Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/10"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 10 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 10 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040786.png ; $A , B \in K$ ; confidence 0.882
  
2. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040126.png ; $4$ ; confidence 0.882
  
3. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
  
4. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
+
4. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
  
5. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765
+
5. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
  
6. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $P ( S )$ ; confidence 0.765
+
6. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101808.png ; $\rho < | z _ { 0 } - b |$ ; confidence 0.764
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a0107008.png ; $r$ ; confidence 0.881
  
8. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539044.png ; $i , j = 1,2$ ; confidence 0.881
  
9. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050176.png ; $F _ { q }$ ; confidence 0.880
  
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040403.png ; $P K$ ; confidence 0.879
  
11. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879
  
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
+
13. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
  
14. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017038.png ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879
  
15. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006026.png ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879
  
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240222.png ; $r$ ; confidence 0.879
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104205.png ; $\{ Y _ { N } \}$ ; confidence 0.760
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029079.png ; $X _ { \delta }$ ; confidence 0.879
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006042.png ; $P _ { q }$ ; confidence 0.879
  
19. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
+
19. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
  
20. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760
+
20. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760
+
21. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
+
22. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
  
23. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210102.png ; $k = 1 , \ldots , g$ ; confidence 0.759
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878
  
25. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040153.png ; $C ^ { 2 } : 1 E$ ; confidence 0.878
  
26. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i050730155.png ; $\nu _ { S }$ ; confidence 0.758
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820124.png ; $M \times N$ ; confidence 0.757
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877
  
28. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757
+
28. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
  
29. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
+
29. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m06443090.png ; $B O$ ; confidence 0.877
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755
+
30. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877
  
31. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png ; $3$ ; confidence 0.876
  
32. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007023.png ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755
+
33. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004074.png ; $M$ ; confidence 0.754
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101806.png ; $z = z 0$ ; confidence 0.876
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302403.png ; $n \times 1$ ; confidence 0.875
  
37. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
  
38. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420330.png ; $B = B _ { E }$ ; confidence 0.754
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600189.png ; $( K / k )$ ; confidence 0.875
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
+
39. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525091.png ; $z _ { k } \in L$ ; confidence 0.875
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } s _ { P } , \mathfrak { N }$ ; confidence 0.754
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
  
41. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
+
41. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
  
42. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
+
42. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753
+
43. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005058.png ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050132.png ; $R ^ { N }$ ; confidence 0.875
  
46. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010299.png ; $m$ ; confidence 0.874
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
+
47. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $c = 0$ ; confidence 0.874
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752
+
48. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102006.png ; $A ] [ B$ ; confidence 0.752
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060031.png ; $p = - \infty$ ; confidence 0.874
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png ; $1$ ; confidence 0.751
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046086.png ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040741.png ; $R ^ { \prime }$ ; confidence 0.873
  
52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028054.png ; $AO ( G )$ ; confidence 0.873
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240408.png ; $y _ { i j k }$ ; confidence 0.873
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015019.png ; $\tau ( S )$ ; confidence 0.873
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
  
56. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010058.png ; $w f$ ; confidence 0.750
+
57. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi$ ; confidence 0.749
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055028.png ; $O ( n ) / O ( m )$ ; confidence 0.872
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101209.png ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872
  
60. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024049.png ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871
  
61. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046071.png ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871
  
62. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073980/p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029043.png ; $\overline { a } X$ ; confidence 0.747
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010013.png ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022062.png ; $R ^ { 2 p }$ ; confidence 0.871
  
65. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
+
65. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871
  
66. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011059.png ; $2 i$ ; confidence 0.747
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005092.png ; $B ( . )$ ; confidence 0.747
+
67. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $Y = C$ ; confidence 0.871
  
68. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022092.png ; $f \circ \pi$ ; confidence 0.871
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040202.png ; $\tilde { \Omega F }$ ; confidence 0.746
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a1302405.png ; $( n \times m )$ ; confidence 0.870
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240480.png ; $1 , \ldots , n _ { 1 }$ ; confidence 0.745
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040525.png ; $FFi _ { D } A$ ; confidence 0.744
+
73. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
  
74. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744
+
74. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020057.png ; $\mu$ ; confidence 0.744
+
75. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087350/s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330250.png ; $U ^ { N }$ ; confidence 0.743
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040725.png ; $S _ { P }$ ; confidence 0.869
  
77. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
+
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
  
78. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869
  
79. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057061.png ; $H _ { m }$ ; confidence 0.869
  
80. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
+
80. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040795.png ; $K _ { 0 }$ ; confidence 0.742
+
81. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005061.png ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869
  
83. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869
  
84. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013020.png ; $X$ ; confidence 0.869
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010103.png ; $A x - b | \leq \Delta A | x | + \Delta b$ ; confidence 0.741
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868
  
87. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
+
87. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
  
88. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741
+
88. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210108.png ; $m$ ; confidence 0.740
+
89. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
+
90. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867
  
91. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
+
91. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090180/s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $I Y \subset O$ ; confidence 0.739
+
93. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739
+
94. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
  
95. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739
+
95. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
  
96. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
+
96. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
+
97. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738
+
98. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $O ( r )$ ; confidence 0.866
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $I$ ; confidence 0.738
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033029.png ; $N ^ { * * } = \operatorname { card } ( U _ { n } ^ { * * } ) / p$ ; confidence 0.865
  
100. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
+
100. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920116.png ; $\int \int K d S$ ; confidence 0.865
  
101. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865
  
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864
  
103. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105806.png ; $y _ { n } + 1$ ; confidence 0.864
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png ; $\Theta f$ ; confidence 0.864
  
106. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
  
107. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737
+
107. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050179.png ; $G$ ; confidence 0.737
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
+
109. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110110/a1101108.png ; $\cap \operatorname { Reg }$ ; confidence 0.736
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310161.png ; $A W ^ { * }$ ; confidence 0.863
  
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $20$ ; confidence 0.863
  
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002010.png ; $s ^ { 1 }$ ; confidence 0.733
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050192.png ; $A ( p )$ ; confidence 0.733
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
  
116. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733
+
116. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012073.png ; $z | < R$ ; confidence 0.863
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240498.png ; $X _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105808.png ; $h | v _ { 1 } \| ( \partial f / \partial y ) \| < 1$ ; confidence 0.863
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040639.png ; $P , \mathfrak { M }$ ; confidence 0.733
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862
  
120. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732
+
120. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
+
121. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072210/p07221037.png ; $F ^ { k }$ ; confidence 0.862
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024041.png ; $Y = X _ { 1 } B X _ { 2 } + E$ ; confidence 0.731
+
122. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105801.png ; $y ^ { \prime } = f ( x , y ) , \quad y ( x _ { 0 } ) = y 0$ ; confidence 0.862
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064950/m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010017.png ; $x - x 0 \in K$ ; confidence 0.861
  
125. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861
  
126. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661012.png ; $N _ { A }$ ; confidence 0.730
+
126. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143081.png ; $e X$ ; confidence 0.861
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046073.png ; $P _ { N } ( x )$ ; confidence 0.729
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729
+
128. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
  
129. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729
+
129. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040614.png ; $\mathfrak { N } \in$ ; confidence 0.728
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a1103507.png ; $e ^ { \lambda z }$ ; confidence 0.860
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022040.png ; $= R [ x _ { 1 } ( z _ { 1 } , \ldots , z _ { p } ) , \ldots , x _ { p } ( z _ { 1 } , \ldots , z _ { p } ) ]$ ; confidence 0.727
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010075.png ; $R$ ; confidence 0.859
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040106.png ; $L ] = \lambda$ ; confidence 0.859
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859
  
134. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
+
134. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858
  
135. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi$ ; confidence 0.858
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
+
137. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724
+
138. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082570/r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858
  
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858
  
140. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240384.png ; $q \geq 2$ ; confidence 0.857
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300203.png ; $1$ ; confidence 0.724
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052076.png ; $A h ^ { - } q$ ; confidence 0.857
  
142. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857
  
143. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $( f g f h )$ ; confidence 0.723
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200404.png ; $x _ { 0 } \in X$ ; confidence 0.722
+
144. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
+
145. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018025.png ; $| \operatorname { arg } ( s - s _ { 0 } ) | \leq \theta < \pi / 2$ ; confidence 0.721
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016055.png ; $\langle p _ { k } , A p _ { k - 1 } \rangle = 0$ ; confidence 0.856
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018064.png ; $A _ { n }$ ; confidence 0.720
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040206.png ; $\{ \sigma = 0 \} \subset P ^ { 4 }$ ; confidence 0.856
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png ; $\gamma m$ ; confidence 0.719
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
+
149. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
  
150. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
+
150. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006011.png ; $P _ { A \otimes B }$ ; confidence 0.719
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007010.png ; $2 ^ { n } p$ ; confidence 0.856
  
152. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240513.png ; $T _ { 2 }$ ; confidence 0.856
  
153. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $K ^ { * }$ ; confidence 0.718
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
+
154. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
  
155. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465066.png ; $\in M$ ; confidence 0.717
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068028.png ; $k _ { 0 } ( A )$ ; confidence 0.855
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040253.png ; $X _ { i }$ ; confidence 0.716
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060041.png ; $\cup _ { z \subset Z } \{ \sum _ { i } ( Y _ { z } \cap A _ { i } ) \}$ ; confidence 0.854
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071041.png ; $( M )$ ; confidence 0.854
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { i }$ ; confidence 0.854
  
159. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
+
159. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
  
160. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696076.png ; $V < 0$ ; confidence 0.854
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028078.png ; $c ( G )$ ; confidence 0.853
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052014.png ; $( A ) = \| A \| A ^ { - 1 } \|$ ; confidence 0.853
  
163. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $| T | _ { p }$ ; confidence 0.714
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002036.png ; $8$ ; confidence 0.713
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012068.png ; $\{ \nu _ { k } \} \cap \{ \mu _ { n } \} = \emptyset$ ; confidence 0.853
  
165. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028029.png ; $f : V ( G ) \rightarrow \{ 1 , \ldots , k \}$ ; confidence 0.853
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021033.png ; $31$ ; confidence 0.712
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852
  
168. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022072.png ; $K _ { V V }$ ; confidence 0.711
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240349.png ; $23$ ; confidence 0.711
+
170. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $\Sigma - 1$ ; confidence 0.852
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
+
171. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t092600123.png ; $B = I _ { p }$ ; confidence 0.852
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851
  
173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
+
173. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
  
174. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
+
174. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
  
175. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711
+
175. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017030.png ; $X \in S ( t )$ ; confidence 0.850
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850
  
178. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040143.png ; $S 5$ ; confidence 0.850
  
179. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
+
179. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010219.png ; $\| \delta A \|$ ; confidence 0.710
+
180. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024094.png ; $m$ ; confidence 0.709
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040433.png ; $h : A \rightarrow B$ ; confidence 0.850
  
182. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052043.png ; $A _ { k } ^ { 1 } = \alpha _ { 2 k - 1 } + \alpha _ { 2 k }$ ; confidence 0.850
  
183. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709
+
184. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708
+
185. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
+
186. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $x _ { n } = n$ ; confidence 0.849
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240366.png ; $M _ { H } = Z _ { 1 } ^ { \prime } Z _ { 1 }$ ; confidence 0.707
+
187. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064580/m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004044.png ; $( Z / d _ { 1 } Z ) ^ { 2 } \times ( Z / d _ { 2 } Z ) ^ { 2 }$ ; confidence 0.848
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021088.png ; $\omega _ { 1 }$ ; confidence 0.707
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848
  
190. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706
+
190. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010200.png ; $| \hat { \lambda } - \lambda _ { i } | = | \delta \lambda _ { i } |$ ; confidence 0.705
+
191. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $CPC$ ; confidence 0.705
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847
  
193. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641020.png ; $x \in b M$ ; confidence 0.705
+
193. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847
  
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040737.png ; $= 0$ ; confidence 0.847
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031019.png ; $M _ { sa }$ ; confidence 0.704
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006041.png ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040468.png ; $CPC$ ; confidence 0.846
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $= v : q$ ; confidence 0.846
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
+
199. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846
  
200. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
+
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004023.png ; $x _ { 0 }$ ; confidence 0.701
+
202. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700
+
203. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021094.png ; $k , b _ { k }$ ; confidence 0.700
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064720/m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234035.png ; $a \in V$ ; confidence 0.699
+
205. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022036.png ; $E$ ; confidence 0.845
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699
+
206. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845
  
207. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
+
207. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082230/r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002051.png ; $m = 2 ^ { a }$ ; confidence 0.699
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025014.png ; $\operatorname { ln } k$ ; confidence 0.845
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046082.png ; $P _ { n } ( x ) = \delta ^ { n } f ( 0 , x ) / n !$ ; confidence 0.844
  
210. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067400/n06740041.png ; $U$ ; confidence 0.698
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110110/a11011013.png ; $\cap$ ; confidence 0.844
  
211. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022026.png ; $C ^ { p } / \Gamma$ ; confidence 0.843
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006017.png ; $P _ { A }$ ; confidence 0.697
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040623.png ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004011.png ; $( 40 \lambda \varphi _ { 1 } )$ ; confidence 0.696
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031093.png ; $I _ { 1 }$ ; confidence 0.843
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z }$ ; confidence 0.696
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
+
215. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
  
216. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096450/v09645016.png ; $+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$ ; confidence 0.696
+
216. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $q IL$ ; confidence 0.843
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104303.png ; $P \{ \xi ( t ) = i | \xi ( s ) = i \} = 1 \quad \text { for any } t \geq s$ ; confidence 0.695
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010027.png ; $2 ^ { X }$ ; confidence 0.843
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102109.png ; $P _ { 0 } \in S$ ; confidence 0.695
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843
  
219. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240357.png ; $n - r \geq p$ ; confidence 0.843
  
220. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201102.png ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539043.png ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040404.png ; $P _ { SD } K$ ; confidence 0.693
+
222. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842
  
223. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence 0.693
+
223. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040372.png ; $F \subset G$ ; confidence 0.693
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325016.png ; $\operatorname { Arg } f$ ; confidence 0.692
+
225. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566078.png ; $/ N = T$ ; confidence 0.692
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841
  
227. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444106.png ; $\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$ ; confidence 0.692
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007076.png ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040171.png ; $\varphi _ { L } : A \rightarrow A \subset P ^ { 3 }$ ; confidence 0.691
+
228. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005089.png ; $t$ ; confidence 0.691
+
229. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
  
230. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430169.png ; $GL _ { 2 } ( R )$ ; confidence 0.691
+
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110240/s11024022.png ; $\lambda _ { m } ( t )$ ; confidence 0.691
+
231. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040629.png ; $D S _ { F }$ ; confidence 0.691
+
232. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046075.png ; $P _ { n } ( \alpha x ) = \alpha ^ { n } P _ { n } ( x )$ ; confidence 0.690
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022039.png ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840
  
234. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082040/r08204062.png ; $b \in \overline { C }$ ; confidence 0.690
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015035.png ; $F ( . | \theta ( S ) )$ ; confidence 0.840
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; $D ( K )$ ; confidence 0.689
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066057.png ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $x 0$ ; confidence 0.689
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
  
239. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689
+
239. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040646.png ; $\operatorname { Th } _ { S _ { P } } \mathfrak { M } = \operatorname { Th } _ { S _ { P } } \mathfrak { N }$ ; confidence 0.689
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
  
241. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046460/h04646046.png ; $p + q \leq \operatorname { dim } _ { C } M$ ; confidence 0.688
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008026.png ; $s = \eta c / \omega$ ; confidence 0.837
  
242. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t09323048.png ; $H \rightarrow TOP$ ; confidence 0.688
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.837
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010239.png ; $r = A x - \hat { \lambda } x$ ; confidence 0.687
+
243. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
+
244. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025600/c02560048.png ; $u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$ ; confidence 0.687
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; $| X$ ; confidence 0.687
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
  
247. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076080/q076080314.png ; $\mathfrak { F } \subset \mathfrak { P }$ ; confidence 0.687
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006020.png ; $u \in P ( x )$ ; confidence 0.687
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha , = 0$ ; confidence 0.837
  
249. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444109.png ; $A < \alpha < b < B$ ; confidence 0.686
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022093.png ; $Z$ ; confidence 0.686
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012045.png ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033019.png ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010106.png ; $\Delta b = \epsilon | b$ ; confidence 0.685
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024084.png ; $\beta$ ; confidence 0.683
+
254. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836
  
256. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $m s$ ; confidence 0.683
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052023.png ; $\| A \| _ { E } = ( \sum a _ { i j } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.835
  
257. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
  
258. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090590/s0905905.png ; $J ( y ) \leq J ( y )$ ; confidence 0.683
+
258. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040701.png ; $( X , x , v )$ ; confidence 0.683
+
259. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022099.png ; $\alpha , b \in C ^ { p }$ ; confidence 0.683
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
+
262. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
  
263. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744011.png ; $\lambda _ { 4 n }$ ; confidence 0.681
+
263. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
  
264. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780230.png ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914024.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680
+
266. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
+
267. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $B = 0$ ; confidence 0.833
  
268. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074150/p07415079.png ; $\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$ ; confidence 0.680
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060130.png ; $90 > 1$ ; confidence 0.833
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303027.png ; $\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$ ; confidence 0.679
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046038.png ; $D \subset C$ ; confidence 0.833
  
270. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031420/d0314205.png ; $k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$ ; confidence 0.679
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024082.png ; $\partial L = a$ ; confidence 0.832
  
271. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833042.png ; $W _ { X } ^ { S }$ ; confidence 0.678
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068037.png ; $d ( A _ { i } )$ ; confidence 0.832
  
272. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s08672038.png ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006015.png ; $3$ ; confidence 0.678
+
273. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040314.png ; $\epsilon _ { i , j } ^ { A } ( \alpha , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677
+
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800161.png ; $\partial N$ ; confidence 0.677
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020060.png ; $21$ ; confidence 0.676
+
276. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
  
277. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072890/p07289041.png ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676
+
277. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
  
278. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega$ ; confidence 0.831
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012072.png ; $f ^ { \langle \mu _ { n } \rangle } ( 0 ) = 0$ ; confidence 0.675
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046041.png ; $L \subset D$ ; confidence 0.831
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010107.png ; $| r | \leq \epsilon ( | A | | x | + | b | )$ ; confidence 0.675
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010070.png ; $K ( M )$ ; confidence 0.831
  
281. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470133.png ; $R _ { T ^ { \prime \prime } }$ ; confidence 0.675
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201104.png ; $\varphi ( \alpha , 0 , i ) = \alpha \text { for } i \geq 3 , \varphi ( \alpha , b , i ) = \varphi ( \alpha , \varphi ( \alpha , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1$ ; confidence 0.829
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010264.png ; $1 / m$ ; confidence 0.829
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006027.png ; $A ; \in A$ ; confidence 0.829
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
  
287. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d11002099.png ; $f : S \rightarrow C$ ; confidence 0.674
+
287. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010060.png ; $p _ { \psi } ( f ) = \operatorname { sup } \{ | w f ( x ) | : x \in X \}$ ; confidence 0.674
+
288. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004027.png ; $C _ { 0 }$ ; confidence 0.674
+
289. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828
  
290. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074010/p07401048.png ; $O _ { 3 } = O _ { 6 } \cap O _ { 7 }$ ; confidence 0.673
+
290. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015650/b01565010.png ; $B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$ ; confidence 0.672
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827
  
293. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png ; $( \xi ) _ { R }$ ; confidence 0.672
+
293. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827
  
294. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
+
294. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
  
295. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; $r \in F$ ; confidence 0.671
+
295. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827
  
296. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001030.png ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
  
297. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022081.png ; $f ( h ) = g ( ( h , h _ { 1 } ) , \ldots , ( h , h _ { j } ) )$ ; confidence 0.827
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040479.png ; $C _ { \Gamma }$ ; confidence 0.670
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827
  
299. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756018.png ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
+
299. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
+
300. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

Revision as of 08:36, 6 September 2019

List

1. a130040786.png ; $A , B \in K$ ; confidence 0.882

2. a110040126.png ; $4$ ; confidence 0.882

3. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

4. h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881

5. r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881

6. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

7. a0107008.png ; $r$ ; confidence 0.881

8. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

9. a130050176.png ; $F _ { q }$ ; confidence 0.880

10. a130040403.png ; $P K$ ; confidence 0.879

11. a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879

12. a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879

13. d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879

14. a11017038.png ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879

15. a13006026.png ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879

16. a130240222.png ; $r$ ; confidence 0.879

17. a01029079.png ; $X _ { \delta }$ ; confidence 0.879

18. a13006042.png ; $P _ { q }$ ; confidence 0.879

19. c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878

20. c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878

21. l12006098.png ; $H \phi$ ; confidence 0.878

22. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

23. a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878

24. a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878

25. a110040153.png ; $C ^ { 2 } : 1 E$ ; confidence 0.878

26. a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877

27. c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877

28. f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877

29. m06443090.png ; $B O$ ; confidence 0.877

30. n067520250.png ; $d j \neq 0$ ; confidence 0.877

31. a11002062.png ; $3$ ; confidence 0.876

32. a11007023.png ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876

33. g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876

34. a0101806.png ; $z = z 0$ ; confidence 0.876

35. a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875

36. a1302403.png ; $n \times 1$ ; confidence 0.875

37. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

38. a011600189.png ; $( K / k )$ ; confidence 0.875

39. e03525091.png ; $z _ { k } \in L$ ; confidence 0.875

40. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

41. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

42. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

43. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

44. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

45. a120050132.png ; $R ^ { N }$ ; confidence 0.875

46. a110010299.png ; $m$ ; confidence 0.874

47. m06444056.png ; $c = 0$ ; confidence 0.874

48. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

49. a01060031.png ; $p = - \infty$ ; confidence 0.874

50. a01046086.png ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873

51. a130040741.png ; $R ^ { \prime }$ ; confidence 0.873

52. a11028054.png ; $AO ( G )$ ; confidence 0.873

53. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

54. a11015019.png ; $\tau ( S )$ ; confidence 0.873

55. a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872

56. a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872

57. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

58. a01055028.png ; $O ( n ) / O ( m )$ ; confidence 0.872

59. a0101209.png ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872

60. a01024049.png ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871

61. a01046071.png ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871

62. a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871

63. a11010013.png ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871

64. a01022062.png ; $R ^ { 2 p }$ ; confidence 0.871

65. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

66. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

67. i051930181.png ; $Y = C$ ; confidence 0.871

68. a11022092.png ; $f \circ \pi$ ; confidence 0.871

69. a1302405.png ; $( n \times m )$ ; confidence 0.870

70. a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870

71. a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870

72. b11069080.png ; $M _ { A g }$ ; confidence 0.870

73. d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870

74. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

75. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

76. a130040725.png ; $S _ { P }$ ; confidence 0.869

77. t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869

78. a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869

79. b11057061.png ; $H _ { m }$ ; confidence 0.869

80. c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869

81. w09816057.png ; $Y \times X$ ; confidence 0.869

82. a12005061.png ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869

83. a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869

84. a12013020.png ; $X$ ; confidence 0.869

85. a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868

86. a130240209.png ; $S$ ; confidence 0.868

87. m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868

88. p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868

89. i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867

90. l05700011.png ; $M N$ ; confidence 0.867

91. l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867

92. a11042095.png ; $C ^ { * }$ ; confidence 0.866

93. d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866

94. d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866

95. e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866

96. e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866

97. p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866

98. s1202309.png ; $O ( r )$ ; confidence 0.866

99. a11033029.png ; $N ^ { * * } = \operatorname { card } ( U _ { n } ^ { * * } ) / p$ ; confidence 0.865

100. m063920116.png ; $\int \int K d S$ ; confidence 0.865

101. a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865

102. a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864

103. a0105806.png ; $y _ { n } + 1$ ; confidence 0.864

104. a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864

105. b11038070.png ; $\Theta f$ ; confidence 0.864

106. f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864

107. m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864

108. s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864

109. s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864

110. t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864

111. a120310161.png ; $A W ^ { * }$ ; confidence 0.863

112. a130240544.png ; $20$ ; confidence 0.863

113. a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863

114. a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863

115. c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863

116. s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863

117. a01012073.png ; $z | < R$ ; confidence 0.863

118. a0105808.png ; $h | v _ { 1 } \| ( \partial f / \partial y ) \| < 1$ ; confidence 0.863

119. a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862

120. k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862

121. p07221037.png ; $F ^ { k }$ ; confidence 0.862

122. t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862

123. a0105801.png ; $y ^ { \prime } = f ( x , y ) , \quad y ( x _ { 0 } ) = y 0$ ; confidence 0.862

124. a11010017.png ; $x - x 0 \in K$ ; confidence 0.861

125. a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861

126. r08143081.png ; $e X$ ; confidence 0.861

127. c02698053.png ; $E _ { 8 }$ ; confidence 0.860

128. n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860

129. w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860

130. a1103507.png ; $e ^ { \lambda z }$ ; confidence 0.860

131. a12010075.png ; $R$ ; confidence 0.859

132. a110040106.png ; $L ] = \lambda$ ; confidence 0.859

133. a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859

134. b01780053.png ; $n = p$ ; confidence 0.858

135. c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858

136. e13002010.png ; $\varphi$ ; confidence 0.858

137. m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858

138. r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858

139. a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858

140. a130240384.png ; $q \geq 2$ ; confidence 0.857

141. a01052076.png ; $A h ^ { - } q$ ; confidence 0.857

142. a1301304.png ; $8$ ; confidence 0.857

143. a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857

144. e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857

145. l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857

146. a11016055.png ; $\langle p _ { k } , A p _ { k - 1 } \rangle = 0$ ; confidence 0.856

147. a110040206.png ; $\{ \sigma = 0 \} \subset P ^ { 4 }$ ; confidence 0.856

148. a11004020.png ; $a$ ; confidence 0.856

149. c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856

150. e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856

151. a13007010.png ; $2 ^ { n } p$ ; confidence 0.856

152. a130240513.png ; $T _ { 2 }$ ; confidence 0.856

153. b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855

154. f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855

155. a01068028.png ; $k _ { 0 } ( A )$ ; confidence 0.855

156. a01060041.png ; $\cup _ { z \subset Z } \{ \sum _ { i } ( Y _ { z } \cap A _ { i } ) \}$ ; confidence 0.854

157. a01071041.png ; $( M )$ ; confidence 0.854

158. b13006060.png ; $b _ { i }$ ; confidence 0.854

159. d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854

160. s08696076.png ; $V < 0$ ; confidence 0.854

161. a11028078.png ; $c ( G )$ ; confidence 0.853

162. a01052014.png ; $( A ) = \| A \| A ^ { - 1 } \|$ ; confidence 0.853

163. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

164. a01012068.png ; $\{ \nu _ { k } \} \cap \{ \mu _ { n } \} = \emptyset$ ; confidence 0.853

165. a11028029.png ; $f : V ( G ) \rightarrow \{ 1 , \ldots , k \}$ ; confidence 0.853

166. a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852

167. a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852

168. a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852

169. d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852

170. e03511022.png ; $\Sigma - 1$ ; confidence 0.852

171. t092600123.png ; $B = I _ { p }$ ; confidence 0.852

172. c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851

173. h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851

174. l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851

175. l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851

176. a11017030.png ; $X \in S ( t )$ ; confidence 0.850

177. a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850

178. a130040143.png ; $S 5$ ; confidence 0.850

179. c13025017.png ; $Y _ { j } = i$ ; confidence 0.850

180. i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850

181. a130040433.png ; $h : A \rightarrow B$ ; confidence 0.850

182. a01052043.png ; $A _ { k } ^ { 1 } = \alpha _ { 2 k - 1 } + \alpha _ { 2 k }$ ; confidence 0.850

183. a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850

184. c02278052.png ; $N \gg n$ ; confidence 0.849

185. c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849

186. f040230100.png ; $x _ { n } = n$ ; confidence 0.849

187. m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849

188. a11004044.png ; $( Z / d _ { 1 } Z ) ^ { 2 } \times ( Z / d _ { 2 } Z ) ^ { 2 }$ ; confidence 0.848

189. a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848

190. g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848

191. n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848

192. a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847

193. d13008069.png ; $H = C ^ { n }$ ; confidence 0.847

194. a130040737.png ; $= 0$ ; confidence 0.847

195. a13006041.png ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846

196. a130040468.png ; $CPC$ ; confidence 0.846

197. a130130103.png ; $K P$ ; confidence 0.846

198. a11058047.png ; $= v : q$ ; confidence 0.846

199. e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846

200. f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846

201. a120160130.png ; $W E = R . F . I$ ; confidence 0.845

202. e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845

203. l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845

204. m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845

205. o07022036.png ; $E$ ; confidence 0.845

206. p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845

207. r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845

208. a11025014.png ; $\operatorname { ln } k$ ; confidence 0.845

209. a01046082.png ; $P _ { n } ( x ) = \delta ^ { n } f ( 0 , x ) / n !$ ; confidence 0.844

210. a11011013.png ; $\cap$ ; confidence 0.844

211. a01022026.png ; $C ^ { p } / \Gamma$ ; confidence 0.843

212. a130040623.png ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843

213. a12031093.png ; $I _ { 1 }$ ; confidence 0.843

214. c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843

215. j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843

216. p07535017.png ; $q IL$ ; confidence 0.843

217. a12010027.png ; $2 ^ { X }$ ; confidence 0.843

218. a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843

219. a130240357.png ; $n - r \geq p$ ; confidence 0.843

220. a1201102.png ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842

221. a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842

222. i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842

223. i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842

224. a1202209.png ; $x | < e$ ; confidence 0.841

225. r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841

226. a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841

227. a12007076.png ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840

228. d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840

229. e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840

230. f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840

231. g12007022.png ; $m \equiv 4$ ; confidence 0.840

232. r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840

233. a01022039.png ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840

234. a11015035.png ; $F ( . | \theta ( S ) )$ ; confidence 0.840

235. a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839

236. c020740328.png ; $e \in E$ ; confidence 0.839

237. a1300102.png ; $C$ ; confidence 0.838

238. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

239. m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838

240. a13024069.png ; $y _ { i j k }$ ; confidence 0.838

241. a11008026.png ; $s = \eta c / \omega$ ; confidence 0.837

242. a12007026.png ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.837

243. k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837

244. l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837

245. s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837

246. s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837

247. a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837

248. a130240168.png ; $\alpha , = 0$ ; confidence 0.837

249. a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837

250. a01012045.png ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837

251. a01033019.png ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836

252. a12013043.png ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836

253. d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836

254. j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836

255. a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836

256. a01052023.png ; $\| A \| _ { E } = ( \sum a _ { i j } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.835

257. b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835

258. c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835

259. c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835

260. a130240429.png ; $\Theta$ ; confidence 0.834

261. a011650252.png ; $\forall x _ { k }$ ; confidence 0.834

262. e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834

263. f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834

264. a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833

265. b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833

266. d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833

267. m06259032.png ; $B = 0$ ; confidence 0.833

268. a130060130.png ; $90 > 1$ ; confidence 0.833

269. a01046038.png ; $D \subset C$ ; confidence 0.833

270. a01024082.png ; $\partial L = a$ ; confidence 0.832

271. a01068037.png ; $d ( A _ { i } )$ ; confidence 0.832

272. b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832

273. w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832

274. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

275. d03225022.png ; $\partial M$ ; confidence 0.831

276. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

277. s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831

278. a12007095.png ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega$ ; confidence 0.831

279. a01046041.png ; $L \subset D$ ; confidence 0.831

280. a11010070.png ; $K ( M )$ ; confidence 0.831

281. c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830

282. s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830

283. a1201104.png ; $\varphi ( \alpha , 0 , i ) = \alpha \text { for } i \geq 3 , \varphi ( \alpha , b , i ) = \varphi ( \alpha , \varphi ( \alpha , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1$ ; confidence 0.829

284. a110010264.png ; $1 / m$ ; confidence 0.829

285. a11006027.png ; $A ; \in A$ ; confidence 0.829

286. b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828

287. d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828

288. l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828

289. s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828

290. y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828

291. a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827

292. a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827

293. c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827

294. p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827

295. p0758301.png ; $a \vee b$ ; confidence 0.827

296. s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827

297. a11022081.png ; $f ( h ) = g ( ( h , h _ { 1 } ) , \ldots , ( h , h _ { j } ) )$ ; confidence 0.827

298. a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827

299. c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826

300. o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43917