Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/4"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 4 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 4 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i05303010.png ; $+ \sigma ^ { 2 } ( t ) f _ { \chi x } ^ { \prime \prime } ( t , X _ { t } ) / 2 ] d t + \sigma ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) d W _ { t }$ ; confidence 0.139
+
1. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011017.png ; $T ( h )$ ; confidence 0.999
  
2. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001042.png ; $\langle D _ { + } \} + \langle D _ { - } \rangle = ( A + A ^ { - 1 } ) ( \langle D _ { 0 } \rangle + \langle D _ { \infty } \rangle )$ ; confidence 0.534
+
2. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011016.png ; $\xi ( \rho ) = 0$ ; confidence 0.999
  
3. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200408.png ; $\Lambda _ { D _ { + } } ( a , x ) + \Lambda _ { D _ { - } } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ( a , x ) + \Lambda _ { D _ { \infty } } ( a , x ) )$ ; confidence 0.657
+
3. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b01545017.png ; $\lambda \rightarrow \infty$ ; confidence 0.999
  
4. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k13004011.png ; $\mathfrak { c } _ { 1 } / \mathfrak { a } _ { 1 } \geq \ldots \geq \mathfrak { c } _ { \mathfrak { N } } / a _ { \mathfrak { X } }$ ; confidence 0.121
+
4. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016013.png ; $m _ { i } = 2 ^ { i - 1 }$ ; confidence 0.999
  
5. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l1200805.png ; $L = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } - 2 i ( x + i y ) \frac { \partial } { \partial t }$ ; confidence 0.997
+
5. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017074.png ; $1 \leq p < \infty$ ; confidence 0.999
  
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001032.png ; $v _ { MAP } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in V } P ( a _ { 1 } , \ldots , a _ { n } | v _ { j } ) P ( v _ { j } )$ ; confidence 0.073
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004023.png ; $= \frac { 1 } { 16 } [ \zeta ( 2 , \frac { 1 } { 4 } ) - \zeta ( 2 , \frac { 3 } { 4 } ) ]$ ; confidence 0.999
  
7. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019024.png ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } ( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } )$ ; confidence 0.674
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211055.png ; $X ^ { 2 } ( \theta )$ ; confidence 0.999
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011042.png ; $= [ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } ( x \frac { d } { d x } - \alpha ; + 1 ) \prod _ { j = 1 } ^ { q } ( x \frac { d } { d x } - b _ { j } ) ]$ ; confidence 0.244
+
8. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150126.png ; $\Phi _ { \pm } ( X , Y )$ ; confidence 0.999
  
9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023068.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.632
+
9. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001058.png ; $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ ; confidence 0.999
  
10. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008065.png ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = h _ { 2 } ( k )$ ; confidence 0.584
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230124.png ; $R ( z , w ) = 1 / ( 1 - z w ^ { * } )$ ; confidence 0.999
  
11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008062.png ; $\sum _ { p \in E , S } \rho _ { p } E [ W _ { p } ] + \sum _ { p \in L } \rho _ { p } ( 1 - \frac { \lambda _ { p } R } { 1 - \rho } ) E [ W _ { p } ] =$ ; confidence 0.142
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008036.png ; $\xi , \eta \in H$ ; confidence 0.999
  
12. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008030.png ; $E [ W _ { p } ] _ { NP } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) }$ ; confidence 0.456
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012510/a01251014.png ; $\zeta \in \partial D$ ; confidence 0.999
  
13. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960301.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t }$ ; confidence 0.636
+
13. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014036.png ; $( n , q ^ { 2 } - 1 ) = 1$ ; confidence 0.999
  
14. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110156.png ; $\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] . d Y _ { 1 } \ldots d Y _ { 2 k }$ ; confidence 0.464
+
14. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010094.png ; $f ( 0 ) = p$ ; confidence 0.999
  
15. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011073.png ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E } ^ { * } , _ { E } - \langle \eta , x \rangle _ { E } ^ { * } , E ^ { \prime }$ ; confidence 0.301
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007012.png ; $\int _ { 0 } ^ { 2 \pi } \theta ( t ) d t = 2 \pi ^ { 2 }$ ; confidence 0.999
  
16. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009061.png ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = ( \sum _ { n = 0 } ^ { \infty } n ! f _ { n } | _ { H } ^ { 2 } \otimes _ { n } ) ^ { 1 / 2 }$ ; confidence 0.471
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a1106101.png ; $U ( 1 )$ ; confidence 0.999
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
+
17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m12004010.png ; $\vec { B } = \mu \vec { H }$ ; confidence 0.999
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201604.png ; $= \sum _ { i } \sum _ { j } \sum _ { t } S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} ) m _ { i } - \sum _ { i } \sum _ { t } u _ { i } ( t )$ ; confidence 0.608
+
18. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202708.png ; $\gamma ( s ) \in \partial \Omega$ ; confidence 0.999
  
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021032.png ; $= \sum _ { i = 1 } ^ { k } ( - 1 ) ^ { i + 1 } X X _ { i } \otimes X _ { 1 } \wedge \ldots \wedge R _ { i } \wedge \ldots \wedge X _ { k } +$ ; confidence 0.072
+
19. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007053.png ; $q ^ { \prime } = ( 1 - \lambda ) q$ ; confidence 0.999
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030084.png ; $g _ { m } ( \eta ) = \int _ { R ^ { N } } g ( y ) e ^ { - i \eta y \overline { \phi } } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }$ ; confidence 0.168
+
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062024.png ; $\int _ { 0 } ^ { \infty } | y ( x , \lambda ) | ^ { 2 } d x < \infty$ ; confidence 0.999
  
21. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029080.png ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189
+
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053085.png ; $1 \leq s \leq n$ ; confidence 0.999
  
22. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026024.png ; $\tau _ { j } ^ { n + 1 } = \frac { u _ { j } ^ { n + 1 } - u _ { j } ^ { n } } { k } - \delta ^ { 2 } ( \frac { u _ { j } ^ { n + 1 } + u _ { j } ^ { n } } { 2 } )$ ; confidence 0.913
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032070.png ; $t \neq 0$ ; confidence 0.999
  
23. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031052.png ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ E ( | l _ { a } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \}$ ; confidence 0.244
+
23. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008059.png ; $\varphi = ( \xi , \eta ) \in B ( G )$ ; confidence 0.999
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
+
24. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007078.png ; $( 1 / 6,2 / 3 )$ ; confidence 0.999
  
25. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060124.png ; $\operatorname { Bel } _ { X } ^ { | Z | } = \operatorname { Bel } _ { Z | Y } \oplus \operatorname { Bel } _ { X } ^ { \perp Y }$ ; confidence 0.063
+
25. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301307.png ; $( \nu \times \epsilon )$ ; confidence 0.999
  
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240119.png ; $H ^ { 1 } ( \overline { Y _ { 1 } ( N ) } ; \operatorname { sym } ^ { k - 2 } R ^ { 1 } \overline { f } \cdot z _ { p } ) \otimes Q _ { p }$ ; confidence 0.344
+
26. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003027.png ; $\operatorname { exp } ( i \alpha ) = \operatorname { cos } \alpha + i \operatorname { sin } \alpha$ ; confidence 0.999
  
27. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026021.png ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.266
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032078.png ; $F ( s , t ) = \operatorname { max } \{ s , t \}$ ; confidence 0.999
  
28. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300703.png ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { x = r } | \frac { \partial v } { \partial r } - i k v | ^ { 2 } d s = 0$ ; confidence 0.581
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220157.png ; $x ^ { 5 } + y ^ { 5 } = 1$ ; confidence 0.999
  
29. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008087.png ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975
+
29. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001060.png ; $( 3 ^ { 5 } )$ ; confidence 0.999
  
30. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300108.png ; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \\ { z ^ { 2 } Q _ { D _ { 0 } } } \end{array} \right.$ ; confidence 0.936
+
30. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100122.png ; $V ( G )$ ; confidence 0.999
  
31. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010016.png ; $T = \{ ( t _ { 1 } , \dots , t _ { m } ) : t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } } , t$ ; confidence 0.104
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142302.png ; $t \rightarrow - \infty$ ; confidence 0.999
  
32. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m1201602.png ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970
+
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015077.png ; $i ( A ) = - \infty$ ; confidence 0.999
  
33. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005011.png ; $\Theta = \left( \begin{array} { l l l } { T } & { K } & { J } \\ { \mathfrak { H } } & { \square } & { E } \end{array} \right)$ ; confidence 0.209
+
33. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002036.png ; $0 < | \alpha | < 1$ ; confidence 0.999
  
34. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006017.png ; $\tilde { \gamma } - \gamma = i ( \sigma _ { 1 } \Phi \Phi ^ { * } \sigma _ { 2 } - \sigma _ { 2 } \Phi \Phi ^ { * } \sigma _ { 1 } )$ ; confidence 0.876
+
34. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460108.png ; $( M \times [ 0,1 ] ; M \times \{ 0 \} , M \times \{ 1 \} )$ ; confidence 0.999
  
35. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030017.png ; $( n + 1 )$ ; confidence 0.999
  
36. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005092.png ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973
+
36. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170130.png ; $M ( \infty )$ ; confidence 0.999
  
37. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007064.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall t \in C ^ { * } , \forall x _ { i } \in E$ ; confidence 0.253
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170154.png ; $M ( n ) \geq 0$ ; confidence 0.999
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020094.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq ( \frac { n } { 2 e ( m + n ) } ) ^ { n } | b _ { 1 } + \ldots + b _ { n } |$ ; confidence 0.775
+
38. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038060/f03806012.png ; $( p \times m )$ ; confidence 0.999
  
39. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020225.png ; $\delta ^ { * } : H ^ { n } ( \Gamma _ { S ^ { n } } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { D \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.232
+
39. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010018.png ; $M = I \times N$ ; confidence 0.999
  
40. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011063.png ; $\operatorname { cosh } ^ { 2 } \pi \frac { b } { l } = 2 , \pi \frac { b } { l } \approx .8814 , \frac { b } { l } \approx .2806$ ; confidence 0.604
+
40. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030023.png ; $B ( m , 2 )$ ; confidence 0.999
  
41. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011028.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } [ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) ] =$ ; confidence 0.578
+
41. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005012.png ; $g ( x ) = h ( x )$ ; confidence 0.999
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008024.png ; $\sim \frac { d \lambda } { \sqrt { \lambda } } + ( \text { holomorphic } ) , \text { as } \lambda \rightarrow \infty$ ; confidence 0.601
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034064.png ; $\{ z : | z | < 1 / 3 \}$ ; confidence 0.999
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008067.png ; $\psi = \frac { \operatorname { exp } ( \sum t _ { n } \lambda ^ { n } ) \tau ( t j - ( 1 / j \lambda ^ { j } ) ) } { \tau ( t _ { j } ) }$ ; confidence 0.314
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008026.png ; $V = H ^ { 1 } ( \Omega )$ ; confidence 0.999
  
44. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022100/c02210019.png ; $P \{ \chi _ { n } ^ { 2 } < x \} \rightarrow \Phi ( \sqrt { 2 x } - \sqrt { 2 n - 1 } ) \quad \text { as } n \rightarrow \infty$ ; confidence 0.544
+
44. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k12002012.png ; $C _ { 1 } ( M ) > 0$ ; confidence 0.999
  
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180219.png ; $h \otimes \dot { k } = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in S ^ { 2 } E \otimes S ^ { 2 } E$ ; confidence 0.410
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026230/c02623062.png ; $| z | > 1$ ; confidence 0.999
  
46. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png ; $\times \operatorname { exp } \{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( x ) } \frac { e ^ { s } - 1 } { s } d s \} \quad ( u > 1 )$ ; confidence 0.788
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070114.png ; $1 < p < \infty$ ; confidence 0.999
  
47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015017.png ; $( v , k , \lambda , n ) = ( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } )$ ; confidence 0.823
+
47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003024.png ; $\sqrt { \varphi ( z ) } d z$ ; confidence 0.999
  
48. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012097.png ; $\Sigma ^ { ( t + 1 ) } = \frac { 1 } { n } \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T }$ ; confidence 0.835
+
48. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301302.png ; $r = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }$ ; confidence 0.999
  
49. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008097.png ; $\| \square ^ { t } M _ { \varphi } \| _ { cb } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 0.611
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028017.png ; $L = \frac { 1 } { 2 } ( 2 \pi ) ^ { - 1 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 }$ ; confidence 0.999
  
50. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021096.png ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda } 2 + \ldots$ ; confidence 0.458
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030014.png ; $( B ( t ) , t \geq 0 )$ ; confidence 0.999
  
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302801.png ; $\left\{ \begin{array} { l l } { \operatorname { min } } & { c ^ { T } x } \\ { s.t. } & { A x \leq b } \end{array} \right.$ ; confidence 0.169
+
51. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150117.png ; $F ( \Omega )$ ; confidence 0.999
  
52. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001033.png ; $\overline { d } _ { \chi } ^ { G } ( A ) \geq \operatorname { det } ( A ) = \overline { d } _ { \langle 1 ^ { n } } \rangle ( A )$ ; confidence 0.382
+
52. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200107.png ; $\gamma = 0$ ; confidence 0.999
  
53. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110127.png ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + v . \nabla$ ; confidence 0.611
+
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055061.png ; $t \in f ( M )$ ; confidence 0.999
  
54. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016016.png ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } ( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) )$ ; confidence 0.925
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008062.png ; $L ^ { 2 } ( \Omega ) \times ( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.999
  
55. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006048.png ; $\sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2$ ; confidence 0.892
+
55. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011033.png ; $w ( r ) > w ( r + 1 ) < w ( r + 2 ) <$ ; confidence 0.999
  
56. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060106.png ; $E ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma } )$ ; confidence 0.601
+
56. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180110.png ; $B ( g ) = 0$ ; confidence 0.999
  
57. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008022.png ; $\sum _ { p = 1 } ^ { P } \rho _ { p } E [ W _ { p } ] = \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) }$ ; confidence 0.956
+
57. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005011.png ; $f ( t ) = \epsilon$ ; confidence 0.999
  
58. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007059.png ; $| u ( y ) | \leq \sum _ { j = 1 } ^ { \infty } | u _ { j } , \varphi _ { j } ( y ) | \leq c \Lambda \| _ { V } \| = c \Lambda \| u \| _ { + }$ ; confidence 0.136
+
58. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066056.png ; $0 < \gamma \leq 1$ ; confidence 0.999
  
59. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080128.png ; $\int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x )$ ; confidence 0.959
+
59. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300404.png ; $y ( 0 ) = 1$ ; confidence 0.999
  
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201
+
60. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n1300708.png ; $\mu ( A \cup B ) - \mu ( B )$ ; confidence 0.999
  
61. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026052.png ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660
+
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200180.png ; $G _ { 1 } ( r ) \leq - B$ ; confidence 0.999
  
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200204.png ; $M = \frac { 1 } { 3 ( n + k ) } ( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } ) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) / 1 + \pi / k ) }$ ; confidence 0.420
+
62. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004013.png ; $\leq n - 1$ ; confidence 0.999
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110239.png ; $a _ { n } ^ { * } b = a b + S ( m _ { 1 } m _ { 2 } H , G ) , a _ { * } ^ { * } b = a b + \frac { 1 } { 2 \iota } \{ a , b \} + S ( m _ { 1 } m _ { 2 } H ^ { 2 } , G )$ ; confidence 0.076
+
63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012069.png ; $\theta = ( \mu , \Sigma )$ ; confidence 0.999
  
64. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008035.png ; $\frac { \partial \overline { u } } { \partial T } = \overline { u } \frac { \partial \overline { u } } { \partial X }$ ; confidence 0.723
+
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006059.png ; $T _ { A } ( M \times M ^ { \prime } )$ ; confidence 0.999
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009040.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes \cdots \otimes \sim h _ { n } )$ ; confidence 0.271
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026085.png ; $g ( x ) = x$ ; confidence 0.999
  
66. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001030.png ; $( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }$ ; confidence 0.910
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150105.png ; $p = 1 / 2$ ; confidence 0.999
  
67. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008043.png ; $R _ { k + l } ^ { k - l } ( r _ { s } \alpha ) = \frac { l ! } { ( \alpha + 1 ) _ { l } } r ^ { k - l } P _ { l } ^ { ( \alpha , k - l ) } ( 2 r ^ { 2 } - 1 )$ ; confidence 0.078
+
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005059.png ; $( T ^ { 2 } + T ) g ( T ) + 1$ ; confidence 0.999
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020049.png ; $\mathfrak { p } _ { i } ( t ) = \prod _ { m = 1 , m \neq i } ^ { n } \frac { t - t _ { m } } { t _ { i } - t _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.337
+
68. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800141.png ; $0 < \theta < \pi$ ; confidence 0.999
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009046.png ; $\int _ { - \frac { \pi } { 2 } } ^ { \xi } \frac { 1 - a i } { s } d s = \operatorname { ln } ( \frac { \xi } { z } ) ^ { 1 - \alpha i }$ ; confidence 0.062
+
69. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e1100502.png ; $| f | \leq 1$ ; confidence 0.999
  
70. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220136.png ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184
+
70. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007052.png ; $f ^ { \prime } ( M + N ) = A$ ; confidence 0.999
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220102.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f } n - - f ^ { n - } )$ ; confidence 0.437
+
71. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300409.png ; $\phi ( 0 ) = x$ ; confidence 0.999
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029061.png ; $[ ( \alpha _ { 1 } , \dots , \alpha _ { t - 1 } ) : \alpha _ { i } ] / ( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) , 1 \leq i \leq d$ ; confidence 0.063
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026081.png ; $( R , m )$ ; confidence 0.999
  
73. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201201.png ; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi$ ; confidence 0.933
+
73. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004042.png ; $\Delta ( G ) \geq 3 n / 4$ ; confidence 0.999
  
74. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007036.png ; $= \{ x _ { 1 } , \ldots , x _ { m } | x ^ { l } x ^ { k _ { i } + 1 } = x ^ { l _ { i + 2 } } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.055
+
74. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090178.png ; $B = T U$ ; confidence 0.999
  
75. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024043.png ; $\left( \begin{array} { c c } { L ( \alpha , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , \alpha ) } \end{array} \right)$ ; confidence 0.503
+
75. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002020.png ; $22$ ; confidence 0.999
  
76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210105.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } p _ { i } ( \lambda + k ) z ^ { \lambda + k } =$ ; confidence 0.962
+
76. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005086.png ; $- 1 / \sigma ^ { 2 }$ ; confidence 0.999
  
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021082.png ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941
+
77. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031019.png ; $h ( \lambda ) = g ( f ( \lambda ) )$ ; confidence 0.999
  
78. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021068.png ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412050.png ; $> 4$ ; confidence 0.999
  
79. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120131.png ; $\hat { \tau } 1 = \nabla \tau , \hat { \tau } _ { n } = \sum _ { i + j = n } \phi ( \hat { \tau } _ { i } \cup \hat { \tau } _ { j } )$ ; confidence 0.119
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018082.png ; $( g _ { \alpha } )$ ; confidence 0.999
  
80. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h0480703.png ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) - ( n + 1 ) / 2 } { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } }$ ; confidence 0.280
+
80. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014015.png ; $R - \lambda$ ; confidence 0.999
  
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004024.png ; $A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }$ ; confidence 0.856
+
81. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090100.png ; $\Gamma ( \wedge A )$ ; confidence 0.999
  
82. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300401.png ; $\frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x )$ ; confidence 0.880
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170113.png ; $M ( n + 1 )$ ; confidence 0.999
  
83. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060160.png ; $F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } ( \int _ { x } ^ { \infty } q ( t ) d t ^ { 2 } ) \leq c \sigma ^ { 2 } ( x )$ ; confidence 0.469
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327024.png ; $r ( A )$ ; confidence 0.999
  
84. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090100.png ; $\lambda ( X ) = \sum _ { i = 1 } ^ { S } \operatorname { deg } ( f _ { i } ( T ) ^ { l _ { i } } ) , \mu ( X ) = \sum _ { j = 1 } ^ { t } m _ { j }$ ; confidence 0.332
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300125.png ; $B ( m , n , i )$ ; confidence 0.999
  
85. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004098.png ; $P _ { K _ { + } } ( v , z ) - P _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 0.497
+
85. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001028.png ; $( D )$ ; confidence 0.999
  
86. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004035.png ; $( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584
+
86. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060176.png ; $A ( x , y ) = 0$ ; confidence 0.999
  
87. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008047.png ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }$ ; confidence 0.162
+
87. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150109.png ; $i ( F + K ) = i ( F )$ ; confidence 0.999
  
88. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003041.png ; $L ^ { \prime } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : | \mu | \leq \sum _ { i = 1 } ^ { n } \alpha _ { i } P _ { i }$ ; confidence 0.490
+
88. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005040.png ; $( | G | , | A | ) = 1$ ; confidence 0.999
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006039.png ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0$ ; confidence 0.504
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110350/c11035022.png ; $\gamma \in \Gamma$ ; confidence 0.999
  
90. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004025.png ; $\operatorname { lim } _ { k \rightarrow \infty } g _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) }$ ; confidence 0.356
+
90. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068070/o068070125.png ; $p ( x , y ) = x$ ; confidence 0.999
  
91. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007060.png ; $L = \{ u \in \operatorname { PSH } ( C ^ { n } ) : u - \operatorname { log } ( 1 + | z | ) = O ( 1 ) ( z \rightarrow \infty ) \}$ ; confidence 0.077
+
91. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759042.png ; $\square ( A )$ ; confidence 0.999
  
92. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007072.png ; $\operatorname { cap } ( E ) = \operatorname { exp } ( - \operatorname { sup } _ { z \in C ^ { n } } \rho _ { L _ { E } } ( z ) )$ ; confidence 0.634
+
92. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015022.png ; $i ( B A ) = i ( B ) + i ( A )$ ; confidence 0.999
  
93. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001032.png ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( . ) )$ ; confidence 0.418
+
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020077.png ; $m \in [ 1 , n - 1 ]$ ; confidence 0.999
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s1200208.png ; $g ( x ; t ) = \frac { 1 } { ( 2 \pi t ) ^ { N / 2 } } \operatorname { exp } ( - \frac { x _ { 1 } ^ { 2 } + \ldots + x _ { N } ^ { 2 } } { 2 t } )$ ; confidence 0.958
+
94. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025036.png ; $\varphi \in D ( \Omega )$ ; confidence 0.999
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040028.png ; $\sum _ { l = 0 } \operatorname { dim } H ^ { i } ( X , Z / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , Z / p )$ ; confidence 0.266
+
95. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005041.png ; $h ( w ) , h ^ { 2 } ( w )$ ; confidence 0.999
  
96. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305005.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n$ ; confidence 0.367
+
96. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602015.png ; $Y ( s ) = G ( s ) X ( s )$ ; confidence 0.999
  
97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020060.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814
+
97. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006034.png ; $- \int _ { 0 } ^ { \infty } y ( t ) f ( t ) d t$ ; confidence 0.999
  
98. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960409.png ; $\left( \begin{array} { c c c } { 1 } & { \ldots } & { ( m + n ) } \\ { s ( 1 ) } & { \cdots } & { s ( m + n ) } \end{array} \right)$ ; confidence 0.832
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201404.png ; $\{ a _ { n } \}$ ; confidence 0.999
  
99. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004032.png ; $\omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta$ ; confidence 0.994
+
99. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w1200203.png ; $( U , d )$ ; confidence 0.999
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005034.png ; $\operatorname { lim } _ { t \rightarrow S } U ( t , s ) u _ { 0 } = u _ { 0 } \text { for } u _ { 0 } \in \overline { D ( A ( s ) ) }$ ; confidence 0.064
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110340/a1103403.png ; $y ( t )$ ; confidence 0.999
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007072.png ; $\| \frac { \partial } { \partial t } ( \lambda - A ( t ) ) ^ { - 1 } \| \leq \frac { K _ { 1 } } { ( 1 + | \lambda | ) ^ { \rho } }$ ; confidence 0.985
+
101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002018.png ; $A \cup \{ t \}$ ; confidence 0.999
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939
+
102. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017069.png ; $\omega ( G ) = \cap _ { p } \omega ^ { p } ( G )$ ; confidence 0.999
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220205.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { M } ^ { i + 1 } ( X , Q ( m ) ) _ { Z } ^ { 0 }$ ; confidence 0.272
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300162.png ; $B ( \infty , n )$ ; confidence 0.999
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200176.png ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in h ^ { * } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }$ ; confidence 0.461
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018058.png ; $1 \leq j \leq k$ ; confidence 0.999
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042039.png ; $V _ { 1 } \otimes \ldots \otimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \otimes \ldots \otimes V _ { \sigma ( n ) }$ ; confidence 0.500
+
105. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012023.png ; $f \nabla$ ; confidence 0.999
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029035.png ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586
+
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002040.png ; $f = F ^ { \prime }$ ; confidence 0.999
  
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002050.png ; $( V _ { g } f ) ( \theta , t ) = ( 2 \pi t ) ^ { - 1 } \int _ { S ^ { 2 } } f ( \sigma ) g ( \frac { 1 - \theta , \sigma } { t } ) d \sigma$ ; confidence 0.841
+
107. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007035.png ; $f ( n ) = ( t / 2 \pi ) \operatorname { log } n$ ; confidence 0.999
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008093.png ; $+ \left[ \begin{array} { l l } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } 4 } \end{array} \right] T _ { p - l , q - 1 } =$ ; confidence 0.854
+
108. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002073.png ; $A ^ { * } = 0$ ; confidence 0.999
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003033.png ; $C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) \not A ^ { 2 } ( \Gamma \backslash G ( R ) \otimes M _ { C } )$ ; confidence 0.051
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008073.png ; $- \infty < x < \infty$ ; confidence 0.999
  
110. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007045.png ; $\ll \frac { N ^ { 2 } } { H } + \frac { N } { H } \sum _ { 1 \leq k \leq H } | _ { M < n \leq M + N - k } e ^ { 2 \pi i ( f ( n + k ) - f ( n ) ) } |$ ; confidence 0.073
+
110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260135.png ; $\sigma : X \rightarrow M ( A )$ ; confidence 0.999
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021033.png ; $c _ { j } ( \lambda ) = - \sum _ { k = 0 } ^ { j - 1 } \frac { c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) } { \pi ( \lambda + j ) }$ ; confidence 0.551
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015071.png ; $\Phi _ { - } ( X , Y )$ ; confidence 0.999
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021087.png ; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z )$ ; confidence 0.362
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111060/b11106014.png ; $\{ R \}$ ; confidence 0.999
  
113. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005059.png ; $H ( \theta , \Theta _ { 0 } ) = \operatorname { inf } \{ H ( \theta , \theta _ { 0 } ) : \theta _ { 0 } \in \Theta _ { 0 } \}$ ; confidence 0.965
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109204.png ; $- \infty < f ( x ) \leq \infty$ ; confidence 0.999
  
114. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002041.png ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977
+
114. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015092.png ; $T \in B ( X , Y )$ ; confidence 0.999
  
115. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663030.png ; $\| \Delta _ { h _ { i } } ^ { 2 } f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } \| _ { L _ { p } ( \Omega _ { 2 k _ { i } } | ) } \leq M _ { i } | h _ { i } |$ ; confidence 0.114
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017590/b0175908.png ; $h ( t )$ ; confidence 0.999
  
116. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001027.png ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta$ ; confidence 0.411
+
116. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007052.png ; $c ( y ) > 0$ ; confidence 0.999
  
117. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005084.png ; $\left\{ \begin{array} { l } { x _ { n } + 1 = T x _ { n } + F u _ { n } } \\ { v _ { n } = G x _ { n } + H u _ { n } } \end{array} \right.$ ; confidence 0.296
+
117. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007022.png ; $\{ 0 \} \cup \{ m \} \cup [ m + \epsilon , \infty )$ ; confidence 0.999
  
118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050108.png ; $\sigma _ { T } ( A , X ) = \{ ( a _ { i } ^ { ( 1 ) } , \ldots , \alpha _ { i } ^ { ( n ) } ) : 1 \leq i \leq \operatorname { dim } X \}$ ; confidence 0.117
+
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584080.png ; $f , g \in L _ { 2 } ( \sigma )$ ; confidence 0.999
  
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013027.png ; $W _ { 1 } ( x , y ) W _ { 1 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } = W _ { 2 } ( x , y ) W _ { 2 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 }$ ; confidence 0.996
+
119. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690092.png ; $\phi ( T _ { \alpha } )$ ; confidence 0.999
  
120. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070102.png ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200
+
120. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012040.png ; $\int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x < \infty$ ; confidence 0.999
  
121. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011065.png ; $\psi ) _ { L ^ { 2 } ( R ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( R ^ { n } ) } = ( H ( u , v ) , H ( \psi , \varphi ) ) _ { L ^ { 2 } ( R ^ { 2 n } ) }$ ; confidence 0.428
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014046.png ; $\frac { 1 } { \lambda } \geq | 1 - \alpha |$ ; confidence 0.999
  
122. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080108.png ; $d S _ { S W } = d \hat { \Omega } _ { 1 } = \lambda ( \frac { d w } { W } ) = \lambda \frac { d P } { y } = \lambda \frac { d y } { P }$ ; confidence 0.555
+
122. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180125.png ; $P \backslash \{ 0,1 \}$ ; confidence 0.999
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030030.png ; $B ( m , 3 )$ ; confidence 0.999
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a1200707.png ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in C : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681
+
124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004062.png ; $\{ z : r ( z ) < 0 \}$ ; confidence 0.999
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006089.png ; $\Rightarrow ( \mu I - A ) ^ { - 1 } \cdot E x = x \Rightarrow \| ( \mu I - A ) ^ { - 1 } \cdot E \| \cdot \| x \| \geq \| x \|$ ; confidence 0.265
+
125. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021039.png ; $\psi ( K ) = \lambda [ K - s ( K ) ] + s ( K )$ ; confidence 0.999
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \cdot f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) \overline { g ^ { ( k ) } ( z ) }$ ; confidence 0.273
+
126. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065071.png ; $w ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.999
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012028.png ; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { R } f _ { h } ( \frac { x - u } { N } ) d \mu ( u )$ ; confidence 0.370
+
127. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023042.png ; $( n \times r )$ ; confidence 0.999
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030032.png ; $A = - \sum _ { k , 1 = 1 } ^ { N } \frac { \partial } { \partial y _ { k } } ( a _ { k l } ( y ) \frac { \partial } { \partial y } )$ ; confidence 0.226
+
128. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007012.png ; $t \in ( 0 , \pi )$ ; confidence 0.999
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220112.png ; $\rho _ { \operatorname { max } } = \operatorname { sup } \{ \rho = \rho ( B ) : T \text { star shaped w. } r . t . B \}$ ; confidence 0.067
+
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003051.png ; $R ^ { \prime } = f ( R )$ ; confidence 0.999
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001015.png ; $B _ { i } ( x _ { m } , u , u _ { m } , u _ { m n } : x _ { m } ^ { \prime } , u ^ { \prime } , u _ { m } ^ { \prime } , u _ { m n } ^ { \prime } ) = 0$ ; confidence 0.231
+
130. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023082.png ; $\phi ( E ) \geq 2$ ; confidence 0.999
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007013.png ; $\{ M ( \alpha ) \text { pr } _ { \text { dom } \alpha } - \text { pr codom } \alpha \} \alpha \quad \text { for } n = 0$ ; confidence 0.112
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062093.png ; $\mu ( \{ \lambda \} ) > 0$ ; confidence 0.999
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009020.png ; $a _ { n } = \frac { 2 } { N } \frac { 1 } { \vec { c } _ { n } } \sum _ { j = 0 } ^ { N } u ( x _ { j } ) \frac { T _ { n } ( x _ { j } ) } { c _ { j } }$ ; confidence 0.142
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027093.png ; $\{ Z ( t ) : t \geq 0 \}$ ; confidence 0.999
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021019.png ; $\| P _ { n } - P _ { n } ^ { \prime } \| = 2 \operatorname { sup } \{ | P _ { n } ( A ) - P _ { n } ^ { \prime } ( A ) | : A \in A _ { n } \}$ ; confidence 0.858
+
133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009023.png ; $d ( u , \phi )$ ; confidence 0.999
  
134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
134. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010021.png ; $( \varphi \vee \psi )$ ; confidence 0.999
  
135. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002063.png ; $x = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot x ^ { ( k ) }$ ; confidence 0.156
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050142.png ; $G ( n )$ ; confidence 0.999
  
136. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
136. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300606.png ; $\delta = \delta ( k )$ ; confidence 0.999
  
137. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015021.png ; $\frac { D \dot { x } ^ { 2 } } { d t } = \varepsilon ^ { i } = \frac { 1 } { 2 } g ^ { i } \cdot r \dot { x } \square ^ { r } - g ^ { i }$ ; confidence 0.148
+
137. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010108.png ; $\tau ( W , M _ { 0 } ) = \tau$ ; confidence 0.999
  
138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021040.png ; $p _ { M } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427
+
138. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006087.png ; $\delta ( k )$ ; confidence 0.999
  
139. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005021.png ; $+ \frac { \Gamma ( 1 - \alpha - \beta ) } { 2 \Gamma ( 1 - \alpha ) \Gamma ( 1 - \beta ) } ( y - x ) ^ { t - \alpha - \beta }$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210111.png ; $( D , \delta )$ ; confidence 0.999
  
140. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027014.png ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \}$ ; confidence 0.765
+
140. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007028.png ; $V = \lambda U$ ; confidence 0.999
  
141. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060121.png ; $\sigma ( B ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.135
+
141. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027015.png ; $\gamma = \operatorname { max } \{ \alpha , \beta \}$ ; confidence 0.999
  
142. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043380/g04338013.png ; $( \frac { \partial f ( x _ { 0 } ) } { \partial x _ { 1 } } , \ldots , \frac { \partial f ( x _ { 0 } ) } { \partial x _ { n } } )$ ; confidence 0.541
+
142. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005010.png ; $[ \lambda ; n ] = \Gamma ( \lambda + n ) / \Gamma ( \lambda )$ ; confidence 0.999
  
143. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { n } ^ { b } f ( x ) d g _ { n } ( x ) = \int _ { n } ^ { b } f ( x ) d g ( x )$ ; confidence 0.327
+
143. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008011.png ; $t + d t$ ; confidence 0.999
  
144. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
144. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011050.png ; $f \in C ( \partial \Omega )$ ; confidence 0.999
  
145. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009050.png ; $\delta _ { p } ( k ) = \operatorname { rank } _ { Z } E _ { 1 } ( k ) - \operatorname { rank } _ { Z _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026054.png ; $y \in \Omega$ ; confidence 0.999
  
146. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040110.png ; $\frac { P _ { L } ( v , z ) - P _ { T } \operatorname { com } ( L ) ( v , z ) } { z ( ( \frac { v ^ { - 1 } - v } { z } ) ^ { 2 } - 1 ) } \equiv$ ; confidence 0.460
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a1200501.png ; $\frac { d u ( t ) } { d t } = A ( t ) u ( t ) + f ( t ) , \quad 0 < t \leq T$ ; confidence 0.999
  
147. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012065.png ; $\int _ { - \infty } ^ { \infty } [ \frac { - \operatorname { ln } F _ { a c } ^ { \prime } ( x ) } { 1 + x ^ { 2 } } ] d x < \infty$ ; confidence 0.394
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080121.png ; $B ( G , G )$ ; confidence 0.999
  
148. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003043.png ; $L _ { 3 } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : \mu \perp \sigma \text { for all } \sigma \perp P \}$ ; confidence 0.597
+
148. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002069.png ; $\varphi ( n )$ ; confidence 0.999
  
149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003035.png ; $\operatorname { Map } ( X \times Z , Y ) \rightarrow \operatorname { Map } ( X , \operatorname { Map } ( Z , Y ) )$ ; confidence 0.873
+
149. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222038.png ; $( h , m , n ) ^ { 2 }$ ; confidence 0.999
  
150. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005057.png ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.918
+
150. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006024.png ; $m ( A ) > 0$ ; confidence 0.999
  
151. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026039.png ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.978
+
151. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011091.png ; $( i + d ) \mu ( i )$ ; confidence 0.999
  
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007075.png ; $\phi h = \sum h ( 2 ) \phi ( 2 ) \langle S h _ { ( 1 ) } , \phi _ { ( 1 ) } \rangle \langle h _ { ( 3 ) } , \phi _ { ( 3 ) } \rangle$ ; confidence 0.126
+
152. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002033.png ; $R \in K ( X )$ ; confidence 0.999
  
153. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008063.png ; $= \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) } + \rho \frac { \Delta ^ { 2 } } { 2 R } +$ ; confidence 0.881
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137066.png ; $f ( x _ { 0 } ) = 0$ ; confidence 0.999
  
154. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011027.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) )$ ; confidence 0.930
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016063.png ; $[ s ( n ) ]$ ; confidence 0.999
  
155. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020030.png ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | \xi | = \eta } f ( z ) \overline { g ( z ) } d s$ ; confidence 0.330
+
155. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620179.png ; $( n , n + 1 ]$ ; confidence 0.999
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006060.png ; $P _ { R } ^ { \dagger f } ( n ) = \frac { 1 } { n } q ^ { n } + O ( \frac { 1 } { n } q ^ { n / 2 } ) \text { as } n \rightarrow \infty$ ; confidence 0.118
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008015.png ; $f ( x , t )$ ; confidence 0.999
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007078.png ; $\rightarrow \infty \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b1201304.png ; $0 < p < \infty$ ; confidence 0.999
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017020.png ; $p ( \alpha , t ) = \operatorname { coo } ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) ( 1 + \Omega ( t - \alpha ) )$ ; confidence 0.337
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002057.png ; $b ( u , u ) < 0$ ; confidence 0.999
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302307.png ; $\operatorname { lim } _ { n \rightarrow \infty } ( P Q ) ^ { n } f = P _ { U } \cap _ { V } f ^ { f } \text { for all } f \in H$ ; confidence 0.534
+
159. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002060.png ; $M = M ( q , \varepsilon )$ ; confidence 0.999
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006011.png ; $\frac { \partial ^ { 2 } w } { \partial z \partial z } + \epsilon \frac { n ( n + 1 ) } { ( 1 + \epsilon z z ) ^ { 2 } } w = 0$ ; confidence 0.999
+
160. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010071.png ; $\{ y \}$ ; confidence 0.999
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029070.png ; $( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) : a _ { i } \alpha _ { j } = ( \alpha _ { 1 } , \dots , a _ { i - 1 } ) : \alpha _ { j }$ ; confidence 0.074
+
161. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027090/c02709039.png ; $n - m - 1$ ; confidence 0.999
  
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019025.png ; $( n , k )$ ; confidence 0.999
  
163. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221108.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ X ^ { 2 } \leq x | H _ { 0 } \} = P \{ \chi _ { k - 1 } ^ { 2 } \leq x \}$ ; confidence 0.342
+
163. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009035.png ; $G ( \tau )$ ; confidence 0.999
  
164. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012380/a01238019.png ; $2 n - 1$ ; confidence 0.999
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010044.png ; $\int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \wedge m ( A \cap F _ { \alpha } ) ]$ ; confidence 0.251
+
165. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062690/m062690149.png ; $E ( x , t )$ ; confidence 0.999
  
166. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002047.png ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : c ^ { T } _ { \overline { X } } ( k ) + u _ { 1 } A _ { 1 } x ^ { ( k ) } \geq 0 \text { for all } k \in R \}$ ; confidence 0.074
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016044.png ; $f ( u )$ ; confidence 0.999
  
167. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024018.png ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a120250101.png ; $2 \leq n \leq q - 1$ ; confidence 0.999
  
168. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028069.png ; $d z = d z _ { 1 } \wedge \ldots \wedge d z _ { n } , \quad \langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.372
+
168. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025030.png ; $( f u , v )$ ; confidence 0.999
  
169. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120101.png ; $= Q ( \theta | \theta ^ { ( t ) } ) - \int \operatorname { log } f ( \phi | \theta ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.979
+
169. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100606.png ; $D \Delta ^ { 2 } w - h [ \Phi , w ] = f$ ; confidence 0.999
  
170. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024034.png ; $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ ; confidence 0.896
+
170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070121.png ; $m ( T ) < \infty$ ; confidence 0.999
  
171. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021093.png ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583
+
171. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070139.png ; $k ( C ) = k ( x , y )$ ; confidence 0.999
  
172. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200107.png ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974
+
172. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008060.png ; $h ( t , p ) \in L ^ { 2 } ( T , d m )$ ; confidence 0.999
  
173. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005085.png ; $R _ { - } ( x ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( - k ) \frac { a ( - k ) } { a ( k ) } e ^ { - i k x } d k$ ; confidence 0.742
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014040.png ; $\Gamma _ { l } = ( X , R _ { l } )$ ; confidence 0.999
  
174. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300604.png ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty$ ; confidence 0.494
+
174. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007054.png ; $m ( P ) \geq \operatorname { log } \theta _ { 0 }$ ; confidence 0.999
  
175. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j1300101.png ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z )$ ; confidence 0.280
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012039.png ; $2 - ( 4 \mu - 1,2 \mu - 1 , \mu - 1 )$ ; confidence 0.999
  
176. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020131.png ; $( f , h ) \mapsto \int _ { \partial D } u ( e ^ { i \vartheta } ) h ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.956
+
176. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002055.png ; $b ( u , u ) > 0$ ; confidence 0.999
  
177. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578013.png ; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819
+
177. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015048.png ; $\eta \rightarrow \pi ^ { \prime } ( \eta ) \xi$ ; confidence 0.999
  
178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010076.png ; $\sum _ { j \geq 1 } \int _ { R ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.829
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430114.png ; $\alpha \delta - q ^ { 2 } \gamma \beta = 1$ ; confidence 0.999
  
179. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007040.png ; $\left\{ \begin{array} { c } { M ( u ) = \phi \quad \text { on } D , } \\ { u | \partial D = f } \end{array} \right.$ ; confidence 0.053
+
179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002062.png ; $A , B \in S$ ; confidence 0.999
  
180. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010033.png ; $\operatorname { log } | P ( z ) | \leq \int _ { K } \operatorname { log } | P ( \zeta ) | d \mu _ { z } ( \zeta ) , P \in P$ ; confidence 0.994
+
180. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001056.png ; $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ ; confidence 0.999
  
181. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232011.png ; $E _ { 2 } ( | x - y | ) = \operatorname { ln } \frac { 1 } { | x - y | } , \quad E _ { n } ( | x - y | ) = \frac { 1 } { | x - y | ^ { n - 2 } }$ ; confidence 0.148
+
181. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015086.png ; $A \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.999
  
182. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059044.png ; $L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }$ ; confidence 0.987
+
182. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005060.png ; $H ( \theta , \theta _ { 0 } )$ ; confidence 0.999
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306501.png ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta } \overline { g ( e ^ { i \theta } ) } d \mu ( \theta )$ ; confidence 0.405
+
183. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001077.png ; $0 < k < m$ ; confidence 0.999
  
184. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } P.V. \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s ( a.e. )$ ; confidence 0.566
+
184. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005022.png ; $\Omega = \{ 1,2,3,4 \}$ ; confidence 0.999
  
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015027.png ; $( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007034.png ; $52$ ; confidence 0.999
  
186. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200205.png ; $\times \operatorname { min } _ { h _ { 1 } \leq j \leq h _ { 2 } } | \operatorname { Re } ( b _ { 1 } + \ldots + b _ { j } ) |$ ; confidence 0.857
+
186. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003096.png ; $\Omega = [ 0,1 ]$ ; confidence 0.999
  
187. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020044.png ; $\frac { | g _ { 1 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } , \frac { | g _ { 2 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } \quad ( k \in S )$ ; confidence 0.491
+
187. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009034.png ; $m ( \xi ) = 1 + \xi ^ { 2 }$ ; confidence 0.999
  
188. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566
+
188. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001013.png ; $\delta \theta _ { 0 }$ ; confidence 0.999
  
189. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130080/v13008026.png ; $\| f + VMOA \| _ { * } \leq C \operatorname { limsup } _ { C \in T } \sqrt { \operatorname { area } ( K _ { \zeta } ) }$ ; confidence 0.532
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009035.png ; $m ( \xi )$ ; confidence 0.999
  
190. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020208.png ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982
+
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020030.png ; $f = \theta g$ ; confidence 0.999
  
191. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004042.png ; $d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }$ ; confidence 0.871
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019022.png ; $r = 2,3,4$ ; confidence 0.999
  
192. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p$ ; confidence 0.795
+
192. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003040.png ; $V ( T , F _ { \theta } )$ ; confidence 0.999
  
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020027.png ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$ ; confidence 0.912
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370113.png ; $A = C ( X )$ ; confidence 0.999
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040243.png ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585
+
194. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005022.png ; $10 ^ { - 8 }$ ; confidence 0.999
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { C } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty$ ; confidence 0.274
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023064.png ; $V = C ( T )$ ; confidence 0.999
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070110.png ; $\{ u \in \cap _ { q \in ( R , \infty ) } W ^ { 2 m , q } ( \Omega ) : B _ { j } ( t , . , D _ { x } ) u \in C ( \overline { \Omega } )$ ; confidence 0.067
+
196. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002021.png ; $G ( k , n )$ ; confidence 0.999
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303203.png ; $E _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n P _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } P _ { \theta } ( N > n )$ ; confidence 0.828
+
197. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005035.png ; $\varphi ( 2 u ) \leq K \varphi ( u )$ ; confidence 0.999
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010035.png ; $= \sum _ { n = 0 } ^ { \infty } \int d x _ { s } + 1 \cdots d x _ { s } + n U ^ { ( n ) } t F _ { s } + n ( 0 , x _ { 1 } , \dots , x _ { s } + n )$ ; confidence 0.060
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049033.png ; $\{ E _ { n } \}$ ; confidence 0.999
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022033.png ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200
+
199. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240309.png ; $\mu ^ { \prime }$ ; confidence 0.999
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032090.png ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
+
200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015041.png ; $\xi \rightarrow \pi ( \xi ) \eta$ ; confidence 0.999
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004071.png ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } ; d \overline { \zeta } [ j ] \wedge d \zeta$ ; confidence 0.413
+
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020019.png ; $W = ( M \times ( 0,1 ] , J )$ ; confidence 0.999
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020123.png ; $\vec { c } _ { t } ^ { 1 } = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q } < 0$ ; confidence 0.098
+
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015027.png ; $f _ { X , Y } ( X , Y ) \geq 0$ ; confidence 0.999
  
203. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015024.png ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188
+
203. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009089.png ; $g \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.999
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028067.png ; $w _ { j } = \frac { \Phi ^ { \prime z _ { j } } } { \langle \operatorname { grad } _ { z } \Phi , z \} } , j = 1 , \ldots , n$ ; confidence 0.129
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013052.png ; $1 / p + 1 / q = 1$ ; confidence 0.999
  
205. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006052.png ; $h ( z ) ^ { - 1 }$ ; confidence 0.999
  
206. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e1201207.png ; $Q ( \theta | \theta ^ { ( t ) } ) = \int \operatorname { log } f ( \theta , \phi ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.989
+
206. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018065.png ; $\mu ( 0,1 ) = \sum _ { y , z } \mu ( 0 , y ) \mu ( z , 1 )$ ; confidence 0.999
  
207. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026029.png ; $\mu ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) \delta _ { k } ( d x )$ ; confidence 0.908
+
207. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064460/m06446031.png ; $x y = 0$ ; confidence 0.999
  
208. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110213.png ; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } \langle \operatorname { lm } \zeta ) }$ ; confidence 0.613
+
208. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002029.png ; $( P , \rho )$ ; confidence 0.999
  
209. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014069.png ; $\frac { 1 } { \lambda } \leq \operatorname { max } _ { \varphi } | \operatorname { cos } \alpha ( \varphi ) |$ ; confidence 0.909
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301605.png ; $\Sigma = \{ 0,1 \}$ ; confidence 0.999
  
210. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007044.png ; $\operatorname { deg } f _ { j + r , \ldots , \operatorname { deg } } f _ { l } < \operatorname { deg } \Delta = r D$ ; confidence 0.211
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005044.png ; $T U = U T$ ; confidence 0.999
  
211. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001056.png ; $\lambda ^ { \prime } = ( \lambda _ { 1 } , \dots , \lambda _ { s } - 1 , \lambda _ { s + 1 } , \dots , \lambda _ { t } , 1 )$ ; confidence 0.545
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024096.png ; $A = T / M$ ; confidence 0.999
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { l = 1 } ^ { N } \langle S _ { i } | P | S _ { + 1 } \rangle$ ; confidence 0.566
+
212. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013031.png ; $n ( t )$ ; confidence 0.999
  
213. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020132.png ; $u ( e ^ { i \vartheta } ) = \operatorname { lim } _ { r \uparrow 1 } \operatorname { Re } f ( r e ^ { i \vartheta } )$ ; confidence 0.990
+
213. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026069.png ; $L _ { \mu } ( \theta ) = f ( e ^ { \theta } )$ ; confidence 0.999
  
214. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020113.png ; $P [ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda ] \leq C _ { e } ^ { - \lambda / e } P [ T < \infty ]$ ; confidence 0.280
+
214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029016.png ; $L = [ 0,1 ] \times [ 0,1 ]$ ; confidence 0.999
  
215. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005026.png ; $\mu ^ { * } ( K _ { X } + B ) = K _ { Y } + \sum _ { j = 1 } ^ { t } b _ { j } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } d _ { k } D _ { k }$ ; confidence 0.901
+
215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021038.png ; $\psi ( K + L ) = \psi ( K ) + \psi ( L )$ ; confidence 0.999
  
216. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625
+
216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018075.png ; $\varphi = \mu d \sigma$ ; confidence 0.999
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006050.png ; $\Delta _ { k } = \operatorname { sup } \{ | \Delta _ { k } ( s , t ) | : 0 \leq s _ { j } \leq t _ { j } < 1,1 \leq j \leq k \}$ ; confidence 0.867
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016018.png ; $e ( U ^ { i } , f )$ ; confidence 0.999
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005054.png ; $x ^ { 0 } = \operatorname { cosh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.834
+
218. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026037.png ; $\phi = \lambda d V _ { A }$ ; confidence 0.999
  
219. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005055.png ; $x ^ { 1 } = \operatorname { sinh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.799
+
219. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006042.png ; $A ( X , Y )$ ; confidence 0.999
  
220. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011043.png ; $E : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow Z \rightarrow \{ 1 \}$ ; confidence 0.979
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030045.png ; $B ( m , 6 )$ ; confidence 0.999
  
221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \vee p \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009041.png ; $A ( t , u ( t ) ) ^ { \prime } + B ( t , u ( t ) ) = 0$ ; confidence 0.999
  
222. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520286.png ; $D _ { K _ { \rho } } = \{ F ( \xi ) : \int _ { - \infty } ^ { + \infty } \xi ^ { 2 } | F ( \xi ) | ^ { 2 } d \rho ( \xi ) < \infty \}$ ; confidence 0.880
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009050.png ; $P ( D ) = I + ( - \Delta ) ^ { N }$ ; confidence 0.999
  
223. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006022.png ; $\| f _ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }$ ; confidence 0.157
+
223. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002042.png ; $\phi \in L ^ { \infty }$ ; confidence 0.999
  
224. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014025.png ; $\operatorname { lim } _ { n \rightarrow \infty } \{ \operatorname { inf } _ { C } \| R ^ { n } - q \| ^ { 1 / n } \} = 0$ ; confidence 0.351
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062018.png ; $0 \leq \alpha < \pi$ ; confidence 0.999
  
225. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005086.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } )$ ; confidence 0.359
+
225. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012096.png ; $B ( E _ { 0 } ( A ) )$ ; confidence 0.999
  
226. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006064.png ; $- \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } )$ ; confidence 0.956
+
226. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t1201906.png ; $( n , k , r )$ ; confidence 0.999
  
227. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007066.png ; $q _ { 0 } ( s ) = [ \frac { 1 - s } { 1 + s \alpha } ] ^ { 1 / 2 } , \theta _ { 0 } ( s ) = \operatorname { cos } ^ { - 1 } q _ { 0 } ( s )$ ; confidence 0.833
+
227. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005031.png ; $E ( \alpha , \beta )$ ; confidence 0.999
  
228. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011088.png ; $Cd \approx \frac { l } { b } , f \approx \frac { l } { U } , Cd \approx \frac { f U } { d } , Cd \approx \frac { 1 } { St }$ ; confidence 0.623
+
228. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023027.png ; $T ( q \times n )$ ; confidence 0.999
  
229. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080195.png ; $\kappa \partial _ { S } H _ { \gamma } - \kappa \partial _ { \gamma } H _ { S } + \{ H _ { S } , H _ { \gamma } \} _ { 0 } = 0$ ; confidence 0.131
+
229. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007054.png ; $m ( D + r D )$ ; confidence 0.999
  
230. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100111.png ; $\forall x ( ( \neg x = 0 ) \rightarrow \exists y ( y \in x / \backslash z ( z \in x \rightarrow \neg z \in y ) ) )$ ; confidence 0.346
+
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010095.png ; $1 + 1 / n$ ; confidence 0.999
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012065.png ; $f _ { N }$ ; confidence 0.999
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028015.png ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002014.png ; $T ^ { - 1 } A = A$ ; confidence 0.999
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010036.png ; $U ^ { ( n ) } t = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s } + x - k )$ ; confidence 0.496
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059050/l05905046.png ; $\delta ^ { 2 }$ ; confidence 0.999
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022078.png ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028018.png ; $A \rightarrow G ( n )$ ; confidence 0.999
  
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022098.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times R ^ { N } \times \Xi$ ; confidence 0.300
+
235. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t1201909.png ; $T ( n , k , r )$ ; confidence 0.999
  
236. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030086.png ; $\int _ { R ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | g _ { m } ( \eta ) | ^ { 2 } d \eta$ ; confidence 0.829
+
236. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013043.png ; $H ^ { * } ( G )$ ; confidence 0.999
  
237. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130030/d13003018.png ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi ( \frac { x - b } { a } ) d x$ ; confidence 0.766
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006054.png ; $h ( \zeta + i \epsilon ) - h ( \zeta - i \epsilon ) =$ ; confidence 0.999
  
238. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d0302406.png ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016088.png ; $A = C ( X , \tau )$ ; confidence 0.999
  
239. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230170.png ; $g \Theta _ { i } = \left( \begin{array} { l l l } { \delta _ { i } } & { 0 } & { \ldots } & { 0 } \end{array} \right)$ ; confidence 0.149
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004011.png ; $G = - \frac { 1 } { 4 } \beta ^ { \prime } ( \frac { 1 } { 2 } )$ ; confidence 0.999
  
240. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160106.png ; $f ( w ) \in B$ ; confidence 0.999
  
241. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007034.png ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208
+
241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230119.png ; $d ( z , w ) = ( z - w ^ { * } )$ ; confidence 0.999
  
242. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021064.png ; $\frac { \partial } { \partial \lambda } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) z ^ { \lambda } i +$ ; confidence 0.525
+
242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200115.png ; $m , n < N$ ; confidence 0.999
  
243. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$ ; confidence 0.992
+
243. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222045.png ; $( n - h - 1 )$ ; confidence 0.999
  
244. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188
+
244. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003016.png ; $\mu = \lambda$ ; confidence 0.999
  
245. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004045.png ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771
+
245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t1300809.png ; $t \in [ 0 , n )$ ; confidence 0.999
  
246. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008037.png ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } [ \operatorname { exp } ( - \frac { H } { k _ { B } T } ) A ]$ ; confidence 0.639
+
246. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009077.png ; $( P ( T ) )$ ; confidence 0.999
  
247. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k0557805.png ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975
+
247. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010094.png ; $1 + 2 / n$ ; confidence 0.999
  
248. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202408.png ; $u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi y } { \varphi ^ { 2 } }$ ; confidence 0.799
+
248. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059022.png ; $z \in ( 0 , \infty )$ ; confidence 0.999
  
249. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663025.png ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } }$ ; confidence 0.272
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234030.png ; $> 1$ ; confidence 0.999
  
250. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007011.png ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050055.png ; $\{ 1 ( t , 0 ) : t \geq 0 \}$ ; confidence 0.999
  
251. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}$ ; confidence 0.795
+
251. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090304.png ; $W ( \lambda )$ ; confidence 0.999
  
252. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda ^ { \prime } } ( y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } )$ ; confidence 0.787
+
252. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110090/g11009044.png ; $F ( X , 1 )$ ; confidence 0.999
  
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510146.png ; $\infty ( L _ { 1 } ) \oplus \infty ( L _ { 2 } ) = \infty ( L _ { 2 } ) \oplus \infty ( L _ { 1 } ) = \infty ( \emptyset )$ ; confidence 0.227
+
253. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004028.png ; $\Omega _ { \pm } = 1$ ; confidence 0.999
  
254. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050182.png ; $= [ \sigma _ { Te } ( A , H ) \times \sigma _ { T } ( B , H ) ] \cup [ \sigma _ { T } ( A , H ) \times \sigma _ { Te } ( B , H ) ]$ ; confidence 0.625
+
254. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203001.png ; $( X ( t ) , t \geq 0 )$ ; confidence 0.999
  
255. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008099.png ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062014.png ; $L ^ { 2 } ( 0 , \infty )$ ; confidence 0.999
  
256. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300109.png ; $Z ( \alpha ^ { n } ) = \sum _ { j = 0 } ^ { \infty } \alpha ^ { j } z ^ { - j } = \frac { z } { z - \alpha } \text { for } | z | > 1$ ; confidence 0.862
+
256. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010125.png ; $V \neq ( 0 )$ ; confidence 0.999
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017042.png ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , s ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1$ ; confidence 0.834
+
257. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001011.png ; $z ^ { k } f ( D )$ ; confidence 0.999
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009039.png ; $p _ { 0 } ( \xi ) = 1 + \alpha _ { 1 } \xi + \alpha _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 0 } ( \xi ) > 0 )$ ; confidence 0.891
+
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009010.png ; $\nabla$ ; confidence 0.999
  
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012058.png ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
+
259. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520186.png ; $B = C ^ { T } A C$ ; confidence 0.999
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
+
260. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520359.png ; $g ( x ) = n$ ; confidence 0.999
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051068.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \| x _ { n } + 1 - x ^ { * } \| } { \| x _ { n } - x ^ { * } \| } = 0$ ; confidence 0.809
+
261. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085043.png ; $\phi ( S )$ ; confidence 0.999
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055011.png ; $b _ { \gamma } ( x ) = \operatorname { lim } _ { t \rightarrow \infty } ( t - d ( x , \gamma ( t ) ) ) , \quad x \in M$ ; confidence 0.913
+
262. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180248.png ; $A ( g )$ ; confidence 0.999
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180280.png ; $\nabla ( \alpha \Phi ) = d a \otimes \Phi + \alpha \nabla \Phi \in \varnothing \square ^ { \gamma + 1 } E$ ; confidence 0.116
+
263. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006041.png ; $( G , \Omega )$ ; confidence 0.999
  
264. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210123.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \Gamma ( \theta ) h , \Gamma ( \theta ) )$ ; confidence 0.844
+
264. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092033.png ; $P ( x , D )$ ; confidence 0.999
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020104.png ; $\vec { c } _ { k } ^ { 1 } = c ^ { T } x ^ { ( k ) } + ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q }$ ; confidence 0.534
+
265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023034.png ; $\varphi \in \Omega ^ { l } ( M )$ ; confidence 0.999
  
266. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012058.png ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n }$ ; confidence 0.332
+
266. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022060.png ; $w ^ { \prime } + p ( z ) w = 0$ ; confidence 0.999
  
267. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014024.png ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943
+
267. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012016.png ; $( | A | , | G | ) = 1$ ; confidence 0.999
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012031.png ; $Q ( \theta | \theta ^ { ( t ) } ) = E [ \operatorname { log } L ( \theta | Y _ { aug } ) | Y _ { 0 b s } , \theta ^ { ( t ) } ]$ ; confidence 0.409
+
268. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150219.png ; $( B A ) ^ { \prime } = A ^ { \prime } B ^ { \prime }$ ; confidence 0.999
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010016.png ; $+ \frac { 1 } { c } ( \frac { \partial } { \partial t } ( P \times B ) + \nabla \cdot ( v \otimes ( P \times B ) ) )$ ; confidence 0.850
+
269. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012025.png ; $\phi \nabla = 0$ ; confidence 0.999
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007057.png ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321
+
270. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013018.png ; $b < 0$ ; confidence 0.999
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f0404906.png ; $\times x ^ { ( \nu _ { 1 } / 2 ) - 1 } ( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x ) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0$ ; confidence 0.677
+
271. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003032.png ; $t : A \times C \rightarrow C$ ; confidence 0.999
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f1201406.png ; $K ( x , t ) = - \frac { 1 } { \pi } \frac { \partial } { \partial n _ { t } } \operatorname { log } | z - t | , z , t \in C$ ; confidence 0.837
+
272. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002060.png ; $A \in S$ ; confidence 0.999
  
273. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g1200409.png ; $\operatorname { max } _ { x \in X } | \partial ^ { \alpha } f ( x ) | \leq C ^ { | \alpha | + 1 } ( | \alpha ! | ) ^ { s }$ ; confidence 0.398
+
273. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002022.png ; $h ( q , \dot { q } , t )$ ; confidence 0.999
  
274. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300501.png ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } )$ ; confidence 0.998
+
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304802.png ; $\beta : E ( \beta ) \rightarrow M$ ; confidence 0.999
  
275. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004066.png ; $\sum _ { j = 1 } ^ { n } \frac { \partial r } { \partial \zeta _ { j } } ( \zeta _ { j } ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.989
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013058.png ; $L ^ { - } = D ^ { - } - A ^ { \prime }$ ; confidence 0.999
  
276. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005023.png ; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814
+
276. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070155.png ; $H = H _ { K }$ ; confidence 0.999
  
277. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300501.png ; $q ( x ) \in L _ { 1,1 } : = \{ q : \int _ { - \infty } ^ { \infty } ( 1 + | x | ) | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.868
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330109.png ; $f ( e ^ { i \theta } )$ ; confidence 0.999
  
278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060138.png ; $Q : = \int _ { 0 } ^ { \infty } q ( t ) d t = - 2 i \operatorname { lim } _ { k \rightarrow \infty } \{ k [ f ( k ) - 1 ] \}$ ; confidence 0.969
+
278. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023017.png ; $T ( p \times n )$ ; confidence 0.999
  
279. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020197.png ; $w ( z ) = \int k _ { \vartheta } ( z ) | \varphi ( e ^ { i \vartheta } ) - h ( z ) | ^ { 2 } \frac { d \vartheta } { 2 \pi }$ ; confidence 0.967
+
279. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007019.png ; $\operatorname { log } | f |$ ; confidence 0.999
  
280. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961013.png ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { qu } . \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ]$ ; confidence 0.412
+
280. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304806.png ; $\Gamma ( \beta )$ ; confidence 0.999
  
281. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t$ ; confidence 0.706
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007010.png ; $X ^ { 2 } + Y ^ { 2 } = 1$ ; confidence 0.999
  
282. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017016.png ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104301.png ; $\xi ( t )$ ; confidence 0.999
  
283. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009053.png ; $f ( x , t ) = \frac { 2 } { \omega _ { n } } \int _ { R ^ { n - 1 } } \frac { t f ( y , 0 ) } { ( | x - y | ^ { 2 } + t ^ { 2 } ) ^ { n / 2 } } d y$ ; confidence 0.645
+
283. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007014.png ; $Y = t ^ { 3 }$ ; confidence 0.999
  
284. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013075.png ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } }$ ; confidence 0.281
+
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070261.png ; $( V , E , F )$ ; confidence 0.999
  
285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002047.png ; $\int _ { U M } f ( u ) d u = \int _ { U ^ { + } \partial M ^ { 0 } } \int _ { U } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t ( v , N _ { x } ) d v d x$ ; confidence 0.156
+
285. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222048.png ; $( h , h , n ) ^ { 2 }$ ; confidence 0.999
  
286. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040115.png ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda } ( y ) = \prod _ { i , j = 1 } ^ { l } \frac { 1 } { 1 - x _ { i } y _ { j } }$ ; confidence 0.864
+
286. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011016.png ; $\sigma \in M ( 2 )$ ; confidence 0.999
  
287. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041054.png ; $\int _ { - 1 } ^ { 1 } \frac { \operatorname { ln } \mu _ { 0 } ^ { \prime } ( x ) } { \sqrt { 1 - x ^ { 2 } } } d x > - \infty$ ; confidence 0.993
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080121.png ; $[ s E - A ]$ ; confidence 0.999
  
288. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005016.png ; $\operatorname { dim } \Lambda ^ { k ^ { * } } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013570/a01357015.png ; $f ( x ) \equiv 0$ ; confidence 0.999
  
289. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002044.png ; $\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } | f ( x ) \| \hat { f } ( y ) | e ^ { 2 \pi | y | } < \infty$ ; confidence 0.144
+
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180174.png ; $g ^ { - 1 } \{ p , q \}$ ; confidence 0.999
  
290. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v1100506.png ; $\operatorname { lim } _ { \beta \rightarrow 0 } \frac { 1 } { | Q | } \int _ { Q } | f - f _ { Q } | d t \rightarrow 0$ ; confidence 0.085
+
290. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015085.png ; $i ( A + K ) = i ( A )$ ; confidence 0.999
  
291. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011062.png ; $A = \frac { 1 } { 2 } \theta ( 2 \pi - \theta ) - \frac { \pi ^ { 2 } } { \operatorname { cosh } ^ { 2 } ( \pi b / l ) } = 0$ ; confidence 0.995
+
291. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004037.png ; $\Omega = \{ \zeta : \rho ( \zeta ) < 0 \}$ ; confidence 0.999
  
292. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011040.png ; $- \operatorname { log } \operatorname { sin } ( \frac { \pi } { l } ( z - \frac { l } { 2 } + \frac { i b } { 2 } ) ) ] +$ ; confidence 0.963
+
292. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021034.png ; $\phi ( K + L ) = \phi ( K ) + \phi ( L )$ ; confidence 0.999
  
293. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193
+
293. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007014.png ; $\vec { V } = \nabla \phi$ ; confidence 0.999
  
294. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009039.png ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = P _ { n } ( \tilde { h _ { 1 } } \ldots \tilde { h _ { n } } )$ ; confidence 0.078
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031020.png ; $0 < \delta \leq 1 / 2$ ; confidence 0.999
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
+
295. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200608.png ; $u [ 1 ]$ ; confidence 0.999
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574
+
296. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014055.png ; $\psi ( \gamma ) > 0$ ; confidence 0.999
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016056.png ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t }$ ; confidence 0.577
+
297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023061.png ; $0 < s < t \rightarrow 0$ ; confidence 0.999
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b1202803.png ; $f ( z ) = \frac { | \alpha | } { \alpha } \frac { z - \alpha } { 1 - \overline { \alpha } z } , \quad | \alpha | < 1$ ; confidence 0.456
+
298. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g12001012.png ; $g _ { \alpha } ( t )$ ; confidence 0.999
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200104.png ; $\{ x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } \}$ ; confidence 0.978
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027083.png ; $\int _ { 0 } ^ { \infty } b ( u ) d u$ ; confidence 0.999
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001042.png ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V$ ; confidence 0.310
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060142.png ; $B \sim Z ^ { 4 / 3 }$ ; confidence 0.999

Revision as of 00:10, 13 February 2020

List

1. m12011017.png ; $T ( h )$ ; confidence 0.999

2. r13011016.png ; $\xi ( \rho ) = 0$ ; confidence 0.999

3. b01545017.png ; $\lambda \rightarrow \infty$ ; confidence 0.999

4. s12016013.png ; $m _ { i } = 2 ^ { i - 1 }$ ; confidence 0.999

5. p12017074.png ; $1 \leq p < \infty$ ; confidence 0.999

6. c13004023.png ; $= \frac { 1 } { 16 } [ \zeta ( 2 , \frac { 1 } { 4 } ) - \zeta ( 2 , \frac { 3 } { 4 } ) ]$ ; confidence 0.999

7. c02211055.png ; $X ^ { 2 } ( \theta )$ ; confidence 0.999

8. f120150126.png ; $\Phi _ { \pm } ( X , Y )$ ; confidence 0.999

9. j12001058.png ; $F ^ { \prime } ( z ) = \operatorname { det } J F ( z ) = 0$ ; confidence 0.999

10. d120230124.png ; $R ( z , w ) = 1 / ( 1 - z w ^ { * } )$ ; confidence 0.999

11. f12008036.png ; $\xi , \eta \in H$ ; confidence 0.999

12. a01251014.png ; $\zeta \in \partial D$ ; confidence 0.999

13. d12014036.png ; $( n , q ^ { 2 } - 1 ) = 1$ ; confidence 0.999

14. p13010094.png ; $f ( 0 ) = p$ ; confidence 0.999

15. t13007012.png ; $\int _ { 0 } ^ { 2 \pi } \theta ( t ) d t = 2 \pi ^ { 2 }$ ; confidence 0.999

16. a1106101.png ; $U ( 1 )$ ; confidence 0.999

17. m12004010.png ; $\vec { B } = \mu \vec { H }$ ; confidence 0.999

18. c1202708.png ; $\gamma ( s ) \in \partial \Omega$ ; confidence 0.999

19. v13007053.png ; $q ^ { \prime } = ( 1 - \lambda ) q$ ; confidence 0.999

20. s13062024.png ; $\int _ { 0 } ^ { \infty } | y ( x , \lambda ) | ^ { 2 } d x < \infty$ ; confidence 0.999

21. s13053085.png ; $1 \leq s \leq n$ ; confidence 0.999

22. b12032070.png ; $t \neq 0$ ; confidence 0.999

23. f12008059.png ; $\varphi = ( \xi , \eta ) \in B ( G )$ ; confidence 0.999

24. e13007078.png ; $( 1 / 6,2 / 3 )$ ; confidence 0.999

25. m1301307.png ; $( \nu \times \epsilon )$ ; confidence 0.999

26. n13003027.png ; $\operatorname { exp } ( i \alpha ) = \operatorname { cos } \alpha + i \operatorname { sin } \alpha$ ; confidence 0.999

27. b12032078.png ; $F ( s , t ) = \operatorname { max } \{ s , t \}$ ; confidence 0.999

28. b110220157.png ; $x ^ { 5 } + y ^ { 5 } = 1$ ; confidence 0.999

29. i13001060.png ; $( 3 ^ { 5 } )$ ; confidence 0.999

30. m120100122.png ; $V ( G )$ ; confidence 0.999

31. a0142302.png ; $t \rightarrow - \infty$ ; confidence 0.999

32. f12015077.png ; $i ( A ) = - \infty$ ; confidence 0.999

33. g13002036.png ; $0 < | \alpha | < 1$ ; confidence 0.999

34. h0460108.png ; $( M \times [ 0,1 ] ; M \times \{ 0 \} , M \times \{ 1 \} )$ ; confidence 0.999

35. a11030017.png ; $( n + 1 )$ ; confidence 0.999

36. c120170130.png ; $M ( \infty )$ ; confidence 0.999

37. c120170154.png ; $M ( n ) \geq 0$ ; confidence 0.999

38. f03806012.png ; $( p \times m )$ ; confidence 0.999

39. i12010018.png ; $M = I \times N$ ; confidence 0.999

40. b13030023.png ; $B ( m , 2 )$ ; confidence 0.999

41. e12005012.png ; $g ( x ) = h ( x )$ ; confidence 0.999

42. b12034064.png ; $\{ z : | z | < 1 / 3 \}$ ; confidence 0.999

43. a12008026.png ; $V = H ^ { 1 } ( \Omega )$ ; confidence 0.999

44. k12002012.png ; $C _ { 1 } ( M ) > 0$ ; confidence 0.999

45. c02623062.png ; $| z | > 1$ ; confidence 0.999

46. a120070114.png ; $1 < p < \infty$ ; confidence 0.999

47. t12003024.png ; $\sqrt { \varphi ( z ) } d z$ ; confidence 0.999

48. d1301302.png ; $r = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }$ ; confidence 0.999

49. a13028017.png ; $L = \frac { 1 } { 2 } ( 2 \pi ) ^ { - 1 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 }$ ; confidence 0.999

50. d12030014.png ; $( B ( t ) , t \geq 0 )$ ; confidence 0.999

51. f120150117.png ; $F ( \Omega )$ ; confidence 0.999

52. e037200107.png ; $\gamma = 0$ ; confidence 0.999

53. b12055061.png ; $t \in f ( M )$ ; confidence 0.999

54. a12008062.png ; $L ^ { 2 } ( \Omega ) \times ( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.999

55. s13011033.png ; $w ( r ) > w ( r + 1 ) < w ( r + 2 ) <$ ; confidence 0.999

56. c120180110.png ; $B ( g ) = 0$ ; confidence 0.999

57. d12005011.png ; $f ( t ) = \epsilon$ ; confidence 0.999

58. b11066056.png ; $0 < \gamma \leq 1$ ; confidence 0.999

59. t1300404.png ; $y ( 0 ) = 1$ ; confidence 0.999

60. n1300708.png ; $\mu ( A \cup B ) - \mu ( B )$ ; confidence 0.999

61. t120200180.png ; $G _ { 1 } ( r ) \leq - B$ ; confidence 0.999

62. l06004013.png ; $\leq n - 1$ ; confidence 0.999

63. e12012069.png ; $\theta = ( \mu , \Sigma )$ ; confidence 0.999

64. w12006059.png ; $T _ { A } ( M \times M ^ { \prime } )$ ; confidence 0.999

65. b13026085.png ; $g ( x ) = x$ ; confidence 0.999

66. b120150105.png ; $p = 1 / 2$ ; confidence 0.999

67. f12005059.png ; $( T ^ { 2 } + T ) g ( T ) + 1$ ; confidence 0.999

68. c022800141.png ; $0 < \theta < \pi$ ; confidence 0.999

69. e1100502.png ; $| f | \leq 1$ ; confidence 0.999

70. e13007052.png ; $f ^ { \prime } ( M + N ) = A$ ; confidence 0.999

71. o1300409.png ; $\phi ( 0 ) = x$ ; confidence 0.999

72. a12026081.png ; $( R , m )$ ; confidence 0.999

73. v12004042.png ; $\Delta ( G ) \geq 3 n / 4$ ; confidence 0.999

74. w120090178.png ; $B = T U$ ; confidence 0.999

75. o13002020.png ; $22$ ; confidence 0.999

76. l06005086.png ; $- 1 / \sigma ^ { 2 }$ ; confidence 0.999

77. d12031019.png ; $h ( \lambda ) = g ( f ( \lambda ) )$ ; confidence 0.999

78. c02412050.png ; $> 4$ ; confidence 0.999

79. d13018082.png ; $( g _ { \alpha } )$ ; confidence 0.999

80. r13014015.png ; $R - \lambda$ ; confidence 0.999

81. l120090100.png ; $\Gamma ( \wedge A )$ ; confidence 0.999

82. c120170113.png ; $M ( n + 1 )$ ; confidence 0.999

83. c02327024.png ; $r ( A )$ ; confidence 0.999

84. b130300125.png ; $B ( m , n , i )$ ; confidence 0.999

85. k13001028.png ; $( D )$ ; confidence 0.999

86. i130060176.png ; $A ( x , y ) = 0$ ; confidence 0.999

87. f120150109.png ; $i ( F + K ) = i ( F )$ ; confidence 0.999

88. r13005040.png ; $( | G | , | A | ) = 1$ ; confidence 0.999

89. c11035022.png ; $\gamma \in \Gamma$ ; confidence 0.999

90. o068070125.png ; $p ( x , y ) = x$ ; confidence 0.999

91. w09759042.png ; $\square ( A )$ ; confidence 0.999

92. f12015022.png ; $i ( B A ) = i ( B ) + i ( A )$ ; confidence 0.999

93. t12020077.png ; $m \in [ 1 , n - 1 ]$ ; confidence 0.999

94. m13025036.png ; $\varphi \in D ( \Omega )$ ; confidence 0.999

95. e12005041.png ; $h ( w ) , h ^ { 2 } ( w )$ ; confidence 0.999

96. h04602015.png ; $Y ( s ) = G ( s ) X ( s )$ ; confidence 0.999

97. w11006034.png ; $- \int _ { 0 } ^ { \infty } y ( t ) f ( t ) d t$ ; confidence 0.999

98. p1201404.png ; $\{ a _ { n } \}$ ; confidence 0.999

99. w1200203.png ; $( U , d )$ ; confidence 0.999

100. a1103403.png ; $y ( t )$ ; confidence 0.999

101. h13002018.png ; $A \cup \{ t \}$ ; confidence 0.999

102. w12017069.png ; $\omega ( G ) = \cap _ { p } \omega ^ { p } ( G )$ ; confidence 0.999

103. b130300162.png ; $B ( \infty , n )$ ; confidence 0.999

104. a01018058.png ; $1 \leq j \leq k$ ; confidence 0.999

105. h12012023.png ; $f \nabla$ ; confidence 0.999

106. b12002040.png ; $f = F ^ { \prime }$ ; confidence 0.999

107. e13007035.png ; $f ( n ) = ( t / 2 \pi ) \operatorname { log } n$ ; confidence 0.999

108. j12002073.png ; $A ^ { * } = 0$ ; confidence 0.999

109. a13008073.png ; $- \infty < x < \infty$ ; confidence 0.999

110. m130260135.png ; $\sigma : X \rightarrow M ( A )$ ; confidence 0.999

111. f12015071.png ; $\Phi _ { - } ( X , Y )$ ; confidence 0.999

112. b11106014.png ; $\{ R \}$ ; confidence 0.999

113. b1109204.png ; $- \infty < f ( x ) \leq \infty$ ; confidence 0.999

114. f12015092.png ; $T \in B ( X , Y )$ ; confidence 0.999

115. b0175908.png ; $h ( t )$ ; confidence 0.999

116. r13007052.png ; $c ( y ) > 0$ ; confidence 0.999

117. m13007022.png ; $\{ 0 \} \cup \{ m \} \cup [ m + \epsilon , \infty )$ ; confidence 0.999

118. k05584080.png ; $f , g \in L _ { 2 } ( \sigma )$ ; confidence 0.999

119. v09690092.png ; $\phi ( T _ { \alpha } )$ ; confidence 0.999

120. k12012040.png ; $\int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x < \infty$ ; confidence 0.999

121. f12014046.png ; $\frac { 1 } { \lambda } \geq | 1 - \alpha |$ ; confidence 0.999

122. m130180125.png ; $P \backslash \{ 0,1 \}$ ; confidence 0.999

123. b13030030.png ; $B ( m , 3 )$ ; confidence 0.999

124. i12004062.png ; $\{ z : r ( z ) < 0 \}$ ; confidence 0.999

125. m12021039.png ; $\psi ( K ) = \lambda [ K - s ( K ) ] + s ( K )$ ; confidence 0.999

126. s13065071.png ; $w ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.999

127. d12023042.png ; $( n \times r )$ ; confidence 0.999

128. k12007012.png ; $t \in ( 0 , \pi )$ ; confidence 0.999

129. t12003051.png ; $R ^ { \prime } = f ( R )$ ; confidence 0.999

130. m13023082.png ; $\phi ( E ) \geq 2$ ; confidence 0.999

131. s13062093.png ; $\mu ( \{ \lambda \} ) > 0$ ; confidence 0.999

132. b12027093.png ; $\{ Z ( t ) : t \geq 0 \}$ ; confidence 0.999

133. b13009023.png ; $d ( u , \phi )$ ; confidence 0.999

134. z13010021.png ; $( \varphi \vee \psi )$ ; confidence 0.999

135. a130050142.png ; $G ( n )$ ; confidence 0.999

136. i1300606.png ; $\delta = \delta ( k )$ ; confidence 0.999

137. h046010108.png ; $\tau ( W , M _ { 0 } ) = \tau$ ; confidence 0.999

138. i13006087.png ; $\delta ( k )$ ; confidence 0.999

139. b120210111.png ; $( D , \delta )$ ; confidence 0.999

140. v13007028.png ; $V = \lambda U$ ; confidence 0.999

141. e12027015.png ; $\gamma = \operatorname { max } \{ \alpha , \beta \}$ ; confidence 0.999

142. e13005010.png ; $[ \lambda ; n ] = \Gamma ( \lambda + n ) / \Gamma ( \lambda )$ ; confidence 0.999

143. t13008011.png ; $t + d t$ ; confidence 0.999

144. h12011050.png ; $f \in C ( \partial \Omega )$ ; confidence 0.999

145. b13026054.png ; $y \in \Omega$ ; confidence 0.999

146. a1200501.png ; $\frac { d u ( t ) } { d t } = A ( t ) u ( t ) + f ( t ) , \quad 0 < t \leq T$ ; confidence 0.999

147. f120080121.png ; $B ( G , G )$ ; confidence 0.999

148. i13002069.png ; $\varphi ( n )$ ; confidence 0.999

149. m06222038.png ; $( h , m , n ) ^ { 2 }$ ; confidence 0.999

150. d13006024.png ; $m ( A ) > 0$ ; confidence 0.999

151. z13011091.png ; $( i + d ) \mu ( i )$ ; confidence 0.999

152. f12002033.png ; $R \in K ( X )$ ; confidence 0.999

153. a01137066.png ; $f ( x _ { 0 } ) = 0$ ; confidence 0.999

154. c13016063.png ; $[ s ( n ) ]$ ; confidence 0.999

155. s130620179.png ; $( n , n + 1 ]$ ; confidence 0.999

156. a12008015.png ; $f ( x , t )$ ; confidence 0.999

157. b1201304.png ; $0 < p < \infty$ ; confidence 0.999

158. b11002057.png ; $b ( u , u ) < 0$ ; confidence 0.999

159. h13002060.png ; $M = M ( q , \varepsilon )$ ; confidence 0.999

160. z13010071.png ; $\{ y \}$ ; confidence 0.999

161. c02709039.png ; $n - m - 1$ ; confidence 0.999

162. a13019025.png ; $( n , k )$ ; confidence 0.999

163. k12009035.png ; $G ( \tau )$ ; confidence 0.999

164. a01238019.png ; $2 n - 1$ ; confidence 0.999

165. m062690149.png ; $E ( x , t )$ ; confidence 0.999

166. a12016044.png ; $f ( u )$ ; confidence 0.999

167. a120250101.png ; $2 \leq n \leq q - 1$ ; confidence 0.999

168. m13025030.png ; $( f u , v )$ ; confidence 0.999

169. v1100606.png ; $D \Delta ^ { 2 } w - h [ \Phi , w ] = f$ ; confidence 0.999

170. r130070121.png ; $m ( T ) < \infty$ ; confidence 0.999

171. c130070139.png ; $k ( C ) = k ( x , y )$ ; confidence 0.999

172. r13008060.png ; $h ( t , p ) \in L ^ { 2 } ( T , d m )$ ; confidence 0.999

173. c13014040.png ; $\Gamma _ { l } = ( X , R _ { l } )$ ; confidence 0.999

174. m12007054.png ; $m ( P ) \geq \operatorname { log } \theta _ { 0 }$ ; confidence 0.999

175. a13012039.png ; $2 - ( 4 \mu - 1,2 \mu - 1 , \mu - 1 )$ ; confidence 0.999

176. b11002055.png ; $b ( u , u ) > 0$ ; confidence 0.999

177. t12015048.png ; $\eta \rightarrow \pi ^ { \prime } ( \eta ) \xi$ ; confidence 0.999

178. b120430114.png ; $\alpha \delta - q ^ { 2 } \gamma \beta = 1$ ; confidence 0.999

179. i13002062.png ; $A , B \in S$ ; confidence 0.999

180. j12001056.png ; $\operatorname { deg } F ^ { - 1 } \leq C ( n , d )$ ; confidence 0.999

181. f12015086.png ; $A \in \Phi _ { \pm } ( X , Y )$ ; confidence 0.999

182. i12005060.png ; $H ( \theta , \theta _ { 0 } )$ ; confidence 0.999

183. z12001077.png ; $0 < k < m$ ; confidence 0.999

184. r13005022.png ; $\Omega = \{ 1,2,3,4 \}$ ; confidence 0.999

185. a13007034.png ; $52$ ; confidence 0.999

186. l11003096.png ; $\Omega = [ 0,1 ]$ ; confidence 0.999

187. b13009034.png ; $m ( \xi ) = 1 + \xi ^ { 2 }$ ; confidence 0.999

188. o12001013.png ; $\delta \theta _ { 0 }$ ; confidence 0.999

189. b13009035.png ; $m ( \xi )$ ; confidence 0.999

190. b12020030.png ; $f = \theta g$ ; confidence 0.999

191. t12019022.png ; $r = 2,3,4$ ; confidence 0.999

192. m12003040.png ; $V ( T , F _ { \theta } )$ ; confidence 0.999

193. a011370113.png ; $A = C ( X )$ ; confidence 0.999

194. k13005022.png ; $10 ^ { - 8 }$ ; confidence 0.999

195. a13023064.png ; $V = C ( T )$ ; confidence 0.999

196. q12002021.png ; $G ( k , n )$ ; confidence 0.999

197. o12005035.png ; $\varphi ( 2 u ) \leq K \varphi ( u )$ ; confidence 0.999

198. b12049033.png ; $\{ E _ { n } \}$ ; confidence 0.999

199. m063240309.png ; $\mu ^ { \prime }$ ; confidence 0.999

200. t12015041.png ; $\xi \rightarrow \pi ( \xi ) \eta$ ; confidence 0.999

201. c12020019.png ; $W = ( M \times ( 0,1 ] , J )$ ; confidence 0.999

202. m12015027.png ; $f _ { X , Y } ( X , Y ) \geq 0$ ; confidence 0.999

203. w13009089.png ; $g \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.999

204. b12013052.png ; $1 / p + 1 / q = 1$ ; confidence 0.999

205. l12006052.png ; $h ( z ) ^ { - 1 }$ ; confidence 0.999

206. m13018065.png ; $\mu ( 0,1 ) = \sum _ { y , z } \mu ( 0 , y ) \mu ( z , 1 )$ ; confidence 0.999

207. m06446031.png ; $x y = 0$ ; confidence 0.999

208. z13002029.png ; $( P , \rho )$ ; confidence 0.999

209. c1301605.png ; $\Sigma = \{ 0,1 \}$ ; confidence 0.999

210. s12005044.png ; $T U = U T$ ; confidence 0.999

211. e12024096.png ; $A = T / M$ ; confidence 0.999

212. m12013031.png ; $n ( t )$ ; confidence 0.999

213. e12026069.png ; $L _ { \mu } ( \theta ) = f ( e ^ { \theta } )$ ; confidence 0.999

214. f13029016.png ; $L = [ 0,1 ] \times [ 0,1 ]$ ; confidence 0.999

215. m12021038.png ; $\psi ( K + L ) = \psi ( K ) + \psi ( L )$ ; confidence 0.999

216. c12018075.png ; $\varphi = \mu d \sigma$ ; confidence 0.999

217. s12016018.png ; $e ( U ^ { i } , f )$ ; confidence 0.999

218. c13026037.png ; $\phi = \lambda d V _ { A }$ ; confidence 0.999

219. e13006042.png ; $A ( X , Y )$ ; confidence 0.999

220. b13030045.png ; $B ( m , 6 )$ ; confidence 0.999

221. b13009041.png ; $A ( t , u ( t ) ) ^ { \prime } + B ( t , u ( t ) ) = 0$ ; confidence 0.999

222. m12009050.png ; $P ( D ) = I + ( - \Delta ) ^ { N }$ ; confidence 0.999

223. h12002042.png ; $\phi \in L ^ { \infty }$ ; confidence 0.999

224. s13062018.png ; $0 \leq \alpha < \pi$ ; confidence 0.999

225. h12012096.png ; $B ( E _ { 0 } ( A ) )$ ; confidence 0.999

226. t1201906.png ; $( n , k , r )$ ; confidence 0.999

227. e13005031.png ; $E ( \alpha , \beta )$ ; confidence 0.999

228. s12023027.png ; $T ( q \times n )$ ; confidence 0.999

229. h13007054.png ; $m ( D + r D )$ ; confidence 0.999

230. l12010095.png ; $1 + 1 / n$ ; confidence 0.999

231. b13012065.png ; $f _ { N }$ ; confidence 0.999

232. a13002014.png ; $T ^ { - 1 } A = A$ ; confidence 0.999

233. l05905046.png ; $\delta ^ { 2 }$ ; confidence 0.999

234. b13028018.png ; $A \rightarrow G ( n )$ ; confidence 0.999

235. t1201909.png ; $T ( n , k , r )$ ; confidence 0.999

236. d12013043.png ; $H ^ { * } ( G )$ ; confidence 0.999

237. l12006054.png ; $h ( \zeta + i \epsilon ) - h ( \zeta - i \epsilon ) =$ ; confidence 0.999

238. b13016088.png ; $A = C ( X , \tau )$ ; confidence 0.999

239. c13004011.png ; $G = - \frac { 1 } { 4 } \beta ^ { \prime } ( \frac { 1 } { 2 } )$ ; confidence 0.999

240. c130160106.png ; $f ( w ) \in B$ ; confidence 0.999

241. d120230119.png ; $d ( z , w ) = ( z - w ^ { * } )$ ; confidence 0.999

242. t120200115.png ; $m , n < N$ ; confidence 0.999

243. m06222045.png ; $( n - h - 1 )$ ; confidence 0.999

244. n13003016.png ; $\mu = \lambda$ ; confidence 0.999

245. t1300809.png ; $t \in [ 0 , n )$ ; confidence 0.999

246. i13009077.png ; $( P ( T ) )$ ; confidence 0.999

247. l12010094.png ; $1 + 2 / n$ ; confidence 0.999

248. s13059022.png ; $z \in ( 0 , \infty )$ ; confidence 0.999

249. a01234030.png ; $> 1$ ; confidence 0.999

250. b12050055.png ; $\{ 1 ( t , 0 ) : t \geq 0 \}$ ; confidence 0.999

251. w120090304.png ; $W ( \lambda )$ ; confidence 0.999

252. g11009044.png ; $F ( X , 1 )$ ; confidence 0.999

253. e13004028.png ; $\Omega _ { \pm } = 1$ ; confidence 0.999

254. d1203001.png ; $( X ( t ) , t \geq 0 )$ ; confidence 0.999

255. s13062014.png ; $L ^ { 2 } ( 0 , \infty )$ ; confidence 0.999

256. y120010125.png ; $V \neq ( 0 )$ ; confidence 0.999

257. w12001011.png ; $z ^ { k } f ( D )$ ; confidence 0.999

258. e12009010.png ; $\nabla$ ; confidence 0.999

259. n067520186.png ; $B = C ^ { T } A C$ ; confidence 0.999

260. n067520359.png ; $g ( x ) = n$ ; confidence 0.999

261. r08085043.png ; $\phi ( S )$ ; confidence 0.999

262. c120180248.png ; $A ( g )$ ; confidence 0.999

263. c13006041.png ; $( G , \Omega )$ ; confidence 0.999

264. c02092033.png ; $P ( x , D )$ ; confidence 0.999

265. f12023034.png ; $\varphi \in \Omega ^ { l } ( M )$ ; confidence 0.999

266. d11022060.png ; $w ^ { \prime } + p ( z ) w = 0$ ; confidence 0.999

267. f13012016.png ; $( | A | , | G | ) = 1$ ; confidence 0.999

268. f120150219.png ; $( B A ) ^ { \prime } = A ^ { \prime } B ^ { \prime }$ ; confidence 0.999

269. h12012025.png ; $\phi \nabla = 0$ ; confidence 0.999

270. m12013018.png ; $b < 0$ ; confidence 0.999

271. n12003032.png ; $t : A \times C \rightarrow C$ ; confidence 0.999

272. i13002060.png ; $A \in S$ ; confidence 0.999

273. r12002022.png ; $h ( q , \dot { q } , t )$ ; confidence 0.999

274. s1304802.png ; $\beta : E ( \beta ) \rightarrow M$ ; confidence 0.999

275. m13013058.png ; $L ^ { - } = D ^ { - } - A ^ { \prime }$ ; confidence 0.999

276. r130070155.png ; $H = H _ { K }$ ; confidence 0.999

277. b017330109.png ; $f ( e ^ { i \theta } )$ ; confidence 0.999

278. s12023017.png ; $T ( p \times n )$ ; confidence 0.999

279. p13007019.png ; $\operatorname { log } | f |$ ; confidence 0.999

280. s1304806.png ; $\Gamma ( \beta )$ ; confidence 0.999

281. c13007010.png ; $X ^ { 2 } + Y ^ { 2 } = 1$ ; confidence 0.999

282. a0104301.png ; $\xi ( t )$ ; confidence 0.999

283. c13007014.png ; $Y = t ^ { 3 }$ ; confidence 0.999

284. c130070261.png ; $( V , E , F )$ ; confidence 0.999

285. m06222048.png ; $( h , h , n ) ^ { 2 }$ ; confidence 0.999

286. h12011016.png ; $\sigma \in M ( 2 )$ ; confidence 0.999

287. c120080121.png ; $[ s E - A ]$ ; confidence 0.999

288. a01357015.png ; $f ( x ) \equiv 0$ ; confidence 0.999

289. c120180174.png ; $g ^ { - 1 } \{ p , q \}$ ; confidence 0.999

290. f12015085.png ; $i ( A + K ) = i ( A )$ ; confidence 0.999

291. c12004037.png ; $\Omega = \{ \zeta : \rho ( \zeta ) < 0 \}$ ; confidence 0.999

292. m12021034.png ; $\phi ( K + L ) = \phi ( K ) + \phi ( L )$ ; confidence 0.999

293. v13007014.png ; $\vec { V } = \nabla \phi$ ; confidence 0.999

294. b12031020.png ; $0 < \delta \leq 1 / 2$ ; confidence 0.999

295. d1200608.png ; $u [ 1 ]$ ; confidence 0.999

296. p13014055.png ; $\psi ( \gamma ) > 0$ ; confidence 0.999

297. m12023061.png ; $0 < s < t \rightarrow 0$ ; confidence 0.999

298. g12001012.png ; $g _ { \alpha } ( t )$ ; confidence 0.999

299. b12027083.png ; $\int _ { 0 } ^ { \infty } b ( u ) d u$ ; confidence 0.999

300. t120060142.png ; $B \sim Z ^ { 4 / 3 }$ ; confidence 0.999

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/4. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/4&oldid=44492