Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/9"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 9 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 9 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
+
1. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017045.png ; $E$ ; confidence 0.923
  
2. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $q IL$ ; confidence 0.843
+
2. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150395.png ; $A \wedge B$ ; confidence 0.923
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012056.png ; $f ^ { \langle n _ { k } \rangle } ( \lambda _ { k } ) = 0$ ; confidence 0.923
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240357.png ; $n - r \geq p$ ; confidence 0.843
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012071.png ; $f ^ { \langle \nu _ { k } \rangle } ( 1 ) = 0$ ; confidence 0.923
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001053.png ; $A = \left( \begin{array} { c c } { 10 ^ { 5 } } & { 0 } \\ { 0 } & { 10 ^ { - 5 } } \end{array} \right)$ ; confidence 0.923
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068048.png ; $Q ( n )$ ; confidence 0.923
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922
  
9. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
+
9. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780128.png ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
  
12. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a1100101.png ; $f ( \alpha , x ) = 0$ ; confidence 0.922
  
13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922
  
14. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040235.png ; $i \in I$ ; confidence 0.922
  
15. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022039.png ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n$ ; confidence 0.921
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610104.png ; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034280/d03428088.png ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
+
19. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
+
20. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
  
21. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024069.png ; $y _ { i j k }$ ; confidence 0.838
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040219.png ; $\varphi _ { L } : A \hookrightarrow P ^ { 7 }$ ; confidence 0.920
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008026.png ; $s = \eta c / \omega$ ; confidence 0.837
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032034.png ; $n _ { S } < n$ ; confidence 0.920
  
24. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837
+
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
+
26. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035760/e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
+
27. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010301.png ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040575.png ; $S 5 ^ { S }$ ; confidence 0.919
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240168.png ; $\alpha , = 0$ ; confidence 0.837
+
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040144.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012045.png ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837
+
31. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684025.png ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033019.png ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836
+
32. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715028.png ; $3 N + k + m$ ; confidence 0.919
  
33. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032610/d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836
+
33. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120428.png ; $P _ { n } ( f )$ ; confidence 0.919
  
34. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $N \geq Z$ ; confidence 0.919
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040284.png ; $\square x \rightarrow y$ ; confidence 0.836
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010131.png ; $\epsilon A _ { 1 }$ ; confidence 0.919
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016066.png ; $C _ { m }$ ; confidence 0.919
  
38. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210115.png ; $\alpha$ ; confidence 0.918
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240429.png ; $\Theta$ ; confidence 0.834
+
39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024089.png ; $g > 1$ ; confidence 0.918
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918
  
41. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a013180158.png ; $\| T _ { M } \|$ ; confidence 0.918
  
42. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
+
42. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c0264808.png ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031930/d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918
  
45. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
+
45. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259032.png ; $B = 0$ ; confidence 0.833
+
46. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080020/r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046038.png ; $D \subset C$ ; confidence 0.833
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001026.png ; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024082.png ; $\partial L = a$ ; confidence 0.832
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101009.png ; $U ^ { 0 }$ ; confidence 0.918
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
  
50. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240518.png ; $Z _ { 12 }$ ; confidence 0.917
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
  
52. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032250/d03225022.png ; $\partial M$ ; confidence 0.831
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917
  
53. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
+
53. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024063.png ; $g \times 2 g$ ; confidence 0.917
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046041.png ; $L \subset D$ ; confidence 0.831
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020069.png ; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010070.png ; $K ( M )$ ; confidence 0.831
+
56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
  
57. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023140/c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
+
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
  
58. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090770/s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023620/c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010264.png ; $1 / m$ ; confidence 0.829
+
59. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054070/j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006027.png ; $A ; \in A$ ; confidence 0.829
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210106.png ; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106701.png ; $Q ( y , . )$ ; confidence 0.916
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $a , b$ ; confidence 0.915
  
63. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828
+
63. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
  
64. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828
+
64. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915
  
65. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
+
65. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046600/h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002036.png ; $g \mapsto g ^ { t }$ ; confidence 0.827
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021031.png ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021045.png ; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915
  
68. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110050/c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024036.png ; $g \geq 1$ ; confidence 0.914
  
69. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022047.png ; $p \times 2 p$ ; confidence 0.914
  
70. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012013.png ; $h$ ; confidence 0.914
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914
  
72. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
  
73. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $\| x \| = \rho$ ; confidence 0.826
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037030.png ; $h \in \Omega$ ; confidence 0.914
  
75. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h04793027.png ; $x = [ u ]$ ; confidence 0.825
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010252.png ; $\delta A = - r x ^ { * } / \| x \| _ { 2 } ^ { 2 }$ ; confidence 0.825
+
76. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002045.png ; $T$ ; confidence 0.914
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012050.png ; $z | > 1$ ; confidence 0.823
+
77. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
  
78. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035720/e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
+
78. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043350/g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
  
79. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
+
79. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082110/r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210101.png ; $A _ { k } , B _ { k }$ ; confidence 0.914
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914
  
82. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913
  
83. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822
+
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300402.png ; $Fm$ ; confidence 0.913
  
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018017.png ; $20,21,22$ ; confidence 0.822
+
85. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022052.png ; $W ^ { T }$ ; confidence 0.822
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001051.png ; $| A |$ ; confidence 0.913
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210116.png ; $d [ ( \omega ) ] = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.821
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060530/l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
  
88. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043580/g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046083.png ; $0 \in D$ ; confidence 0.912
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022089.png ; $L ^ { 0 } ( H , m )$ ; confidence 0.911
  
90. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007017.png ; $1$ ; confidence 0.911
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200605.png ; $\Omega = R ^ { m }$ ; confidence 0.820
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015110/b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
+
92. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
+
93. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911
  
94. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
+
94. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
  
95. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820
+
95. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
  
96. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911
  
98. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
+
100. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p074710106.png ; $P \rightarrow e$ ; confidence 0.910
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024048.png ; $F ^ { * }$ ; confidence 0.910
  
102. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909
  
103. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909
  
104. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029069.png ; $\pi x = f g$ ; confidence 0.909
  
105. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
+
107. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816
+
108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021034.png ; $i ( \omega , \overline { \pi } ) = \sum _ { j = 1 } ^ { g } ( A _ { j } B _ { j } ^ { \prime } - B _ { j } A _ { j } ^ { \prime } ) = 0$ ; confidence 0.815
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006020.png ; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909
  
110. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040205.png ; $T$ ; confidence 0.909
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040754.png ; $_ { R } , \mathfrak { M } ( r ) = \operatorname { mng } _ { P \cup R } , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021089.png ; $A _ { k } = \int _ { a _ { k } } \omega _ { 1 } , \quad B _ { k } = \int _ { b _ { k } } \omega _ { 1 }$ ; confidence 0.814
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
  
114. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
+
114. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908
  
115. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
+
115. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005014.png ; $t \in [ 0 , T ]$ ; confidence 0.814
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022028.png ; $C \in C$ ; confidence 0.908
  
117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a1103306.png ; $U$ ; confidence 0.908
  
118. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $Y _ { n k }$ ; confidence 0.813
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005098.png ; $A ( . )$ ; confidence 0.813
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008031.png ; $S ( t )$ ; confidence 0.907
  
120. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040801.png ; $C \subseteq D$ ; confidence 0.907
  
121. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001028.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.811
+
122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024025.png ; $K ( L )$ ; confidence 0.907
  
123. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
+
123. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
+
124. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014048.png ; $E = E$ ; confidence 0.907
  
125. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
  
126. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007026.png ; $c = 5$ ; confidence 0.907
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010195.png ; $\| ( \hat { \lambda } I - A ) ^ { - 1 } \delta A \| > 1$ ; confidence 0.810
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050268.png ; $k > 0$ ; confidence 0.907
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001024.png ; $\delta x = A ^ { - 1 } ( - \delta A x - \delta A \delta x + \delta b )$ ; confidence 0.810
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
  
130. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010137.png ; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043018.png ; $= P \{ \tau ( H ) \leq t , \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \}$ ; confidence 0.810
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300202.png ; $T ; X \rightarrow X$ ; confidence 0.809
+
132. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029015.png ; $f _ { \alpha } : \alpha X \rightarrow \alpha Y$ ; confidence 0.809
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809
+
134. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
+
135. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
  
136. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
+
136. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127050.png ; $x \in D ( A )$ ; confidence 0.906
  
137. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809
+
137. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
  
138. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
+
138. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001069.png ; $b$ ; confidence 0.809
+
139. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040463.png ; $Fi _ { D } A$ ; confidence 0.809
+
140. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012066.png ; $\{ \mu _ { n } \}$ ; confidence 0.808
+
141. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
  
142. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $Z / p$ ; confidence 0.808
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022085.png ; $g : R ^ { j } \rightarrow R$ ; confidence 0.906
  
143. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280193.png ; $m = E X ( s )$ ; confidence 0.808
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905
  
144. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110040/r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050134.png ; $( N \times N )$ ; confidence 0.905
  
145. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240177.png ; $\alpha$ ; confidence 0.905
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024027.png ; $Y = X B + E$ ; confidence 0.807
+
146. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040385.png ; $\Omega \cup F = \cup _ { F \in F } \Omega F$ ; confidence 0.806
+
147. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
  
148. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806
+
148. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072510/p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805
+
149. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073090/p07309030.png ; $V \cap L$ ; confidence 0.905
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $r$ ; confidence 0.805
+
150. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
+
151. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905
  
152. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018032.png ; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905
  
153. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $T ^ { S }$ ; confidence 0.805
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050267.png ; $C > 0$ ; confidence 0.904
  
154. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904
  
155. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110150/r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805
+
155. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005049.png ; $\leq B \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.804
+
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
+
157. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $p ( \alpha )$ ; confidence 0.904
  
158. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
+
158. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001089.png ; $| I - B A \| < 1$ ; confidence 0.804
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $- u _ { 3 }$ ; confidence 0.803
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240335.png ; $F = E X$ ; confidence 0.904
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210103.png ; $2 \pi i c$ ; confidence 0.802
+
161. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
  
162. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
+
162. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
  
163. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
+
163. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
  
164. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
+
164. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903
  
165. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802
+
165. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
  
166. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a1103703.png ; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903
  
168. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010270.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \operatorname { max } \{ r \psi , r ^ { 1 / r } \psi ^ { 1 / r } \}$ ; confidence 0.800
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040207.png ; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110330/s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902
  
172. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104206.png ; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902
  
173. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016029.png ; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902
  
174. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png ; $n = 1$ ; confidence 0.901
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001071.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
+
176. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
  
177. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067310/n06731043.png ; $B O$ ; confidence 0.799
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
+
178. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040799.png ; $D \in K$ ; confidence 0.799
+
179. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901
  
180. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004037.png ; $\varphi \in T$ ; confidence 0.901
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006032.png ; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900
  
182. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033012.png ; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900
  
183. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $IPC$ ; confidence 0.900
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040298.png ; $A \in Q$ ; confidence 0.797
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900
  
187. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $G$ ; confidence 0.797
+
187. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
  
188. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797
+
188. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $k ( X _ { 2 } ) = p$ ; confidence 0.797
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002023.png ; $t \in I$ ; confidence 0.900
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071017.png ; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899
  
191. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010185.png ; $\lambda$ ; confidence 0.899
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899
  
193. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020027.png ; $3$ ; confidence 0.899
  
194. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
+
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899
  
195. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
  
196. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001099.png ; $\delta b$ ; confidence 0.794
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794
+
198. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
  
199. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $u \leq \theta u$ ; confidence 0.794
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898
  
200. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068190/o0681907.png ; $T ( t ) x$ ; confidence 0.794
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
  
201. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
+
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898
  
202. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
+
202. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
  
203. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
+
203. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a0104607.png ; $\delta f ( a , )$ ; confidence 0.793
+
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $X _ { 1 }$ ; confidence 0.793
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png ; $GF ( q )$ ; confidence 0.897
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103305.png ; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897
  
208. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046014.png ; $\delta f ( \alpha , h )$ ; confidence 0.897
  
209. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $1$ ; confidence 0.897
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\eta i$ ; confidence 0.793
+
210. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010037.png ; $T _ { N } ( g )$ ; confidence 0.793
+
211. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
  
212. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018010.png ; $R \in [ 0 , \infty ]$ ; confidence 0.897
  
213. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093890/t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png ; $g \neq 1$ ; confidence 0.896
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
  
215. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
+
215. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896
  
216. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png ; $d \Phi$ ; confidence 0.791
+
216. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240363.png ; $SS _ { H }$ ; confidence 0.895
  
218. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $c ^ { \prime } \beta$ ; confidence 0.790
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022011.png ; $\nu = 1 , \ldots , 2 p$ ; confidence 0.790
+
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006042.png ; $\beta _ { X } ( s )$ ; confidence 0.790
+
221. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
+
222. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047380/h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
  
223. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788
+
223. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102207.png ; $C ^ { p }$ ; confidence 0.788
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085810/s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895
  
227. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894
  
228. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $\alpha < t < b$ ; confidence 0.786
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894
  
230. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431027.png ; $\exists x A$ ; confidence 0.894
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $X _ { 2 }$ ; confidence 0.785
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008029.png ; $v \in V$ ; confidence 0.893
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $D ^ { \perp }$ ; confidence 0.893
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
+
234. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
  
235. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892
  
236. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010322.png ; $j$ ; confidence 0.784
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892
  
237. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
+
237. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
+
238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783
+
239. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783
+
240. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012160/a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783
+
241. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892
  
242. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081250/r08125011.png ; $H ( t ) = E N$ ; confidence 0.783
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
  
243. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018049.png ; $B = 1$ ; confidence 0.783
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050182.png ; $a ( n )$ ; confidence 0.892
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891
  
246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782
+
247. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
  
248. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782
+
248. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891
  
250. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100208.png ; $n = k - \lambda$ ; confidence 0.891
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040127.png ; $A$ ; confidence 0.891
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a1203106.png ; $W ^ { * }$ ; confidence 0.779
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178016.png ; $b a P$ ; confidence 0.779
+
254. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
  
255. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010166.png ; $\hat { k } ( 2 \alpha + \beta )$ ; confidence 0.779
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050203.png ; $P$ ; confidence 0.779
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
  
258. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064550/m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778
+
258. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028067.png ; $x y \in E ( D )$ ; confidence 0.889
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $K ^ { * }$ ; confidence 0.777
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889
  
261. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888
  
262. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888
  
263. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240435.png ; $\operatorname { tr } ( N \Theta )$ ; confidence 0.777
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020066.png ; $A \oplus B$ ; confidence 0.887
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776
+
265. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027240/c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
+
266. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063140/m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
  
267. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776
+
267. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010104.png ; $A \pm \Delta A ] x = [ b \pm \Delta b$ ; confidence 0.776
+
268. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040229.png ; $\hat { K } _ { A } \subset P ^ { 3 }$ ; confidence 0.776
+
269. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775
+
270. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
  
271. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887
  
272. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747034.png ; $( i i + 1 )$ ; confidence 0.886
  
273. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r082050121.png ; $AH _ { p }$ ; confidence 0.775
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010047.png ; $f \in L$ ; confidence 0.774
+
274. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886
  
275. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
+
275. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040252.png ; $A _ { c }$ ; confidence 0.774
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028069.png ; $x z \in E ( D )$ ; confidence 0.886
  
278. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886
  
279. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773
+
279. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
  
280. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
+
280. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885
  
281. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090720/s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773
+
281. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772
+
282. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240104.png ; $y _ { i }$ ; confidence 0.771
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015014.png ; $\alpha ( t )$ ; confidence 0.885
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240205.png ; $X _ { 3 } \beta \neq 0$ ; confidence 0.771
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046050.png ; $\tilde { D } = \{ \xi : x + \xi h \in D \}$ ; confidence 0.771
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050156.png ; $| \alpha | = c ^ { \partial ( \alpha ) }$ ; confidence 0.770
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240334.png ; $\Gamma = B X$ ; confidence 0.884
  
287. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240239.png ; $MS _ { e }$ ; confidence 0.884
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769
+
288. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040174.png ; $p ^ { 3 }$ ; confidence 0.769
+
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004062.png ; $A \ni \alpha \mapsto \{ \sigma \in H ^ { 0 } ( A , L ) : \sigma ( \alpha ) = 0 \} \subset H ^ { 0 } ( A , L )$ ; confidence 0.769
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055037.png ; $G = Z _ { p }$ ; confidence 0.884
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040262.png ; $3 A$ ; confidence 0.768
+
291. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
  
292. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047470/h04747031.png ; $F ^ { p }$ ; confidence 0.768
+
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
  
293. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055660/k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883
  
294. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883
  
295. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070111.png ; $U _ { a }$ ; confidence 0.882
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040154.png ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005045.png ; $x _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767
+
297. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767
+
298. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005053.png ; $| \frac { \partial } { \partial t } U ( t , s ) \| \leq \frac { C } { t - s } , \quad 0 \leq s < t \leq T$ ; confidence 0.766
+
299. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103304.png ; $B _ { Y }$ ; confidence 0.766
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

Revision as of 08:35, 6 September 2019

List

1. s09017045.png ; $E$ ; confidence 0.923

2. t093150395.png ; $A \wedge B$ ; confidence 0.923

3. a01012056.png ; $f ^ { \langle n _ { k } \rangle } ( \lambda _ { k } ) = 0$ ; confidence 0.923

4. a01012071.png ; $f ^ { \langle \nu _ { k } \rangle } ( 1 ) = 0$ ; confidence 0.923

5. a11001053.png ; $A = \left( \begin{array} { c c } { 10 ^ { 5 } } & { 0 } \\ { 0 } & { 10 ^ { - 5 } } \end{array} \right)$ ; confidence 0.923

6. a01068048.png ; $Q ( n )$ ; confidence 0.923

7. a130050157.png ; $c > 1$ ; confidence 0.923

8. a130080109.png ; $U \geq f ( X ) / h ( X )$ ; confidence 0.922

9. b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922

10. c022780128.png ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922

11. f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922

12. a1100101.png ; $f ( \alpha , x ) = 0$ ; confidence 0.922

13. a130240484.png ; $\beta _ { i 0 } + \beta _ { i 1 } t + \ldots + \beta _ { i k } t ^ { k }$ ; confidence 0.922

14. a130040235.png ; $i \in I$ ; confidence 0.922

15. a13007075.png ; $n ^ { \prime } / n \leq 1 + 1 / \sqrt { \operatorname { log } n }$ ; confidence 0.921

16. a12011017.png ; $A ( i , 0 ) = A ( i - 1,1 ) \text { for } i \geq 1 , A ( i , n ) = A ( i - 1 , A ( i , n - 1 ) ) \text { for } i \geq 1 , n$ ; confidence 0.921

17. a110610104.png ; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921

18. d03428088.png ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921

19. i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921

20. l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921

21. a12005068.png ; $A u \in C ( [ 0 , T ] ; X )$ ; confidence 0.921

22. a110040219.png ; $\varphi _ { L } : A \hookrightarrow P ^ { 7 }$ ; confidence 0.920

23. a11032034.png ; $n _ { S } < n$ ; confidence 0.920

24. t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920

25. b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920

26. e0357604.png ; $f : W \rightarrow R$ ; confidence 0.920

27. p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920

28. a130040575.png ; $S 5 ^ { S }$ ; confidence 0.919

29. a130040728.png ; $P \subseteq P ^ { \prime }$ ; confidence 0.919

30. d03125086.png ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919

31. e03684025.png ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919

32. l05715028.png ; $3 N + k + m$ ; confidence 0.919

33. p110120428.png ; $P _ { n } ( f )$ ; confidence 0.919

34. t12006058.png ; $N \geq Z$ ; confidence 0.919

35. a110010131.png ; $\epsilon A _ { 1 }$ ; confidence 0.919

36. a12005095.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t ) , \quad t \in [ 0 , T ]$ ; confidence 0.919

37. a11016066.png ; $C _ { m }$ ; confidence 0.919

38. a010210115.png ; $\alpha$ ; confidence 0.918

39. a01024089.png ; $g > 1$ ; confidence 0.918

40. a11030029.png ; $\{ v _ { \alpha } : \alpha \in A \}$ ; confidence 0.918

41. a013180158.png ; $\| T _ { M } \|$ ; confidence 0.918

42. c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918

43. c0264808.png ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918

44. d031930232.png ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918

45. f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918

46. r080020171.png ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918

47. a11001026.png ; $\| A ^ { - 1 } \delta A \| < 1$ ; confidence 0.918

48. a1101009.png ; $U ^ { 0 }$ ; confidence 0.918

49. a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917

50. a130240518.png ; $Z _ { 12 }$ ; confidence 0.917

51. b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917

52. b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917

53. d032450444.png ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917

54. a01024063.png ; $g \times 2 g$ ; confidence 0.917

55. a01020069.png ; $Q : \mathfrak { A } / \mathfrak { A } _ { 1 } \rightarrow \mathfrak { A }$ ; confidence 0.917

56. t120010109.png ; $m > 3$ ; confidence 0.916

57. t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916

58. c0236203.png ; $| \alpha ( z ) |$ ; confidence 0.916

59. j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916

60. a010210106.png ; $\int _ { \gamma } \omega _ { 3 } = \sum _ { k = 1 } ^ { g } ( l _ { k } A _ { k } + b _ { + k } B _ { k } ) + 2 \pi i \sum _ { j = 1 } ^ { n } m _ { j } c _ { j }$ ; confidence 0.916

61. a0106701.png ; $Q ( y , . )$ ; confidence 0.916

62. a12003011.png ; $a , b$ ; confidence 0.915

63. b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915

64. c02544057.png ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915

65. h0466006.png ; $\{ x : | x - y | < r \}$ ; confidence 0.915

66. l057780212.png ; $31$ ; confidence 0.915

67. a01021045.png ; $( \operatorname { Im } B _ { i j } )$ ; confidence 0.915

68. a01024036.png ; $g \geq 1$ ; confidence 0.914

69. a01022047.png ; $p \times 2 p$ ; confidence 0.914

70. a01012013.png ; $h$ ; confidence 0.914

71. a130050161.png ; $Z _ { G } ( y ) = \sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n }$ ; confidence 0.914

72. a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914

73. a130240328.png ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914

74. b12037030.png ; $h \in \Omega$ ; confidence 0.914

75. b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914

76. e12002045.png ; $T$ ; confidence 0.914

77. e12015064.png ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914

78. g04335040.png ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914

79. r0821106.png ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914

80. a010210101.png ; $A _ { k } , B _ { k }$ ; confidence 0.914

81. a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914

82. a120050109.png ; $\| U ( t , s ) \| _ { Y } \leq \overline { M } e ^ { \overline { \beta } ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.913

83. a1300402.png ; $Fm$ ; confidence 0.913

84. c02473061.png ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913

85. g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913

86. a11001051.png ; $| A |$ ; confidence 0.913

87. l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912

88. a01046083.png ; $0 \in D$ ; confidence 0.912

89. a11022089.png ; $L ^ { 0 } ( H , m )$ ; confidence 0.911

90. a13007017.png ; $1$ ; confidence 0.911

91. a13007057.png ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911

92. d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911

93. f12021085.png ; $\lambda = \lambda _ { j }$ ; confidence 0.911

94. r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911

95. w13007023.png ; $\beta$ ; confidence 0.911

96. a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911

97. a130070100.png ; $n ^ { \prime 0 } / n ^ { 0 } \geq 2 ^ { 1 / 4 } \sim 1,19$ ; confidence 0.911

98. a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910

99. a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910

100. p074710106.png ; $P \rightarrow e$ ; confidence 0.910

101. a01024048.png ; $F ^ { * }$ ; confidence 0.910

102. a130050261.png ; $G _ { C } ^ { \# } ( n )$ ; confidence 0.909

103. a130040791.png ; $K _ { 0 } \subseteq K$ ; confidence 0.909

104. a01029069.png ; $\pi x = f g$ ; confidence 0.909

105. b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909

106. h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909

107. v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909

108. w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909

109. a13006020.png ; $\pi ( x ) = \sum _ { n \leq x } P _ { N } ( n )$ ; confidence 0.909

110. a130040205.png ; $T$ ; confidence 0.909

111. a12007021.png ; $K _ { 0 } > 0$ ; confidence 0.908

112. a12007086.png ; $C ^ { 1 + \delta } ( [ 0 , T ] ; X )$ ; confidence 0.908

113. b13002056.png ; $x \in J$ ; confidence 0.908

114. c026600121.png ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908

115. e1300704.png ; $S = o ( \# A )$ ; confidence 0.908

116. a11022028.png ; $C \in C$ ; confidence 0.908

117. a1103306.png ; $U$ ; confidence 0.908

118. a130040437.png ; $F \mapsto h ^ { - 1 } ( F )$ ; confidence 0.907

119. a12008031.png ; $S ( t )$ ; confidence 0.907

120. a130040801.png ; $C \subseteq D$ ; confidence 0.907

121. a01020080.png ; $6$ ; confidence 0.907

122. e12024025.png ; $K ( L )$ ; confidence 0.907

123. h04773077.png ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907

124. p12014048.png ; $E = E$ ; confidence 0.907

125. a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907

126. a13007026.png ; $c = 5$ ; confidence 0.907

127. a130050268.png ; $k > 0$ ; confidence 0.907

128. a12010065.png ; $u \in D ( \Delta )$ ; confidence 0.907

129. a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

130. a110010137.png ; $\| A ^ { + } \| _ { 2 } = \frac { 1 } { \sigma _ { r } ( A ) }$ ; confidence 0.906

131. a110420109.png ; $x , y \in A$ ; confidence 0.906

132. t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906

133. a01406028.png ; $20$ ; confidence 0.906

134. d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906

135. d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906

136. f04127050.png ; $x \in D ( A )$ ; confidence 0.906

137. g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906

138. l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906

139. p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906

140. r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906

141. w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906

142. a11022085.png ; $g : R ^ { j } \rightarrow R$ ; confidence 0.906

143. a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905

144. a120050134.png ; $( N \times N )$ ; confidence 0.905

145. a130240177.png ; $\alpha$ ; confidence 0.905

146. l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905

147. n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905

148. p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905

149. p07309030.png ; $V \cap L$ ; confidence 0.905

150. r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905

151. u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905

152. a01018032.png ; $A _ { n } = B n ^ { s _ { 1 } } ( \operatorname { ln } n ) ^ { \alpha } + O ( n ^ { \beta } )$ ; confidence 0.905

153. a130050267.png ; $C > 0$ ; confidence 0.904

154. a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904

155. e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904

156. g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904

157. s09076059.png ; $p ( \alpha )$ ; confidence 0.904

158. t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904

159. a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904

160. a130240335.png ; $F = E X$ ; confidence 0.904

161. c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903

162. e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903

163. i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903

164. o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903

165. v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903

166. a1103703.png ; $0 \leq t _ { 0 } < \ldots < t _ { n }$ ; confidence 0.903

167. a130240223.png ; $\zeta _ { i } = E ( z _ { i } )$ ; confidence 0.903

168. a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903

169. a110040207.png ; $\sigma \in H ^ { 0 } ( P ^ { 4 } , F )$ ; confidence 0.902

170. a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902

171. s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902

172. a0104206.png ; $Y _ { n } = X _ { 1 } + \ldots + X _ { n } + c$ ; confidence 0.902

173. a11016029.png ; $x _ { k + 1 } = ( D + \omega L ) ^ { - 1 } ( \omega b - ( ( 1 - \omega ) D - \omega U ) x _ { k } )$ ; confidence 0.902

174. a01021056.png ; $n = 1$ ; confidence 0.901

175. a11001071.png ; $k ( A ) = \| A ^ { - 1 } \| A \|$ ; confidence 0.901

176. t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901

177. a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901

178. c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901

179. n06794014.png ; $N > 5$ ; confidence 0.901

180. a13004037.png ; $\varphi \in T$ ; confidence 0.901

181. a11006032.png ; $\operatorname { lim } _ { s \rightarrow \infty } \beta _ { X } ( s ) = 0$ ; confidence 0.900

182. a01033012.png ; $\beta _ { \gamma } = \int _ { - \infty } ^ { + \infty } | x | ^ { r } p ( x ) d x$ ; confidence 0.900

183. a130040132.png ; $IPC$ ; confidence 0.900

184. a130040581.png ; $S 5 ^ { W }$ ; confidence 0.900

185. b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900

186. b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900

187. b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900

188. e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900

189. a12002023.png ; $t \in I$ ; confidence 0.900

190. a01071017.png ; $A B \subseteq Q , A \nsubseteq Q \Rightarrow B \subseteq \operatorname { pr } ( Q )$ ; confidence 0.899

191. a110010185.png ; $\lambda$ ; confidence 0.899

192. a130240496.png ; $s = 2$ ; confidence 0.899

193. a01020027.png ; $3$ ; confidence 0.899

194. a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899

195. d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899

196. e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899

197. l058360168.png ; $x$ ; confidence 0.899

198. w12007015.png ; $q$ ; confidence 0.899

199. a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898

200. a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898

201. c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898

202. h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898

203. r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898

204. w12014036.png ; $S \square T$ ; confidence 0.898

205. a11002046.png ; $GF ( q )$ ; confidence 0.897

206. a0103305.png ; $\beta _ { r } = E | X | ^ { r }$ ; confidence 0.897

207. a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq Fm$ ; confidence 0.897

208. a01046014.png ; $\delta f ( \alpha , h )$ ; confidence 0.897

209. c02055049.png ; $1$ ; confidence 0.897

210. f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897

211. o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897

212. a01018010.png ; $R \in [ 0 , \infty ]$ ; confidence 0.897

213. a11002010.png ; $g \neq 1$ ; confidence 0.896

214. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

215. i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896

216. s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896

217. a130240363.png ; $SS _ { H }$ ; confidence 0.895

218. a1300106.png ; $B$ ; confidence 0.895

219. a130240106.png ; $t$ ; confidence 0.895

220. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

221. g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895

222. h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895

223. i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895

224. s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895

225. w120110192.png ; $X \in \Phi$ ; confidence 0.895

226. a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895

227. a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894

228. a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894

229. a12022022.png ; $Y$ ; confidence 0.894

230. a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894

231. a01431027.png ; $\exists x A$ ; confidence 0.894

232. a12008029.png ; $v \in V$ ; confidence 0.893

233. c11048046.png ; $D ^ { \perp }$ ; confidence 0.893

234. e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893

235. a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892

236. c022780356.png ; $\Omega$ ; confidence 0.892

237. c02490030.png ; $q = p ^ { r }$ ; confidence 0.892

238. e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892

239. h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892

240. l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892

241. m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892

242. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

243. a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892

244. a130050182.png ; $a ( n )$ ; confidence 0.892

245. a13024051.png ; $3$ ; confidence 0.891

246. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

247. c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891

248. f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891

249. a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891

250. a1100208.png ; $n = k - \lambda$ ; confidence 0.891

251. a110040127.png ; $A$ ; confidence 0.891

252. a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891

253. a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890

254. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

255. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

256. a13013047.png ; $i$ ; confidence 0.889

257. a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889

258. s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889

259. a11028067.png ; $x y \in E ( D )$ ; confidence 0.889

260. a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889

261. a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888

262. a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888

263. a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887

264. a01020066.png ; $A \oplus B$ ; confidence 0.887

265. c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887

266. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

267. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

268. q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887

269. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

270. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

271. a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887

272. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

273. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

274. p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886

275. v0966506.png ; $n \geq 12$ ; confidence 0.886

276. a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886

277. a11028069.png ; $x z \in E ( D )$ ; confidence 0.886

278. a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886

279. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

280. t12001030.png ; $5$ ; confidence 0.885

281. f11015067.png ; $t \subset v$ ; confidence 0.885

282. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

283. a11015014.png ; $\alpha ( t )$ ; confidence 0.885

284. a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885

285. a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884

286. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

287. a130240239.png ; $MS _ { e }$ ; confidence 0.884

288. c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884

289. c12019044.png ; $T ( M )$ ; confidence 0.884

290. a01055037.png ; $G = Z _ { p }$ ; confidence 0.884

291. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

292. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

293. a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883

294. a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883

295. a130070111.png ; $U _ { a }$ ; confidence 0.882

296. c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882

297. c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882

298. i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882

299. l11014038.png ; $\epsilon$ ; confidence 0.882

300. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/9&oldid=43916