { d } { d t } \frac { \partial L } { \partial \dot { q } } - \frac { \partial L } { \partial q } = \tau$ ; confidence 0.835
+
156. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023095.png ; $\Omega _ { \eta }$ ; confidence 0.999
  
157. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016036.png ; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029052.png ; $u ( 1 , t ) = \phi ( u ( 0 , t ) )$ ; confidence 0.999
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833607.png ; $P _ { n } ( z ) = \frac { 1 } { 2 \pi i } \int _ { - \infty } \frac { ( t ^ { 2 } - 1 ) ^ { n } } { 2 ^ { n } ( t - z ) ^ { n + 1 } } d t$ ; confidence 0.256
+
158. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018017.png ; $( \alpha + \beta ) ^ { * } = \alpha ^ { * } + \beta ^ { * }$ ; confidence 0.999
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026048.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) \phi ( s ) d s$ ; confidence 0.986
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031026.png ; $( n - 1 ) / 2 ( n + 1 ) < \delta < ( n - 1 ) / 2$ ; confidence 0.999
  
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320111.png ; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }$ ; confidence 0.973
+
160. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584071.png ; $[ f , g ] = \int _ { - \infty } ^ { \infty } f g r d x$ ; confidence 0.999
  
161. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005084.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = j ^ { r } ( f ) ^ { - 1 } ( \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W ) )$ ; confidence 0.594
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350388.png ; $f ( x + y ) = f ( x ) + f ( y )$ ; confidence 0.999
  
162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005085.png ; $\Sigma ^ { i _ { 1 } } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } ( d f _ { x } ) = i _ { 1 } \}$ ; confidence 0.763
+
162. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660137.png ; $0 \leq \delta \leq \rho \leq 1$ ; confidence 0.999
  
163. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007092.png ; $\sum _ { i > 0 } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { Y } + i v ) _ { m + n - i } w =$ ; confidence 0.235
+
163. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009024.png ; $\mu = 0,1,2,3$ ; confidence 0.999
  
164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200123.png ; $\geq \frac { 1 } { 8 } ( \frac { n - 1 } { 8 e ( m + n ) } ) ^ { n } \operatorname { min } | b _ { 1 } + \ldots + b _ { j } |$ ; confidence 0.579
+
164. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c0241203.png ; $s = \sigma + i t$ ; confidence 0.999
  
165. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969104.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \sum _ { k = 0 } ^ { n - 1 } U ^ { k } h = \hbar$ ; confidence 0.817
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032041.png ; $\theta \neq 1 / 2$ ; confidence 0.999
  
166. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070121.png ; $( I \frac { \partial } { \partial t } + \sum A _ { j } \frac { \partial } { \partial x _ { j } } ) E = I \delta$ ; confidence 0.847
+
166. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011043.png ; $2 ^ { 3 }$ ; confidence 0.999
  
167. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007028.png ; $= ( p + p ^ { \prime } , q + q ^ { \prime } , t + t ^ { \prime } + \frac { 1 } { 2 } ( p q ^ { \prime } - q p ^ { \prime } ) )$ ; confidence 0.999
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004022.png ; $( L ^ { 2 } )$ ; confidence 0.999
  
168. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080170.png ; $\partial _ { \alpha } A = 0 \text { and } \partial \overline { A } = ( 1 / \kappa ) A \mu _ { \alpha } ^ { 0 }$ ; confidence 0.643
+
168. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m1201208.png ; $( A , f )$ ; confidence 0.999
  
169. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008054.png ; $= \frac { ( - 1 ) ^ { l } } { 2 } \Gamma ( \alpha + 1 ) ( \frac { 2 } { s } ) ^ { \alpha + 1 } J _ { k + l + \alpha + 1 } ( s )$ ; confidence 0.840
+
169. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007022.png ; $y = K x$ ; confidence 0.999
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111012.png ; $\square \ldots \rightarrow H ^ { n } ( X , A ; G ) \rightarrow H ^ { n } ( X ; G ) \rightarrow H ^ { n } ( A ; G )$ ; confidence 0.853
+
170. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001015.png ; $h ( s )$ ; confidence 0.999
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040605.png ; $g _ { S _ { P } , \mathfrak { M } } ( \varphi ) = \operatorname { mng } _ { S } _ { P } , \mathfrak { M } ( \psi )$ ; confidence 0.071
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038057.png ; $1 / p + 1 / p ^ { \prime } = 1$ ; confidence 0.999
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008056.png ; $\alpha ( t , u , v ) = \langle A ( t ) u , v \rangle _ { \langle H ^ { 1 } \rangle } ^ { \prime } \times H ^ { 1 }$ ; confidence 0.284
+
172. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002022.png ; $T = T _ { 1 } + T _ { 2 }$ ; confidence 0.999
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013042.png ; $( h _ { \theta } ^ { * } - \frac { I } { 2 } ) V + V ( h _ { \theta } ^ { * } - \frac { I } { 2 } ) ^ { T } = R ( \theta ^ { * } )$ ; confidence 0.816
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501036.png ; $( B , \phi )$ ; confidence 0.999
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a1302206.png ; $0 \rightarrow A \stackrel { f } { \rightarrow } B \stackrel { g } { \rightarrow } C \rightarrow 0$ ; confidence 0.342
+
174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080125.png ; $s _ { 1 } = - i \operatorname { log } ( \lambda )$ ; confidence 0.999
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028022.png ; $c _ { k } = a _ { k } ^ { 2 } - b _ { k } ^ { 2 } , s _ { k } = s _ { k - 1 } - 2 ^ { k } c _ { k } , p _ { k } = 2 s _ { k } ^ { - 1 } a _ { k } ^ { 2 }$ ; confidence 0.487
+
175. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007050.png ; $d ( \omega ) > 0$ ; confidence 0.999
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032013.png ; $E _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } P _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705
+
176. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019086.png ; $\zeta ( 1 / 2 + i t )$ ; confidence 0.999
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006098.png ; $1 \leq \operatorname { max } _ { i } ( \frac { 1 } { | \mu - b _ { i i } | } \cdot \sum _ { j \neq i } | b _ { i j } | )$ ; confidence 0.426
+
177. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203107.png ; $f ( T )$ ; confidence 0.999
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : \alpha \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1$ ; confidence 0.205
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014053.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z ) \leq t$ ; confidence 0.999
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163607.png ; $a d - b c = 1 , \quad c \equiv 0 ( \operatorname { mod } p ) , \quad d \equiv 1 ( \operatorname { mod } p )$ ; confidence 0.978
+
179. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005012.png ; $( G , \Omega )$ ; confidence 0.999
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400102.png ; $0 \rightarrow G \times ^ { R } H _ { R } \rightarrow G \times ^ { R } V \rightarrow \xi \rightarrow 0$ ; confidence 0.991
+
180. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054390/j05439023.png ; $J ( f )$ ; confidence 0.999
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180195.png ; $S ( g ) = g ^ { - 1 } \{ 1,2 \} \operatorname { Ric } ( g ) = g ^ { - 1 } \{ 1,4 ; 2,3 \} R ( g ) \in C ^ { \infty } ( M )$ ; confidence 0.983
+
181. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565056.png ; $f + g$ ; confidence 0.999
  
182. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019049.png ; $\lambda _ { 1 } \geq \ldots \geq \lambda _ { k } > 0 > \lambda _ { k + 1 } \geq \ldots \geq \lambda _ { n }$ ; confidence 0.909
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070159.png ; $s ( X , Y )$ ; confidence 0.999
  
183. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080141.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \oplus \operatorname { Im } ( I - F ^ { \prime } ( c ) ) = X$ ; confidence 0.757
+
183. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003095.png ; $E = ( \Omega , F , P )$ ; confidence 0.999
  
184. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000132.png ; $\epsilon ^ { 2 } = \sum _ { i = 1 } ^ { \infty } \operatorname { min } \{ \lambda _ { i } , f ( \epsilon ) \}$ ; confidence 0.980
+
184. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203106.png ; $[ 0,1 ] ^ { d }$ ; confidence 0.999
  
185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023050.png ; $f ( t ) = A ( \sigma _ { t } ) = \int _ { x } ^ { b } L ( x , y ( x ) + t z ( x ) , y ^ { \prime } ( x ) + t z ^ { \prime } ( x ) ) d x$ ; confidence 0.261
+
185. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200301.png ; $\varphi : ( M , g ) \rightarrow ( N , h )$ ; confidence 0.999
  
186. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009029.png ; $| F \mu ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( H _ { K } ( \zeta ) + \epsilon | \zeta | )$ ; confidence 0.990
+
186. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050104.png ; $D ^ { 2 } f$ ; confidence 0.999
  
187. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019013.png ; $\frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }$ ; confidence 0.995
+
187. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007015.png ; $\nabla ^ { 2 } \phi = 0$ ; confidence 0.999
  
188. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003012.png ; $nd ( P ) : = \operatorname { dim } ( ker ( P ) ) - \operatorname { dim } ( \operatorname { coker } ( P ) )$ ; confidence 0.177
+
188. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016056.png ; $t ( n ) \geq n$ ; confidence 0.999
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003057.png ; $\pi _ { 0 } \operatorname { Map } ( B E , X ) = [ B E , X ] = \operatorname { Hom } _ { K } ( H ^ { * } X , H ^ { * } B E )$ ; confidence 0.917
+
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620127.png ; $L ^ { 2 } ( 0 , N )$ ; confidence 0.999
  
190. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200502.png ; $\operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) + K _ { 1 / 2 - i \tau } ( x ) } { 2 }$ ; confidence 0.715
+
190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090385.png ; $W ( \lambda ) ^ { \lambda }$ ; confidence 0.999
  
191. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010060.png ; $\alpha \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } \alpha ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450
+
191. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010132.png ; $A ( E ^ { * } )$ ; confidence 0.999
  
192. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017051.png ; $n = \operatorname { max } ( \operatorname { dim } ( K _ { 0 } - L ) , \operatorname { dim } ( K _ { 1 } - L ) )$ ; confidence 0.910
+
192. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059050/l05905024.png ; $B = C ^ { - 1 } A C$ ; confidence 0.999
  
193. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019024.png ; $\sum _ { i = 1 } ^ { m } ( \sum _ { j = 1 } ^ { m } a _ { i j } x _ { j } ) \frac { \partial _ { v } } { \partial x _ { i } } = U$ ; confidence 0.813
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025026.png ; $\beta = \angle C B A$ ; confidence 0.999
  
194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014017.png ; $j _ { n } ( \zeta ) = \Gamma ( \frac { n } { 2 } ) ( \frac { 2 } { \zeta } ) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta )$ ; confidence 0.903
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024017.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) - f ( x _ { 0 } - t ) \} =$ ; confidence 0.999
  
195. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180148.png ; $\sum _ { X : X \in L } \mu ( 0 , X ) \lambda ^ { \operatorname { rank } ( L ) - \operatorname { rank } ( X ) }$ ; confidence 0.602
+
195. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080219.png ; $1 \leq \alpha \leq g$ ; confidence 0.999
  
196. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002092.png ; $V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \alpha ) ) ( \beta ) = V _ { F } ^ { \prime } ( m ) ( V ( m ) ( \beta ) ) ( \alpha )$ ; confidence 0.851
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e1201608.png ; $\tau = d \psi$ ; confidence 0.999
  
197. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007021.png ; $\operatorname { imsup } _ { j \rightarrow \infty } \frac { 1 } { j } \operatorname { log } | f _ { j } |$ ; confidence 0.905
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009090.png ; $A = T M$ ; confidence 0.999
  
198. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007070.png ; $\rho _ { \lambda } ( z ) = \operatorname { limsup } _ { t \in C } ( u ( t z ) - \operatorname { log } | t z | )$ ; confidence 0.058
+
198. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840327.png ; $( H ( t ) = H ( T + t ) )$ ; confidence 0.999
  
199. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017058.png ; $\delta _ { A , B } ( X ) \in N _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in N$ ; confidence 0.249
+
199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041027.png ; $\lambda \in R ^ { + }$ ; confidence 0.999
  
200. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070106.png ; $= \sum _ { j n , m _ { n } } ^ { J _ { n } } K ( y _ { m _ { n } } , y _ { j _ { n } } ) c _ { j _ { n } } \overline { c _ { m } n _ { n } } =$ ; confidence 0.113
+
200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021034.png ; $\chi ( G ; \lambda )$ ; confidence 0.999
  
201. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011024.png ; $\Xi ( \frac { t } { 2 } ) : = \frac { 1 } { 8 } \int _ { 0 } ^ { \infty } \Phi ( u ) \operatorname { cos } ( u t ) d u$ ; confidence 0.981
+
201. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120030/i1200306.png ; $d = + \infty$ ; confidence 0.999
  
202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { l = 0 } ^ { N } \lambda _ { i } \int _ { R } p ^ { ( l ) } q ^ { ( l ) } d \mu _ { l }$ ; confidence 0.190
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003015.png ; $( - \infty , 0 ]$ ; confidence 0.999
  
203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304509.png ; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012075.png ; $\varepsilon \in ( 0 , \pi / 2 )$ ; confidence 0.999
  
204. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022028.png ; $\operatorname { spec } ( M , \Delta ) = \operatorname { spec } ( M ^ { \prime } , \Delta ^ { \prime } )$ ; confidence 0.984
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b0156609.png ; $q = 1 - p$ ; confidence 0.999
  
205. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048018.png ; $C _ { k } = \Lambda ^ { k } T ^ { * } M \otimes R _ { m } / \delta ( \Lambda ^ { k - 1 } T ^ { * } M \otimes g _ { m + 1 } )$ ; confidence 0.144
+
205. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002045.png ; $C _ { F } = M _ { F }$ ; confidence 0.999
  
206. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510118.png ; $V ^ { \infty } = V \backslash V ^ { f } , \gamma ^ { \prime } ( u ) = \operatorname { mex } \gamma ( F ( u ) )$ ; confidence 0.994
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026089.png ; $A \subset M ( A )$ ; confidence 0.999
  
207. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024058.png ; $z ^ { N } = \{ z ^ { n } _ { i } , x _ { i } ^ { n + 1 } \} , z \square ^ { n } = \{ z _ { i } ^ { N } , x \square _ { i } ^ { n + 1 } \}$ ; confidence 0.077
+
207. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016041.png ; $O ( s ( n ) )$ ; confidence 0.999
  
208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620106.png ; $m _ { + } ( \lambda ) = \operatorname { lim } _ { \epsilon \rightarrow 0 + } m ( \lambda + i \epsilon )$ ; confidence 0.853
+
208. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006038.png ; $( \phi , G ( z ) \phi )$ ; confidence 0.999
  
209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340111.png ; $\frac { \partial w } { \partial s } + J ( u ) \frac { \partial w } { \partial t } = \nabla H ( t , w ( s , t ) )$ ; confidence 0.982
+
209. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003027.png ; $r ( z )$ ; confidence 0.999
  
210. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001021.png ; $= \frac { m ! n ! } { ( m + n + 1 ) ! } \frac { 1 } { 2 \pi i } \oint _ { z = 0 } \alpha ^ { ( m + 1 ) } ( z ) b ^ { ( n ) } ( z ) d z$ ; confidence 0.719
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012070.png ; $0,1$ ; confidence 0.999
  
211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1$ ; confidence 0.563
+
211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003043.png ; $f \in M _ { 4 }$ ; confidence 0.999
  
212. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011076.png ; $\sigma = \left( \begin{array} { c c } { 0 } & { Id ( E ^ { * } ) } \\ { - Id ( E ) } & { 0 } \end{array} \right)$ ; confidence 0.613
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300143.png ; $D ( 2 k )$ ; confidence 0.999
  
213. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110117.png ; $( \tau _ { x _ { 0 } , \xi _ { 0 } } u ) ( y ) = u ( y - x _ { 0 } ) e ^ { 2 i \pi \langle y - x _ { 0 } / 2 , \xi _ { 0 } \rangle }$ ; confidence 0.542
+
213. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007083.png ; $p > 89 / 570$ ; confidence 0.999
  
214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019041.png ; $\phi ( \sigma , \tau ) = \int _ { R ^ { 3 N } \times R ^ { 3 N } } e ^ { i ( \sigma x + r , p ) / \hbar } f ( x , p ) d x d p$ ; confidence 0.325
+
214. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020160.png ; $| \nu ( t ) - \nu ( - t ) | \leq 1$ ; confidence 0.999
  
215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020036.png ; $( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { x } ^ { b } f ^ { ( y ) } ( x ) g ^ { ( y ) } ( x ) d x$ ; confidence 0.169
+
215. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014019.png ; $\lambda \in \sigma ( R ) \backslash \{ 0 \}$ ; confidence 0.999
  
216. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010059.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \forall w ( w \in v \rightarrow w \in x ) )$ ; confidence 0.164
+
216. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007055.png ; $A < m \leq A + B$ ; confidence 0.999
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
217. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005015.png ; $E ( \alpha , \beta ) = 0$ ; confidence 0.999
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050160.png ; $\sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n } = \prod _ { m = 1 } ^ { \infty } ( 1 - y ^ { m } ) ^ { - P ^ { \# } ( m ) }$ ; confidence 0.346
+
218. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013024.png ; $Q = f ( L , N , K , P )$ ; confidence 0.999
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023046.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.880
+
219. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206043.png ; $F ( \lambda )$ ; confidence 0.999
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032025.png ; $E _ { \theta } ( S _ { N } ) = P _ { \theta } ( S _ { N } = 1 ) = 1 - P _ { \theta } ( S _ { n } = 0 ) = 1 - ( 1 - \theta ) ^ { n }$ ; confidence 0.647
+
220. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009011.png ; $X , Y \in \Gamma ( A )$ ; confidence 0.999
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003015.png ; $B ^ { - 1 } \| f \| _ { 2 } ^ { 2 } \leq \sum _ { n , m \in Z } | c _ { n , m } ( f ) | ^ { 2 } \leq A ^ { - 1 } \| f \| _ { 2 } ^ { 2 }$ ; confidence 0.552
+
221. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008027.png ; $( 1 - x ^ { 2 } - y ^ { 2 } ) ^ { \alpha } d x d y$ ; confidence 0.999
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010047.png ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w )$ ; confidence 0.677
+
222. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002026.png ; $\mu ( B )$ ; confidence 0.999
  
223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029044.png ; $\varepsilon _ { X } ^ { X \backslash V } ( R _ { S } ^ { X \backslash U } ) = R _ { S } ^ { X \backslash U } ( x )$ ; confidence 0.431
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180139.png ; $( U )$ ; confidence 0.999
  
224. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430118.png ; $\Psi ( \alpha \bigotimes \alpha ) = \alpha \otimes \alpha + ( 1 - q ^ { 2 } ) \beta \otimes \gamma$ ; confidence 0.158
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211052.png ; $k - m - 1$ ; confidence 0.999
  
225. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052075.png ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }$ ; confidence 0.947
+
225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202102.png ; $m - 1 \geq 0$ ; confidence 0.999
  
226. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002063.png ; $\int _ { S O ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f$ ; confidence 0.502
+
226. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050124.png ; $x _ { 2 } ^ { - 1 }$ ; confidence 0.999
  
227. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008012.png ; $\sigma _ { \mathfrak { P } } \equiv x ^ { N ( \mathfrak { p } ) } \operatorname { mod } \mathfrak { P }$ ; confidence 0.437
+
227. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006078.png ; $\rho : = \rho ( \lambda )$ ; confidence 0.999
  
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202908.png ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 }$ ; confidence 0.943
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301507.png ; $D ^ { \prime } ( \Omega )$ ; confidence 0.999
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d1300303.png ; $f ( x ) = \sum _ { j = - \infty } ^ { \infty } \sum _ { k = - \infty } ^ { \infty } a _ { j , k } \psi ( 2 ^ { j } x - k )$ ; confidence 0.970
+
229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007032.png ; $( \lambda | \alpha _ { k } ) = ( \lambda | \beta _ { l } ) = 0$ ; confidence 0.999
  
230. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008018.png ; $D _ { \xi } = D ( \xi , R ) : = \{ z \in \Delta : \frac { | 1 - z \overline { \xi } | ^ { 2 } } { 1 - | z | ^ { 2 } } < R \}$ ; confidence 0.960
+
230. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520299.png ; $A = \sum \oplus A _ { \alpha }$ ; confidence 0.999
  
231. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010111.png ; $e : X \rightarrow G A \in E \text { and } M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I } \in \mathfrak { M }$ ; confidence 0.525
+
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018077.png ; $H = \Gamma ^ { \perp }$ ; confidence 0.999
  
232. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016028.png ; $f ( d t ^ { 2 } - \omega d \theta ^ { 2 } ) - r ^ { 2 } f ^ { - 1 } d \theta ^ { 2 } - \Omega ^ { 2 } ( d r ^ { 2 } + d z ^ { 2 } )$ ; confidence 0.989
+
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014056.png ; $R ( \phi )$ ; confidence 0.999
  
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005026.png ; $\| \sum _ { j = 1 } ^ { m } w _ { j } \cdot \frac { p _ { j } - p _ { i } } { \| p _ { j } - p _ { i } \| } \| > w _ { i } , i \neq j$ ; confidence 0.389
+
233. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014010.png ; $\lambda \in \sigma ( R )$ ; confidence 0.999
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110157.png ; $G ( \zeta ) = O ( e ^ { \varepsilon | \zeta | + H _ { K } \langle \operatorname { lm } \zeta \rangle } )$ ; confidence 0.379
+
234. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006025.png ; $h ^ { 1 } ( L ) = 0$ ; confidence 0.999
  
235. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023012.png ; $+ ( - 1 ) ^ { k } ( d \varphi \wedge i _ { X } \psi \otimes Y + i \gamma \varphi \wedge d \psi \otimes X )$ ; confidence 0.246
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210103.png ; $\mu = w ( \mu + \rho ) - \rho$ ; confidence 0.999
  
236. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005058.png ; $E ( A ) = \frac { 1 } { 2 } \int _ { G } | \nabla A | ^ { 2 } d x + \frac { 1 } { 4 } \int _ { G } ( | A | ^ { 2 } - 1 ) ^ { 2 } d x$ ; confidence 0.993
+
236. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058047.png ; $\partial f ( x )$ ; confidence 0.999
  
237. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002019.png ; $P ( X = 0 ) \leq \operatorname { exp } \{ \frac { \Delta } { 1 - \epsilon } \} \prod _ { A } ( 1 - E I _ { A } )$ ; confidence 0.421
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150137.png ; $F _ { + } ( X , Y )$ ; confidence 0.999
  
238. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840397.png ; $S _ { f } ( z , \overline { \rho } ) = \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }$ ; confidence 0.576
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110340/b11034029.png ; $V ^ { 2 } = V$ ; confidence 0.999
  
239. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010080.png ; $\rho ( x ) = N \int _ { R ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }$ ; confidence 0.454
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007056.png ; $> n ( n - 2 )$ ; confidence 0.999
  
240. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015052.png ; $\times \alpha ( x 0 , \dots , x _ { i } - 1 , [ x _ { i } , x _ { j } ] , x _ { i } + 1 , \dots , x _ { j } , \dots , x _ { x } )$ ; confidence 0.060
+
240. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h120070109.png ; $n = 3 ?$ ; confidence 0.999
  
241. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300902.png ; $+ c ^ { 2 } ( \nabla - i \frac { q e } { \hbar } A ) ^ { 2 } + \frac { c ^ { 4 } m ^ { 2 } } { \hbar ^ { 2 } } ] \psi ( t , x )$ ; confidence 0.533
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566018.png ; $\Delta t = 1$ ; confidence 0.999
  
242. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013029.png ; $= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$ ; confidence 0.619
+
242. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017071.png ; $\Omega _ { 2 }$ ; confidence 0.999
  
243. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } ) , \quad x \in H$ ; confidence 0.697
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014016.png ; $T _ { \phi } : H ^ { 2 } \rightarrow H ^ { 2 }$ ; confidence 0.999
  
244. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027020.png ; $d w [ k ] = d w _ { 1 } \wedge \ldots \wedge d w _ { k - 1 } \wedge d w _ { k + 1 } \wedge \ldots \wedge d w _ { n }$ ; confidence 0.876
+
244. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010069.png ; $[ f ]$ ; confidence 0.999
  
245. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025083.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } u ( , , \varepsilon ) v ( , , \varepsilon )$ ; confidence 0.604
+
245. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080197.png ; $f ( u , v , t )$ ; confidence 0.999
  
246. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001095.png ; $S = \frac { k ^ { 2 } V } { 4 \pi } \cdot \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right)$ ; confidence 0.772
+
246. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013041.png ; $H ( r , \theta )$ ; confidence 0.999
  
247. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026098.png ; $( A , m )$ ; confidence 0.999
  
248. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007043.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \overline { \varphi _ { j } ( x ) } \varphi _ { j } ( y )$ ; confidence 0.817
+
248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022027.png ; $( M ^ { \prime } , g ^ { \prime } )$ ; confidence 0.999
  
249. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694
+
249. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300603.png ; $u ( 0 , k ) = 0$ ; confidence 0.999
  
250. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002033.png ; $\int _ { Q } f ( u ) d u = \int _ { \gamma \in \Gamma l ( \gamma ) } f ( \gamma ^ { \prime } ( t ) ) d t d \gamma$ ; confidence 0.891
+
250. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026038.png ; $\partial _ { t } ^ { * } + \partial _ { t }$ ; confidence 0.999
  
251. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602013.png ; $\Phi ( z ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - z } , \quad z \notin \Gamma$ ; confidence 0.985
+
251. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l1200703.png ; $[ i - 1 , i )$ ; confidence 0.999
  
252. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058017.png ; $V = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { sin } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.975
+
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180231.png ; $W ( g ) = 0$ ; confidence 0.999
  
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058016.png ; $U = 2 \xi _ { l } ^ { 0 } \xi _ { r } ^ { 0 } \operatorname { cos } ( \varepsilon _ { l } - \varepsilon _ { r } )$ ; confidence 0.979
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215408.png ; $\phi ( x ) \leq f ( x )$ ; confidence 0.999
  
254. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028012.png ; $E _ { n } ( X ) = \operatorname { lim } _ { k } \pi _ { n + k } ( X \wedge E _ { k } ) = \pi _ { n } ^ { S } ( X \wedge E )$ ; confidence 0.683
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014120/a01412026.png ; $f ^ { \prime }$ ; confidence 0.999
  
255. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969109.png ; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \hbar$ ; confidence 0.974
+
255. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012010.png ; $d ( h ( x ) , H ( x ) ) < \varepsilon$ ; confidence 0.999
  
256. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001028.png ; $[ L _ { n } , L _ { m } ] = ( n - m ) L _ { n + m } + \frac { 1 } { 12 } ( n ^ { 3 } - n ) \delta _ { n , - m } \cdot C ^ { \prime }$ ; confidence 0.231
+
256. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232031.png ; $r \leq \rho \leq R$ ; confidence 0.999
  
257. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015047.png ; $N ( \Omega )$ ; confidence 0.999
  
258. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007020.png ; $[ P _ { j } , P _ { k } ] = [ Q _ { j } , Q _ { k } ] = 0 , \quad [ P _ { j } , Q _ { k } ] = \frac { \hbar } { i } \delta _ { j k } I$ ; confidence 0.831
+
258. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696010.png ; $2 ( n + 2 \lambda )$ ; confidence 0.999
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
+
259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024013.png ; $G ( \overline { K } / K )$ ; confidence 0.999
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence 0.689
+
260. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023031.png ; $D : \Omega ( M ) \rightarrow \Omega ( M )$ ; confidence 0.999
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050196.png ; $Z _ { A ( p ) } ( y ) = \prod _ { r = 1 } ^ { \infty } ( 1 - y ^ { r } ) ^ { - 1 } = \sum _ { n = 0 } ^ { \infty } p ( n ) y ^ { n }$ ; confidence 0.525
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040105.png ; $D$ ; confidence 0.999
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006013.png ; $\epsilon = + 1$ ; confidence 0.999
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008051.png ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040041.png ; $B G = E G / G$ ; confidence 0.999
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301804.png ; $L = \{ Fm _ { L } , \operatorname { Mod } _ { L } , \vDash _ { L } , \operatorname { mng } _ { L } , t _ { L } \}$ ; confidence 0.094
+
264. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002012.png ; $\{ G ; \preceq \}$ ; confidence 0.999
  
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042056.png ; $b _ { i } b _ { i } + 1 b _ { i } = b _ { i } + 1 b _ { i } b _ { i } + 1 , b _ { i } b _ { j } = b _ { j } b _ { i } , \quad | i - j | \geq 2$ ; confidence 0.362
+
265. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016033.png ; $\Gamma ( \xi )$ ; confidence 0.999
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052091.png ; $w _ { n - 1 } = ( \| s _ { n } - 1 \| _ { 2 } + v _ { n - 1 } ^ { T } w ) ^ { - 1 } w , s _ { n } = - ( I - w _ { n - 1 } v _ { n - 1 } ^ { T } ) w$ ; confidence 0.164
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501016.png ; $( B , \phi , g )$ ; confidence 0.999
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009016.png ; $C _ { j } = ( 1 - x ^ { 2 } ) \frac { T _ { N } ^ { \prime } ( x ) ( - 1 ) ^ { j + 1 } } { [ \tau _ { j } N ^ { 2 } ( x - x _ { j } ) ] }$ ; confidence 0.370
+
267. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010065.png ; $z \rightarrow \partial D$ ; confidence 0.999
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211041.png ; $X ^ { 2 } ( \tilde { \theta } _ { N } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta )$ ; confidence 0.615
+
268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018057.png ; $M + M ^ { \perp } = E$ ; confidence 0.999
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi ( \frac { y - x } { \varepsilon } )$ ; confidence 0.791
+
269. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086670/s08667070.png ; $( G , K )$ ; confidence 0.999
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180504.png ; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } \mathfrak { E } \otimes A ^ { 2 } \overline { E }$ ; confidence 0.073
+
270. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001074.png ; $\gamma \in F ^ { * }$ ; confidence 0.999
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019049.png ; $\phi * ( \operatorname { ind } ( D ) ) = c _ { q } ( \operatorname { Ch } ( D ) T ( M ) f ^ { * } ( \phi ) ) [ T M ]$ ; confidence 0.154
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040696.png ; $\square \varphi$ ; confidence 0.999
  
272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026012.png ; $\frac { U _ { l } ^ { n + 1 } - U _ { l } ^ { n } } { k } = \delta ^ { 2 } ( \frac { U _ { l } ^ { n + 1 } + U _ { l } ^ { n } } { 2 } )$ ; confidence 0.315
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058031.png ; $f ( x ) < \infty$ ; confidence 0.999
  
273. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
+
273. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325068.png ; $1 \leq k \leq n$ ; confidence 0.999
  
274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017045.png ; $\lambda _ { k } \geq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } \text { for } k = 1,2$ ; confidence 0.885
+
274. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850198.png ; $( V , P )$ ; confidence 0.999
  
275. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280140.png ; $g _ { \lambda } = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { \partial u } { \partial z _ { k } } d z [ k ] / d z$ ; confidence 0.270
+
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015029.png ; $i ( A + K ) = i ( A )$ ; confidence 0.999
  
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015031.png ; $\frac { d ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } + g _ { i } ^ { i } \frac { d \xi ^ { r } } { d t } + g _ { r } ^ { i } \xi ^ { r } = 0$ ; confidence 0.142
+
276. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002026.png ; $A = \{ 0,1,2,3,4 \}$ ; confidence 0.999
  
277. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230161.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \int _ { M } \sigma ^ { k ^ { * } } ( Z ^ { k } _ { - } d L \Delta ) =$ ; confidence 0.430
+
277. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009052.png ; $P ( \xi ) = 1 + | \xi | ^ { 2 N }$ ; confidence 0.999
  
278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011027.png ; $\langle f , \varphi \rangle = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) \varphi ( z ) d z$ ; confidence 0.957
+
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014056.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z )$ ; confidence 0.999
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021022.png ; $\pi ( \lambda ) = \sum _ { n = 0 } ^ { N } ( \lambda + n ) ( \lambda + n - 1 ) \ldots ( \lambda + 1 ) a ^ { n } 0 =$ ; confidence 0.798
+
279. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101801.png ; $\rho ( u ) = 1 \quad ( 0 \leq u \leq 1 )$ ; confidence 0.999
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202307.png ; $[ K _ { 1 } , [ K _ { 2 } , K _ { 3 } ] ] = [ [ K _ { 1 } , K _ { 2 } ] , K _ { 3 } ] + ( - 1 ) ^ { k _ { 1 } k _ { 2 } } [ K _ { 2 } , [ K _ { 1 } ]$ ; confidence 0.250
+
280. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300409.png ; $\Omega ( t ) \psi ( 0 ) = U _ { 0 } ( - t ) U ( t ) \psi ( 0 )$ ; confidence 0.999
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024030.png ; $y ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) , y ( t - g _ { 1 } ( t ) ) , \ldots , y ( t - g ( t ) ) )$ ; confidence 0.557
+
281. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001071.png ; $z ( z - \operatorname { cos } w ) / ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.999
  
282. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003061.png ; $E _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in C ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$ ; confidence 0.773
+
282. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008016.png ; $\mu : = \operatorname { min } \{ m , n - 1 \}$ ; confidence 0.999
  
283. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339014.png ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.752
+
283. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014072.png ; $\alpha ( \varphi )$ ; confidence 0.999
  
284. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002048.png ; $\tau = 4 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } C _ { X , Y ^ { \prime } } ( u , v ) d C _ { X , Y ^ { \prime } } ( u , v ) - 1$ ; confidence 0.227
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032940/d03294063.png ; $A > 0$ ; confidence 0.999
  
285. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558404.png ; $[ \alpha _ { 1 } x _ { 1 } + \alpha _ { 2 } x _ { 2 } , y ] = \alpha _ { 1 } [ x _ { 1 } , y ] + \alpha _ { 2 } [ x _ { 2 } , y ]$ ; confidence 0.596
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040226.png ; $\Gamma \approx \Delta$ ; confidence 0.999
  
286. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300602.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030033.png ; $( Z ( t ) , t \geq 0 )$ ; confidence 0.999
  
287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023032.png ; $\partial f ( x ) = \partial _ { c } ( f + ( 2 T ) ^ { - 1 } \| \| \cdot \| ^ { 2 } ) ( x ) - T ^ { - 1 } x , \quad x \in H$ ; confidence 0.657
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019048.png ; $f ^ { \prime \prime } ( x ) / 2$ ; confidence 0.999
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025016.png ; $( f , g ) \rightarrow f g : L ^ { p } ( \Omega ) \times L ^ { Y } ( \Omega ) \rightarrow L ^ { 1 } ( \Omega )$ ; confidence 0.463
+
288. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190165.png ; $y \neq p$ ; confidence 0.999
  
289. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520477.png ; $S = ( s _ { 1 } , \dots , s _ { k } ) , \quad Y = ( y _ { 1 } , \dots , y _ { l } ) , \quad Z = ( z _ { 1 } , \dots , z _ { m } )$ ; confidence 0.311
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013039.png ; $\sqrt { n } ( \theta _ { n } - \theta ^ { * } )$ ; confidence 0.999
  
290. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017041.png ; $\overline { X } \in \operatorname { ker } \delta _ { \overline { H } } ^ { * } , \overline { B } ^ { * }$ ; confidence 0.077
+
290. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009056.png ; $K = \{ 0 \}$ ; confidence 0.999
  
291. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080125.png ; $( u , v ) + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \text { if } H _ { 0 } = L ^ { 2 } ( D )$ ; confidence 0.576
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643018.png ; $z = 0$ ; confidence 0.999
  
292. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016031.png ; $e ( A ( q , d ) , f ) \leq C _ { d } n ^ { - k } ( \operatorname { log } n ) ^ { ( \alpha - 1 ) / ( k + 1 ) } \| f \| _ { k }$ ; confidence 0.052
+
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230141.png ; $( ( X _ { n } , B _ { n } ) , f _ { n } )$ ; confidence 0.999
  
293. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022058.png ; $\operatorname { det } ( \Delta ) = \operatorname { exp } ( - \frac { d } { d s } \zeta ( s ) | _ { s = 0 } )$ ; confidence 0.960
+
293. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049059.png ; $0 \leq i < j \leq r ( P )$ ; confidence 0.999
  
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320128.png ; $\operatorname { ev } _ { x } ( \varphi ^ { * } ( a ) ) = \operatorname { ev } _ { \varphi _ { 0 } ( x ) } ( a )$ ; confidence 0.243
+
294. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004032.png ; $\zeta ( s ) = \zeta ( s , 1 )$ ; confidence 0.999
  
295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006026.png ; $E ^ { TF } ( N ) = \operatorname { inf } \{ E ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}$ ; confidence 0.641
+
295. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110070/c11007019.png ; $f \in H ^ { \infty }$ ; confidence 0.999
  
296. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } P _ { + } \overline { \Lambda } P _ { + } \overline { \Psi } _ { \square } ^ { - 1 } f$ ; confidence 0.704
+
296. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006047.png ; $E _ { \Phi } ( \Omega )$ ; confidence 0.999
  
297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110127.png ; $( a \circ b ) ( x , \xi ) = \int \int e ^ { - 2 i \pi y \cdot \eta } a ( x , \xi + \eta ) b ( y + x , \xi ) d y d \eta$ ; confidence 0.175
+
297. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014040.png ; $T _ { \phi } f = g$ ; confidence 0.999
  
298. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110206.png ; $G _ { X } ^ { g } = \sum _ { 1 \leq j \leq n } h _ { j } ^ { - 1 } ( | \alpha q _ { j } | ^ { 2 } + | \alpha p _ { j } | ^ { 2 } )$ ; confidence 0.277
+
298. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110259.png ; $H ( m , G )$ ; confidence 0.999
  
299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008041.png ; $\psi ( P ) = \operatorname { exp } ( \sum t _ { n } \Omega _ { n } ) \phi ( \sum t _ { n } \vec { V } _ { n } , P )$ ; confidence 0.447
+
299. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021024.png ; $( w _ { i } , R ) = 0$ ; confidence 0.999
  
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008015.png ; $\frac { \partial d \omega _ { 1 } } { \partial T } = \frac { \partial d \omega _ { 3 } } { \partial X }$ ; confidence 0.987
+
300. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029027.png ; $B ( \mu )$ ; confidence 0.999

Revision as of 00:10, 13 February 2020

List

1. e13007079.png ; $q = p + 1 / 2$ ; confidence 0.999

2. f12010032.png ; $r ( P , m )$ ; confidence 0.999

3. t120070106.png ; $n \neq - 1$ ; confidence 0.999

4. o13003020.png ; $\mu = \overline { \nu } = ( 3 \pm i \sqrt { 3 } ) / 6$ ; confidence 0.999

5. f12010017.png ; $c ( 0 ) = 0$ ; confidence 0.999

6. a11006045.png ; $\delta > 0$ ; confidence 0.999

7. f12024054.png ; $[ - h ( t ) , - g ( t ) ]$ ; confidence 0.999

8. w13009082.png ; $L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.999

9. a12005096.png ; $Y \subset D ( A ( t ) )$ ; confidence 0.999

10. f13007023.png ; $F ( 2,6 )$ ; confidence 0.999

11. p12013024.png ; $\theta > 1$ ; confidence 0.999

12. o07010010.png ; $P \cup P ^ { - 1 } = G$ ; confidence 0.999

13. l05892079.png ; $\alpha < 1 / 2$ ; confidence 0.999

14. f12015091.png ; $i ( A + T ) = i ( A )$ ; confidence 0.999

15. b13028042.png ; $B ( 2 n ) \simeq B ( 2 n + 1 )$ ; confidence 0.999

16. t12003060.png ; $\| \psi \| = K \| \varphi \|$ ; confidence 0.999

17. s12017032.png ; $f ( d ) = 0$ ; confidence 0.999

18. m130230124.png ; $( ( X , B ) , f )$ ; confidence 0.999

19. d12030042.png ; $\psi ( T ) =$ ; confidence 0.999

20. z13001057.png ; $= \frac { - 4 z } { z + 2 } + \frac { 4 z } { ( z + 2 ) ^ { 2 } } - \frac { 3 z } { ( z + 2 ) ^ { 3 } } + \frac { 4 z } { z + 3 }$ ; confidence 0.999

21. f1202406.png ; $x ( t ) = y ( s )$ ; confidence 0.999

22. a12027044.png ; $W ( \rho ) = 1$ ; confidence 0.999

23. f04049061.png ; $z = ( \operatorname { log } F ) / 2$ ; confidence 0.999

24. b13006080.png ; $A + E$ ; confidence 0.999

25. p11015026.png ; $( G , P )$ ; confidence 0.999

26. b13027030.png ; $\pi ( T ^ { * } )$ ; confidence 0.999

27. n067520498.png ; $i ( P , \Omega ) + ( Q , \Lambda ) = 0$ ; confidence 0.999

28. d12028024.png ; $F ( f ) = F _ { \phi } ( f ) = \int _ { \Gamma } f ( z ) \phi ( z ) d z$ ; confidence 0.999

29. c1201606.png ; $A = X ^ { T } X$ ; confidence 0.999

30. m120130131.png ; $\delta \approx 0$ ; confidence 0.999

31. h12005021.png ; $\phi = \rho = 1$ ; confidence 0.999

32. d03224051.png ; $d \omega = 0$ ; confidence 0.999

33. i13005061.png ; $y \geq x$ ; confidence 0.999

34. d0303309.png ; $E ^ { * } ( M )$ ; confidence 0.999

35. u13002016.png ; $\geq \frac { 1 } { 16 \pi ^ { 2 } }$ ; confidence 0.999

36. q12005041.png ; $f ( x ) = R ^ { - 1 } D ^ { T } f ( x )$ ; confidence 0.999

37. h046010113.png ; $W \approx W ^ { \prime }$ ; confidence 0.999

38. s120340153.png ; $: [ 0,1 ] \rightarrow M$ ; confidence 0.999

39. b12008023.png ; $\operatorname { log } ( 1 / \epsilon )$ ; confidence 0.999

40. f120150167.png ; $A \in B ( X , Y )$ ; confidence 0.999

41. j13002049.png ; $p = 10 ^ { 5 } n ^ { - 2 / 3 }$ ; confidence 0.999

42. i12010031.png ; $m = 5$ ; confidence 0.999

43. f120150108.png ; $F ( x ) + K ( x )$ ; confidence 0.999

44. d12006014.png ; $\sigma ^ { \pm } = \varphi [ T ^ { \pm 1 } ( \varphi ) ] ^ { - 1 }$ ; confidence 0.999

45. a01298054.png ; $N \rightarrow \infty$ ; confidence 0.999

46. a130240378.png ; $p ^ { - 1 } ( n - r - p + 1 ) F$ ; confidence 0.999

47. v09690048.png ; $B = U A U ^ { - 1 }$ ; confidence 0.999

48. a01180073.png ; $n ^ { 2 }$ ; confidence 0.999

49. f120110225.png ; $- K$ ; confidence 0.999

50. d13017073.png ; $\Omega _ { t } = t \Omega _ { 1 } + ( 1 - t ) \Omega _ { 2 }$ ; confidence 0.999

51. t12020041.png ; $d \in [ 0,3 ]$ ; confidence 0.999

52. v1100607.png ; $\Delta ^ { 2 } \Phi = - \frac { 1 } { 2 } E [ w , w ]$ ; confidence 0.999

53. v13011019.png ; $\Phi = \phi - i \psi$ ; confidence 0.999

54. a01149025.png ; $y = f ( x )$ ; confidence 0.999

55. m12009013.png ; $P ( D ) ( u ) = g$ ; confidence 0.999

56. s1203402.png ; $\phi : ( M , \omega ) \rightarrow ( M , \omega )$ ; confidence 0.999

57. a120070109.png ; $D ( A ( t ) ) =$ ; confidence 0.999

58. e12012038.png ; $f _ { i } > 0$ ; confidence 0.999

59. c12017029.png ; $p ( E ) ( \gamma )$ ; confidence 0.999

60. a12005017.png ; $0 \leq s \leq t \leq T$ ; confidence 0.999

61. d0302408.png ; $\gamma ( t ) \rightarrow 0$ ; confidence 0.999

62. b12009012.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) p ( z , t )$ ; confidence 0.999

63. s120230100.png ; $G \in O ( p )$ ; confidence 0.999

64. c120170102.png ; $M \equiv M ( \infty )$ ; confidence 0.999

65. i13007049.png ; $A ( - \alpha , \alpha , k )$ ; confidence 0.999

66. m130180144.png ; $( - 1 ) ^ { k } \mu ( 0 , X )$ ; confidence 0.999

67. s1304801.png ; $\alpha : E ( \alpha ) \rightarrow M$ ; confidence 0.999

68. c11006030.png ; $| \alpha | < 1$ ; confidence 0.999

69. b0174009.png ; $u ( x , y )$ ; confidence 0.999

70. c120170144.png ; $M ( 1 ) \geq 0$ ; confidence 0.999

71. b11094042.png ; $F ( x ) = 0$ ; confidence 0.999

72. f12019016.png ; $G = N H$ ; confidence 0.999

73. v096900132.png ; $P _ { 1 } = P$ ; confidence 0.999

74. e12012070.png ; $\nu \in R ^ { + }$ ; confidence 0.999

75. f12015084.png ; $A + K \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.999

76. c027210175.png ; $m = 1,2$ ; confidence 0.999

77. j13007083.png ; $\angle F ^ { \prime } ( z )$ ; confidence 0.999

78. l12006029.png ; $G ( z ) = G _ { 0 } ( z ) + G _ { 0 } ( z ) V G ( z )$ ; confidence 0.999

79. a01093032.png ; $n + 1$ ; confidence 0.999

80. t120010159.png ; $4 n$ ; confidence 0.999

81. t12001077.png ; $\xi ( \tau )$ ; confidence 0.999

82. a01002013.png ; $\sigma \delta$ ; confidence 0.999

83. a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999

84. a12022012.png ; $1 \leq p < \infty$ ; confidence 0.999

85. a13007033.png ; $< 1$ ; confidence 0.999

86. b13007015.png ; $\pi ( m )$ ; confidence 0.999

87. b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999

88. b12036013.png ; $E$ ; confidence 0.999

89. b13030089.png ; $n \geq 2 ^ { 13 }$ ; confidence 0.999

90. e1202308.png ; $M = \overline { U }$ ; confidence 0.999

91. f1200408.png ; $( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$ ; confidence 0.999

92. f120150156.png ; $\beta ( A - K ) < \infty$ ; confidence 0.999

93. h13012038.png ; $| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$ ; confidence 0.999

94. b110390108.png ; $K > 0$ ; confidence 0.999

95. i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999

96. i12008061.png ; $H = 0$ ; confidence 0.999

97. a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999

98. l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999

99. m12009064.png ; $P ^ { * } ( D )$ ; confidence 0.999

100. c02467021.png ; $A _ { 3 }$ ; confidence 0.999

101. m130250103.png ; $s > n / 2$ ; confidence 0.999

102. n12011011.png ; $\xi ( x ) = 1$ ; confidence 0.999

103. n067520122.png ; $j \geq q + 1$ ; confidence 0.999

104. p12013011.png ; $n > 1$ ; confidence 0.999

105. q12005052.png ; $H _ { k + 1 } y ^ { k } = s ^ { k }$ ; confidence 0.999

106. c0204203.png ; $E \times E$ ; confidence 0.999

107. b0152609.png ; $D \cup \Gamma$ ; confidence 0.999

108. r12002013.png ; $J ( q ) ^ { T }$ ; confidence 0.999

109. s1300707.png ; $\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$ ; confidence 0.999

110. t13005053.png ; $\sigma ^ { \prime } ( A )$ ; confidence 0.999

111. t13014052.png ; $( Q )$ ; confidence 0.999

112. v13011069.png ; $\theta = 2 \pi$ ; confidence 0.999

113. v09690074.png ; $\phi ( U T U ^ { - 1 } ) = \phi ( T )$ ; confidence 0.999

114. v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999

115. w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999

116. a010290104.png ; $A B$ ; confidence 0.999

117. v096900157.png ; $f ( \zeta ) = f _ { p } ( \zeta )$ ; confidence 0.999

118. n12003015.png ; $N ^ { k } \rightarrow N$ ; confidence 0.999

119. l11001027.png ; $\{ A , \preceq \}$ ; confidence 0.999

120. e120190168.png ; $W ^ { - } ( h _ { 1 } , h _ { 2 } , p )$ ; confidence 0.999

121. k05507074.png ; $M ^ { 4 } \times K$ ; confidence 0.999

122. z13003071.png ; $g \in L ^ { 2 } ( R )$ ; confidence 0.999

123. i13006095.png ; $0 \leq x < \infty$ ; confidence 0.999

124. f12015089.png ; $\alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.999

125. m1201907.png ; $f ( x ) = \frac { 2 x } { \pi } x$ ; confidence 0.999

126. a01020020.png ; $( \phi , \psi )$ ; confidence 0.999

127. h1200309.png ; $\tau ( \varphi )$ ; confidence 0.999

128. e12005026.png ; $h ( u ) = h ( v )$ ; confidence 0.999

129. a01298065.png ; $1 < p < \infty$ ; confidence 0.999

130. a01146063.png ; $p > 1$ ; confidence 0.999

131. b01501015.png ; $( B _ { n } , \phi _ { n } )$ ; confidence 0.999

132. b13006096.png ; $E = B - A$ ; confidence 0.999

133. b1205001.png ; $W = \{ W _ { t } : t \geq 0 \}$ ; confidence 0.999

134. h04807028.png ; $( \nu , \Sigma )$ ; confidence 0.999

135. f12008094.png ; $W ^ { * } ( G )$ ; confidence 0.999

136. l12003081.png ; $T _ { E } M ^ { * } = M ^ { * }$ ; confidence 0.999

137. a13028018.png ; $r ^ { 2 } = \operatorname { cos } ( 2 \phi )$ ; confidence 0.999

138. n12010051.png ; $\sigma ( 1 ) = 1$ ; confidence 0.999

139. m06222056.png ; $p \leq n - 2$ ; confidence 0.999

140. g0433709.png ; $h \rightarrow D f ( x _ { 0 } , h )$ ; confidence 0.999

141. h04601075.png ; $\tau ( W , M _ { 1 } )$ ; confidence 0.999

142. a13006024.png ; $R = R ( K )$ ; confidence 0.999

143. a130060101.png ; $0 < \lambda < 1$ ; confidence 0.999

144. a13014011.png ; $d _ { 1 } ( x , y ) = r$ ; confidence 0.999

145. a13008026.png ; $f ( x ) \leq \alpha g ( x ; m , s )$ ; confidence 0.999

146. b11002053.png ; $b ( u , u ) \neq 0$ ; confidence 0.999

147. f120150131.png ; $F _ { \pm } ( X , Y )$ ; confidence 0.999

148. f12005030.png ; $\phi _ { T } = T F ^ { 0 } + F$ ; confidence 0.999

149. q12005012.png ; $F = D ^ { T } f$ ; confidence 0.999

150. s12026069.png ; $\Phi ( t ) = \int _ { 0 } ^ { t } K ( t , s ) \phi ( s ) d B ( s + )$ ; confidence 0.999

151. s120320138.png ; $R R ^ { 21 } = 1 \otimes 1$ ; confidence 0.999

152. l12010086.png ; $\int ( \nabla f ) ^ { 2 } = \int f ( - \Delta f )$ ; confidence 0.999

153. p13013061.png ; $n - r ( \lambda )$ ; confidence 0.999

154. n12011050.png ; $\forall \alpha \in ( 0,1 ]$ ; confidence 0.999

155. c1300902.png ; $x = \operatorname { cos } \theta$ ; confidence 0.999

156. i05023095.png ; $\Omega _ { \eta }$ ; confidence 0.999

157. a13029052.png ; $u ( 1 , t ) = \phi ( u ( 0 , t ) )$ ; confidence 0.999

158. s12018017.png ; $( \alpha + \beta ) ^ { * } = \alpha ^ { * } + \beta ^ { * }$ ; confidence 0.999

159. b12031026.png ; $( n - 1 ) / 2 ( n + 1 ) < \delta < ( n - 1 ) / 2$ ; confidence 0.999

160. k05584071.png ; $[ f , g ] = \int _ { - \infty } ^ { \infty } f g r d x$ ; confidence 0.999

161. b015350388.png ; $f ( x + y ) = f ( x ) + f ( y )$ ; confidence 0.999

162. p075660137.png ; $0 \leq \delta \leq \rho \leq 1$ ; confidence 0.999

163. e12009024.png ; $\mu = 0,1,2,3$ ; confidence 0.999

164. c0241203.png ; $s = \sigma + i t$ ; confidence 0.999

165. a13032041.png ; $\theta \neq 1 / 2$ ; confidence 0.999

166. d13011043.png ; $2 ^ { 3 }$ ; confidence 0.999

167. a11004022.png ; $( L ^ { 2 } )$ ; confidence 0.999

168. m1201208.png ; $( A , f )$ ; confidence 0.999

169. t13007022.png ; $y = K x$ ; confidence 0.999

170. o13001015.png ; $h ( s )$ ; confidence 0.999

171. b11038057.png ; $1 / p + 1 / p ^ { \prime } = 1$ ; confidence 0.999

172. d13002022.png ; $T = T _ { 1 } + T _ { 2 }$ ; confidence 0.999

173. b01501036.png ; $( B , \phi )$ ; confidence 0.999

174. w130080125.png ; $s _ { 1 } = - i \operatorname { log } ( \lambda )$ ; confidence 0.999

175. j13007050.png ; $d ( \omega ) > 0$ ; confidence 0.999

176. b13019086.png ; $\zeta ( 1 / 2 + i t )$ ; confidence 0.999

177. d1203107.png ; $f ( T )$ ; confidence 0.999

178. b12014053.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z ) \leq t$ ; confidence 0.999

179. r13005012.png ; $( G , \Omega )$ ; confidence 0.999

180. j05439023.png ; $J ( f )$ ; confidence 0.999

181. c02565056.png ; $f + g$ ; confidence 0.999

182. c130070159.png ; $s ( X , Y )$ ; confidence 0.999

183. l11003095.png ; $E = ( \Omega , F , P )$ ; confidence 0.999

184. c1203106.png ; $[ 0,1 ] ^ { d }$ ; confidence 0.999

185. h1200301.png ; $\varphi : ( M , g ) \rightarrow ( N , h )$ ; confidence 0.999

186. q120050104.png ; $D ^ { 2 } f$ ; confidence 0.999

187. v13007015.png ; $\nabla ^ { 2 } \phi = 0$ ; confidence 0.999

188. c13016056.png ; $t ( n ) \geq n$ ; confidence 0.999

189. s130620127.png ; $L ^ { 2 } ( 0 , N )$ ; confidence 0.999

190. w120090385.png ; $W ( \lambda ) ^ { \lambda }$ ; confidence 0.999

191. c120010132.png ; $A ( E ^ { * } )$ ; confidence 0.999

192. l05905024.png ; $B = C ^ { - 1 } A C$ ; confidence 0.999

193. b13025026.png ; $\beta = \angle C B A$ ; confidence 0.999

194. d03024017.png ; $\frac { 1 } { 2 } \{ f ( x _ { 0 } + t ) - f ( x _ { 0 } - t ) \} =$ ; confidence 0.999

195. w130080219.png ; $1 \leq \alpha \leq g$ ; confidence 0.999

196. e1201608.png ; $\tau = d \psi$ ; confidence 0.999

197. l12009090.png ; $A = T M$ ; confidence 0.999

198. k055840327.png ; $( H ( t ) = H ( T + t ) )$ ; confidence 0.999

199. s13041027.png ; $\lambda \in R ^ { + }$ ; confidence 0.999

200. t12021034.png ; $\chi ( G ; \lambda )$ ; confidence 0.999

201. i1200306.png ; $d = + \infty$ ; confidence 0.999

202. a12003015.png ; $( - \infty , 0 ]$ ; confidence 0.999

203. b13012075.png ; $\varepsilon \in ( 0 , \pi / 2 )$ ; confidence 0.999

204. b0156609.png ; $q = 1 - p$ ; confidence 0.999

205. n12002045.png ; $C _ { F } = M _ { F }$ ; confidence 0.999

206. m13026089.png ; $A \subset M ( A )$ ; confidence 0.999

207. c13016041.png ; $O ( s ( n ) )$ ; confidence 0.999

208. l12006038.png ; $( \phi , G ( z ) \phi )$ ; confidence 0.999

209. h13003027.png ; $r ( z )$ ; confidence 0.999

210. a01012070.png ; $0,1$ ; confidence 0.999

211. d12003043.png ; $f \in M _ { 4 }$ ; confidence 0.999

212. b130300143.png ; $D ( 2 k )$ ; confidence 0.999

213. e13007083.png ; $p > 89 / 570$ ; confidence 0.999

214. h120020160.png ; $| \nu ( t ) - \nu ( - t ) | \leq 1$ ; confidence 0.999

215. r13014019.png ; $\lambda \in \sigma ( R ) \backslash \{ 0 \}$ ; confidence 0.999

216. e13007055.png ; $A < m \leq A + B$ ; confidence 0.999

217. e13005015.png ; $E ( \alpha , \beta ) = 0$ ; confidence 0.999

218. c13013024.png ; $Q = f ( L , N , K , P )$ ; confidence 0.999

219. f04206043.png ; $F ( \lambda )$ ; confidence 0.999

220. l12009011.png ; $X , Y \in \Gamma ( A )$ ; confidence 0.999

221. z13008027.png ; $( 1 - x ^ { 2 } - y ^ { 2 } ) ^ { \alpha } d x d y$ ; confidence 0.999

222. d13002026.png ; $\mu ( B )$ ; confidence 0.999

223. a130180139.png ; $( U )$ ; confidence 0.999

224. c02211052.png ; $k - m - 1$ ; confidence 0.999

225. e1202102.png ; $m - 1 \geq 0$ ; confidence 0.999

226. v130050124.png ; $x _ { 2 } ^ { - 1 }$ ; confidence 0.999

227. i13006078.png ; $\rho : = \rho ( \lambda )$ ; confidence 0.999

228. c1301507.png ; $D ^ { \prime } ( \Omega )$ ; confidence 0.999

229. w13007032.png ; $( \lambda | \alpha _ { k } ) = ( \lambda | \beta _ { l } ) = 0$ ; confidence 0.999

230. n067520299.png ; $A = \sum \oplus A _ { \alpha }$ ; confidence 0.999

231. d13018077.png ; $H = \Gamma ^ { \perp }$ ; confidence 0.999

232. t12014056.png ; $R ( \phi )$ ; confidence 0.999

233. r13014010.png ; $\lambda \in \sigma ( R )$ ; confidence 0.999

234. k12006025.png ; $h ^ { 1 } ( L ) = 0$ ; confidence 0.999

235. b120210103.png ; $\mu = w ( \mu + \rho ) - \rho$ ; confidence 0.999

236. b11058047.png ; $\partial f ( x )$ ; confidence 0.999

237. f120150137.png ; $F _ { + } ( X , Y )$ ; confidence 0.999

238. b11034029.png ; $V ^ { 2 } = V$ ; confidence 0.999

239. c13007056.png ; $> n ( n - 2 )$ ; confidence 0.999

240. h120070109.png ; $n = 3 ?$ ; confidence 0.999

241. b01566018.png ; $\Delta t = 1$ ; confidence 0.999

242. d13017071.png ; $\Omega _ { 2 }$ ; confidence 0.999

243. t12014016.png ; $T _ { \phi } : H ^ { 2 } \rightarrow H ^ { 2 }$ ; confidence 0.999

244. f13010069.png ; $[ f ]$ ; confidence 0.999

245. w130080197.png ; $f ( u , v , t )$ ; confidence 0.999

246. z13013041.png ; $H ( r , \theta )$ ; confidence 0.999

247. a12026098.png ; $( A , m )$ ; confidence 0.999

248. s12022027.png ; $( M ^ { \prime } , g ^ { \prime } )$ ; confidence 0.999

249. i1300603.png ; $u ( 0 , k ) = 0$ ; confidence 0.999

250. s12026038.png ; $\partial _ { t } ^ { * } + \partial _ { t }$ ; confidence 0.999

251. l1200703.png ; $[ i - 1 , i )$ ; confidence 0.999

252. c120180231.png ; $W ( g ) = 0$ ; confidence 0.999

253. c0215408.png ; $\phi ( x ) \leq f ( x )$ ; confidence 0.999

254. a01412026.png ; $f ^ { \prime }$ ; confidence 0.999

255. h13012010.png ; $d ( h ( x ) , H ( x ) ) < \varepsilon$ ; confidence 0.999

256. r08232031.png ; $r \leq \rho \leq R$ ; confidence 0.999

257. c13015047.png ; $N ( \Omega )$ ; confidence 0.999

258. n06696010.png ; $2 ( n + 2 \lambda )$ ; confidence 0.999

259. e12024013.png ; $G ( \overline { K } / K )$ ; confidence 0.999

260. f12023031.png ; $D : \Omega ( M ) \rightarrow \Omega ( M )$ ; confidence 0.999

261. a130040105.png ; $D$ ; confidence 0.999

262. b12006013.png ; $\epsilon = + 1$ ; confidence 0.999

263. s13040041.png ; $B G = E G / G$ ; confidence 0.999

264. l11002012.png ; $\{ G ; \preceq \}$ ; confidence 0.999

265. f13016033.png ; $\Gamma ( \xi )$ ; confidence 0.999

266. b01501016.png ; $( B , \phi , g )$ ; confidence 0.999

267. b13010065.png ; $z \rightarrow \partial D$ ; confidence 0.999

268. s12018057.png ; $M + M ^ { \perp } = E$ ; confidence 0.999

269. s08667070.png ; $( G , K )$ ; confidence 0.999

270. g13001074.png ; $\gamma \in F ^ { * }$ ; confidence 0.999

271. a130040696.png ; $\square \varphi$ ; confidence 0.999

272. b11058031.png ; $f ( x ) < \infty$ ; confidence 0.999

273. c02325068.png ; $1 \leq k \leq n$ ; confidence 0.999

274. f040850198.png ; $( V , P )$ ; confidence 0.999

275. f12015029.png ; $i ( A + K ) = i ( A )$ ; confidence 0.999

276. h13002026.png ; $A = \{ 0,1,2,3,4 \}$ ; confidence 0.999

277. m12009052.png ; $P ( \xi ) = 1 + | \xi | ^ { 2 N }$ ; confidence 0.999

278. b12014056.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z )$ ; confidence 0.999

279. d1101801.png ; $\rho ( u ) = 1 \quad ( 0 \leq u \leq 1 )$ ; confidence 0.999

280. e1300409.png ; $\Omega ( t ) \psi ( 0 ) = U _ { 0 } ( - t ) U ( t ) \psi ( 0 )$ ; confidence 0.999

281. z13001071.png ; $z ( z - \operatorname { cos } w ) / ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.999

282. l13008016.png ; $\mu : = \operatorname { min } \{ m , n - 1 \}$ ; confidence 0.999

283. f12014072.png ; $\alpha ( \varphi )$ ; confidence 0.999

284. d03294063.png ; $A > 0$ ; confidence 0.999

285. a130040226.png ; $\Gamma \approx \Delta$ ; confidence 0.999

286. d12030033.png ; $( Z ( t ) , t \geq 0 )$ ; confidence 0.999

287. b13019048.png ; $f ^ { \prime \prime } ( x ) / 2$ ; confidence 0.999

288. e120190165.png ; $y \neq p$ ; confidence 0.999

289. a12013039.png ; $\sqrt { n } ( \theta _ { n } - \theta ^ { * } )$ ; confidence 0.999

290. f12009056.png ; $K = \{ 0 \}$ ; confidence 0.999

291. b01643018.png ; $z = 0$ ; confidence 0.999

292. m130230141.png ; $( ( X _ { n } , B _ { n } ) , f _ { n } )$ ; confidence 0.999

293. s13049059.png ; $0 \leq i < j \leq r ( P )$ ; confidence 0.999

294. c13004032.png ; $\zeta ( s ) = \zeta ( s , 1 )$ ; confidence 0.999

295. c11007019.png ; $f \in H ^ { \infty }$ ; confidence 0.999

296. o12006047.png ; $E _ { \Phi } ( \Omega )$ ; confidence 0.999

297. t12014040.png ; $T _ { \phi } f = g$ ; confidence 0.999

298. w120110259.png ; $H ( m , G )$ ; confidence 0.999

299. t13021024.png ; $( w _ { i } , R ) = 0$ ; confidence 0.999

300. c12029027.png ; $B ( \mu )$ ; confidence 0.999

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/5&oldid=44493