Difference between revisions of "User:Maximilian Janisch/latexlist/latex/9"
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550 |
2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550 | 2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550 | ||
| Line 18: | Line 18: | ||
9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545 | 9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545 | ||
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095630/u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544 |
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543 | 13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543 | ||
| Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542 | 16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542 | ||
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763050.png ; $\delta _ { \phi }$ ; confidence 0.541 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540 |
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539 | 23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539 | ||
| Line 48: | Line 48: | ||
24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539 | 24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539 | ||
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450195.png ; $C / \Omega$ ; confidence 0.538 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $( u = const )$ ; confidence 0.538 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538 |
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537 | 29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537 | ||
| Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532 | 41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532 | ||
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531 |
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529 | 45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529 | ||
| Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | 70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | ||
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515 |
74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514 | 74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514 | ||
| Line 216: | Line 216: | ||
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501 | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501 | ||
| − | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/i/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500 |
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499 | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499 | ||
| Line 258: | Line 258: | ||
129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491 | 129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491 | ||
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490 |
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489 | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489 | ||
| Line 286: | Line 286: | ||
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487 | 143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487 | ||
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485 |
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484 | 147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484 | ||
| Line 304: | Line 304: | ||
152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482 | 152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482 | ||
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481 |
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480 | 156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480 | ||
| Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475 | 170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475 | ||
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473 |
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472 | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472 | ||
| Line 388: | Line 388: | ||
194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463 | 194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463 | ||
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462 |
199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 | 199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 | ||
| Line 406: | Line 406: | ||
203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459 | 203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459 | ||
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458 |
207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456 | 207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456 | ||
| Line 426: | Line 426: | ||
213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451 | 213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451 | ||
| − | 214. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450 |
217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449 | 217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449 | ||
| Line 494: | Line 494: | ||
247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435 | 247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435 | ||
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434 |
250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433 | 250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433 | ||
| Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 | 277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 | ||
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416 |
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 | ||
| Line 564: | Line 564: | ||
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415 | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415 | ||
| − | 283. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414 |
287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413 | 287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413 | ||
Revision as of 22:15, 1 September 2019
List
1.
; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
2.
; $A \simeq K$ ; confidence 0.550
3.
; $\xi \in ( \nu F ^ { m } ) _ { p }$ ; confidence 0.549
4.
; $f _ { h } \in F _ { k }$ ; confidence 0.549
5.
; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548
6.
; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547
7.
; $Y \times t$ ; confidence 0.546
8.
; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
9.
; $\hat { \theta } = X$ ; confidence 0.545
10.
; $R el$ ; confidence 0.544
11.
; $j \leq n$ ; confidence 0.544
12.
; $U : B \rightarrow A$ ; confidence 0.544
13.
; $\{ \phi j ( z ) \}$ ; confidence 0.543
14.
; $x \in D _ { A }$ ; confidence 0.542
15.
; $E ( Y | x ) = m ( x )$ ; confidence 0.542
16.
; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542
17.
; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
18.
; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541
19.
; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
20.
; $\delta _ { \phi }$ ; confidence 0.541
21.
; $C ( S ^ { 2 n } )$ ; confidence 0.540
22.
; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
23.
; $B i$ ; confidence 0.539
24.
; $E _ { X } ^ { N }$ ; confidence 0.539
25.
; $D$ ; confidence 0.538
26.
; $C / \Omega$ ; confidence 0.538
27.
; $( u = const )$ ; confidence 0.538
28.
; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538
29.
; $\pi _ { 0 }$ ; confidence 0.537
30.
; $\hat { M } _ { 0 }$ ; confidence 0.537
31.
; $H _ { 2 } \times H _ { 1 }$ ; confidence 0.537
32.
; $\rho = E m \alpha \tau _ { j } ^ { e }$ ; confidence 0.537
33.
; $A$ ; confidence 0.535
34.
; $m B$ ; confidence 0.535
35.
; $| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$ ; confidence 0.535
36.
; $\psi \in L$ ; confidence 0.533
37.
; $X _ { s } = X \times s s$ ; confidence 0.533
38.
; $t _ { \gamma }$ ; confidence 0.533
39.
; $\tau \in V o c$ ; confidence 0.532
40.
; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532
41.
; $n _ { \Delta } = 1$ ; confidence 0.532
42.
; $4$ ; confidence 0.531
43.
; $\{ fd ( M )$ ; confidence 0.531
44.
; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531
45.
; $P s$ ; confidence 0.529
46.
; $T ^ { * }$ ; confidence 0.527
47.
; $T : A _ { j } \rightarrow A$ ; confidence 0.526
48.
; $- i \partial / \partial x _ { j }$ ; confidence 0.526
49.
; $z$ ; confidence 0.525
50.
; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525
51.
; $\therefore M \rightarrow E$ ; confidence 0.524
52.
; $w \in T V$ ; confidence 0.524
53.
; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523
54.
; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523
55.
; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522
56.
; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522
57.
; $a \perp b$ ; confidence 0.521
58.
; $A = N \oplus s$ ; confidence 0.521
59.
; $t \mapsto t + T$ ; confidence 0.520
60.
; $F _ { \infty } ^ { s }$ ; confidence 0.520
61.
; $T$ ; confidence 0.520
62.
; $E X _ { k } = a$ ; confidence 0.520
63.
; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
64.
; $a _ { y }$ ; confidence 0.519
65.
; $R ^ { k } p \times ( F )$ ; confidence 0.519
66.
; $x \in H ^ { + }$ ; confidence 0.518
67.
; $p _ { \alpha } = e$ ; confidence 0.518
68.
; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517
69.
; $\partial M ^ { n + 1 } = K ^ { n }$ ; confidence 0.516
70.
; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
71.
; $( 1 )$ ; confidence 0.515
72.
; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
73.
; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
74.
; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
75.
; $( f \in H _ { C } ( D ) )$ ; confidence 0.513
76.
; $\sim 2$ ; confidence 0.512
77.
; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
78.
; $DX _ { k } = \sigma ^ { 2 }$ ; confidence 0.511
79.
; $\operatorname { exp } _ { q } X = r$ ; confidence 0.511
80.
; $\mathfrak { g } = C$ ; confidence 0.510
81.
; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510
82.
; $Z ^ { * }$ ; confidence 0.508
83.
; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
84.
; $I _ { X }$ ; confidence 0.507
85.
; $\pi$ ; confidence 0.507
86.
; $\Phi _ { t } = id$ ; confidence 0.507
87.
; $q 2 = 6$ ; confidence 0.507
88.
; $x _ { i } \in \pi$ ; confidence 0.507
89.
; $\Omega \in \Delta ^ { n } S$ ; confidence 0.506
90.
; $A ^ { ( 0 ) }$ ; confidence 0.506
91.
; $a T \rightarrow \infty$ ; confidence 0.506
92.
; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
93.
; $D : \mathfrak { D } \rightarrow A$ ; confidence 0.505
94.
; $\tilde { \Omega }$ ; confidence 0.505
95.
; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505
96.
; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505
97.
; $M = M \Lambda ^ { t }$ ; confidence 0.505
98.
; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505
99.
; $k$ ; confidence 0.504
100.
; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504
101.
; $\varepsilon$ ; confidence 0.504
102.
; $q 2 = 4$ ; confidence 0.504
103.
; $y \in H$ ; confidence 0.503
104.
; $\alpha p$ ; confidence 0.503
105.
; $A = S ^ { \prime }$ ; confidence 0.502
106.
; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502
107.
; $X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$ ; confidence 0.501
108.
; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
109.
; $Z = X \Gamma + F$ ; confidence 0.500
110.
; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500
111.
; $< 2 a$ ; confidence 0.500
112.
; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
113.
; $m$ ; confidence 0.499
114.
; $A x - \hat { \lambda } x = - \delta A x$ ; confidence 0.499
115.
; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499
116.
; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498
117.
; $C ( S ^ { n } )$ ; confidence 0.498
118.
; $3 a$ ; confidence 0.497
119.
; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
120.
; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497
121.
; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496
122.
; $74$ ; confidence 0.496
123.
; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
124.
; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494
125.
; $M ( E ) = \vec { X }$ ; confidence 0.493
126.
; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
127.
; $\Delta ^ { i }$ ; confidence 0.491
128.
; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491
129.
; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
130.
; $\sigma _ { ess } ( T )$ ; confidence 0.490
131.
; $12$ ; confidence 0.490
132.
; $( K _ { i } / k )$ ; confidence 0.490
133.
; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
134.
; $G ( u )$ ; confidence 0.489
135.
; $V \not \equiv W$ ; confidence 0.489
136.
; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489
137.
; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
138.
; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
139.
; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
140.
; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
141.
; $\prod x$ ; confidence 0.487
142.
; $d \in C$ ; confidence 0.487
143.
; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
144.
; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
145.
; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
146.
; $x$ ; confidence 0.485
147.
; $A ( \vec { G } )$ ; confidence 0.484
148.
; $g ^ { ( i ) }$ ; confidence 0.484
149.
; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483
150.
; $k = R / m$ ; confidence 0.483
151.
; $N = L . L$ ; confidence 0.482
152.
; $y = Arc$ ; confidence 0.482
153.
; $Z _ { 13 }$ ; confidence 0.481
154.
; $P Q = P \times Q$ ; confidence 0.481
155.
; $\theta _ { T } ^ { * }$ ; confidence 0.481
156.
; $X \times F$ ; confidence 0.480
157.
; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
158.
; $i = 1 , \ldots , m$ ; confidence 0.480
159.
; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
160.
; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479
161.
; $18$ ; confidence 0.479
162.
; $y$ ; confidence 0.478
163.
; $| w | < r _ { 0 }$ ; confidence 0.478
164.
; $O ( \epsilon _ { N } )$ ; confidence 0.478
165.
; $\phi$ ; confidence 0.476
166.
; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
167.
; $V \oplus \mathfrak { g }$ ; confidence 0.476
168.
; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
169.
; $x$ ; confidence 0.475
170.
; $E \neq \emptyset$ ; confidence 0.475
171.
; $i$ ; confidence 0.474
172.
; $t \in S$ ; confidence 0.474
173.
; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
174.
; $\lambda \geq \gamma$ ; confidence 0.474
175.
; $2$ ; confidence 0.473
176.
; $W _ { C }$ ; confidence 0.473
177.
; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
178.
; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
179.
; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
180.
; $( S ^ { 1 } )$ ; confidence 0.472
181.
; $c = \operatorname { const } \neq 0$ ; confidence 0.470
182.
; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470
183.
; $T ^ { \aleph } x \in A$ ; confidence 0.469
184.
; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467
185.
; $\phi ( t ) \equiv$ ; confidence 0.467
186.
; $9 -$ ; confidence 0.467
187.
; $E _ { x } ( s )$ ; confidence 0.467
188.
; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467
189.
; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
190.
; $t \rightarrow t + w z$ ; confidence 0.466
191.
; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
192.
; $S ^ { * } = S$ ; confidence 0.463
193.
; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
194.
; $Z _ { \zeta } ( T )$ ; confidence 0.463
195.
; $P$ ; confidence 0.462
196.
; $u = q ( x ) \text { on } g$ ; confidence 0.462
197.
; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
198.
; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
199.
; $2 \pi \alpha$ ; confidence 0.461
200.
; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
201.
; $| \epsilon | < \epsilon$ ; confidence 0.461
202.
; $p _ { i }$ ; confidence 0.459
203.
; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
204.
; $t = ( t _ { x } )$ ; confidence 0.458
205.
; $1$ ; confidence 0.458
206.
; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
207.
; $A ( \iota X A ( x ) )$ ; confidence 0.456
208.
; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
209.
; $M$ ; confidence 0.455
210.
; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
211.
; $T _ { F }$ ; confidence 0.455
212.
; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
213.
; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
214.
; $i$ ; confidence 0.450
215.
; $F _ { b }$ ; confidence 0.450
216.
; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
217.
; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
218.
; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
219.
; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
220.
; $\Omega \frac { p } { x }$ ; confidence 0.447
221.
; $X ^ { * }$ ; confidence 0.447
222.
; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
223.
; $T _ { 1 }$ ; confidence 0.446
224.
; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
225.
; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
226.
; $\phi ( \mathfrak { A } )$ ; confidence 0.445
227.
; $d ^ { \prime }$ ; confidence 0.445
228.
; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
229.
; $\alpha _ { i } \in R$ ; confidence 0.443
230.
; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
231.
; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
232.
; $f _ { x } ^ { - 1 }$ ; confidence 0.443
233.
; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
234.
; $Y$ ; confidence 0.441
235.
; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
236.
; $300$ ; confidence 0.440
237.
; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
238.
; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
239.
; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
240.
; $\mathfrak { a } / W$ ; confidence 0.438
241.
; $u \in C ^ { G }$ ; confidence 0.438
242.
; $A = N \oplus S _ { 1 }$ ; confidence 0.438
243.
; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
244.
; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
245.
; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
246.
; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
247.
; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
248.
; $\pi$ ; confidence 0.434
249.
; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
250.
; $P _ { C } ^ { 1 }$ ; confidence 0.433
251.
; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
252.
; $X \subset M ^ { n }$ ; confidence 0.432
253.
; $A \supset B$ ; confidence 0.432
254.
; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
255.
; $L ^ { Y } ( X , Y )$ ; confidence 0.431
256.
; $\varepsilon \in X$ ; confidence 0.430
257.
; $\nu ( n ) = \alpha$ ; confidence 0.430
258.
; $1$ ; confidence 0.430
259.
; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
260.
; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
261.
; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
262.
; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
263.
; $l \mapsto ( . l )$ ; confidence 0.425
264.
; $c _ { q }$ ; confidence 0.425
265.
; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
266.
; $x <$ ; confidence 0.424
267.
; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
268.
; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
269.
; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
270.
; $6 \pi \eta \alpha$ ; confidence 0.422
271.
; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
272.
; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
273.
; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
274.
; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
275.
; $q ^ { 1 }$ ; confidence 0.419
276.
; $( C ( S ) , \overline { g } )$ ; confidence 0.418
277.
; $LOC$ ; confidence 0.417
278.
; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
279.
; $\mathfrak { x } \times x$ ; confidence 0.416
280.
; $\pi / \rho$ ; confidence 0.416
281.
; $\operatorname { ad } X$ ; confidence 0.415
282.
; $x \in G _ { n }$ ; confidence 0.415
283.
; $X \beta$ ; confidence 0.414
284.
; $B _ { j } \in B$ ; confidence 0.414
285.
; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
286.
; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
287.
; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
288.
; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
289.
; $v \in G$ ; confidence 0.413
290.
; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
291.
; $v \in A _ { p } ( G )$ ; confidence 0.412
292.
; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
293.
; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
294.
; $\tau _ { k + 1 } = t$ ; confidence 0.410
295.
; $C _ { \psi }$ ; confidence 0.409
296.
; $\tau ^ { n }$ ; confidence 0.408
297.
; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
298.
; $\mu = \beta \nu$ ; confidence 0.406
299.
; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
300.
; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
Maximilian Janisch/latexlist/latex/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/9&oldid=43859