Difference between revisions of "User:Maximilian Janisch/latexlist/latex/9"
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 9 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550 |
2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550 | 2. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550 | ||
Line 18: | Line 18: | ||
9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545 | 9. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063100/m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095630/u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544 |
13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543 | 13. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543 | ||
Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542 | 16. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700139.png ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763050.png ; $\delta _ { \phi }$ ; confidence 0.541 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540 |
23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539 | 23. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024062.png ; $B i$ ; confidence 0.539 | ||
Line 48: | Line 48: | ||
24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539 | 24. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048330/h04833033.png ; $E _ { X } ^ { N }$ ; confidence 0.539 | ||
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450195.png ; $C / \Omega$ ; confidence 0.538 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c02760032.png ; $( u = const )$ ; confidence 0.538 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538 |
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537 | 29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png ; $\pi _ { 0 }$ ; confidence 0.537 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532 | 41. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531 |
45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529 | 45. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529 | ||
Line 140: | Line 140: | ||
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | 70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515 |
74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514 | 74. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514 | ||
Line 216: | Line 216: | ||
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501 | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501 | ||
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/i/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500 |
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499 | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499 | ||
Line 258: | Line 258: | ||
129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491 | 129. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491 | ||
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490 |
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489 | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489 | ||
Line 286: | Line 286: | ||
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487 | 143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487 | ||
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485 |
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484 | 147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484 | ||
Line 304: | Line 304: | ||
152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482 | 152. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481 |
156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480 | 156. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480 | ||
Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475 | 170. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473 |
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472 | 179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472 | ||
Line 388: | Line 388: | ||
194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463 | 194. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463 | ||
− | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462 |
199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 | 199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 | ||
Line 406: | Line 406: | ||
203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459 | 203. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459 | ||
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458 |
207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456 | 207. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456 | ||
Line 426: | Line 426: | ||
213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451 | 213. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450 |
217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449 | 217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449 | ||
Line 494: | Line 494: | ||
247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435 | 247. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434 |
250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433 | 250. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433 | ||
Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 | 277. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 | ||
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416 |
281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 | ||
Line 564: | Line 564: | ||
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415 | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415 | ||
− | 283. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414 |
287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413 | 287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413 |
Revision as of 22:15, 1 September 2019
List
1. ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
2. ; $A \simeq K$ ; confidence 0.550
3. ; $\xi \in ( \nu F ^ { m } ) _ { p }$ ; confidence 0.549
4. ; $f _ { h } \in F _ { k }$ ; confidence 0.549
5. ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548
6. ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547
7. ; $Y \times t$ ; confidence 0.546
8. ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
9. ; $\hat { \theta } = X$ ; confidence 0.545
10. ; $R el$ ; confidence 0.544
11. ; $j \leq n$ ; confidence 0.544
12. ; $U : B \rightarrow A$ ; confidence 0.544
13. ; $\{ \phi j ( z ) \}$ ; confidence 0.543
14. ; $x \in D _ { A }$ ; confidence 0.542
15. ; $E ( Y | x ) = m ( x )$ ; confidence 0.542
16. ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542
17. ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
18. ; $\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$ ; confidence 0.541
19. ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
20. ; $\delta _ { \phi }$ ; confidence 0.541
21. ; $C ( S ^ { 2 n } )$ ; confidence 0.540
22. ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
23. ; $B i$ ; confidence 0.539
24. ; $E _ { X } ^ { N }$ ; confidence 0.539
25. ; $D$ ; confidence 0.538
26. ; $C / \Omega$ ; confidence 0.538
27. ; $( u = const )$ ; confidence 0.538
28. ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538
29. ; $\pi _ { 0 }$ ; confidence 0.537
30. ; $\hat { M } _ { 0 }$ ; confidence 0.537
31. ; $H _ { 2 } \times H _ { 1 }$ ; confidence 0.537
32. ; $\rho = E m \alpha \tau _ { j } ^ { e }$ ; confidence 0.537
33. ; $A$ ; confidence 0.535
34. ; $m B$ ; confidence 0.535
35. ; $| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$ ; confidence 0.535
36. ; $\psi \in L$ ; confidence 0.533
37. ; $X _ { s } = X \times s s$ ; confidence 0.533
38. ; $t _ { \gamma }$ ; confidence 0.533
39. ; $\tau \in V o c$ ; confidence 0.532
40. ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532
41. ; $n _ { \Delta } = 1$ ; confidence 0.532
42. ; $4$ ; confidence 0.531
43. ; $\{ fd ( M )$ ; confidence 0.531
44. ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531
45. ; $P s$ ; confidence 0.529
46. ; $T ^ { * }$ ; confidence 0.527
47. ; $T : A _ { j } \rightarrow A$ ; confidence 0.526
48. ; $- i \partial / \partial x _ { j }$ ; confidence 0.526
49. ; $z$ ; confidence 0.525
50. ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525
51. ; $\therefore M \rightarrow E$ ; confidence 0.524
52. ; $w \in T V$ ; confidence 0.524
53. ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523
54. ; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523
55. ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522
56. ; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522
57. ; $a \perp b$ ; confidence 0.521
58. ; $A = N \oplus s$ ; confidence 0.521
59. ; $t \mapsto t + T$ ; confidence 0.520
60. ; $F _ { \infty } ^ { s }$ ; confidence 0.520
61. ; $T$ ; confidence 0.520
62. ; $E X _ { k } = a$ ; confidence 0.520
63. ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
64. ; $a _ { y }$ ; confidence 0.519
65. ; $R ^ { k } p \times ( F )$ ; confidence 0.519
66. ; $x \in H ^ { + }$ ; confidence 0.518
67. ; $p _ { \alpha } = e$ ; confidence 0.518
68. ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517
69. ; $\partial M ^ { n + 1 } = K ^ { n }$ ; confidence 0.516
70. ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
71. ; $( 1 )$ ; confidence 0.515
72. ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
73. ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
74. ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
75. ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513
76. ; $\sim 2$ ; confidence 0.512
77. ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
78. ; $DX _ { k } = \sigma ^ { 2 }$ ; confidence 0.511
79. ; $\operatorname { exp } _ { q } X = r$ ; confidence 0.511
80. ; $\mathfrak { g } = C$ ; confidence 0.510
81. ; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510
82. ; $Z ^ { * }$ ; confidence 0.508
83. ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
84. ; $I _ { X }$ ; confidence 0.507
85. ; $\pi$ ; confidence 0.507
86. ; $\Phi _ { t } = id$ ; confidence 0.507
87. ; $q 2 = 6$ ; confidence 0.507
88. ; $x _ { i } \in \pi$ ; confidence 0.507
89. ; $\Omega \in \Delta ^ { n } S$ ; confidence 0.506
90. ; $A ^ { ( 0 ) }$ ; confidence 0.506
91. ; $a T \rightarrow \infty$ ; confidence 0.506
92. ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
93. ; $D : \mathfrak { D } \rightarrow A$ ; confidence 0.505
94. ; $\tilde { \Omega }$ ; confidence 0.505
95. ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505
96. ; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505
97. ; $M = M \Lambda ^ { t }$ ; confidence 0.505
98. ; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505
99. ; $k$ ; confidence 0.504
100. ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504
101. ; $\varepsilon$ ; confidence 0.504
102. ; $q 2 = 4$ ; confidence 0.504
103. ; $y \in H$ ; confidence 0.503
104. ; $\alpha p$ ; confidence 0.503
105. ; $A = S ^ { \prime }$ ; confidence 0.502
106. ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502
107. ; $X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$ ; confidence 0.501
108. ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
109. ; $Z = X \Gamma + F$ ; confidence 0.500
110. ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500
111. ; $< 2 a$ ; confidence 0.500
112. ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
113. ; $m$ ; confidence 0.499
114. ; $A x - \hat { \lambda } x = - \delta A x$ ; confidence 0.499
115. ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499
116. ; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498
117. ; $C ( S ^ { n } )$ ; confidence 0.498
118. ; $3 a$ ; confidence 0.497
119. ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
120. ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497
121. ; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496
122. ; $74$ ; confidence 0.496
123. ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
124. ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494
125. ; $M ( E ) = \vec { X }$ ; confidence 0.493
126. ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
127. ; $\Delta ^ { i }$ ; confidence 0.491
128. ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491
129. ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
130. ; $\sigma _ { ess } ( T )$ ; confidence 0.490
131. ; $12$ ; confidence 0.490
132. ; $( K _ { i } / k )$ ; confidence 0.490
133. ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
134. ; $G ( u )$ ; confidence 0.489
135. ; $V \not \equiv W$ ; confidence 0.489
136. ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489
137. ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
138. ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
139. ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
140. ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
141. ; $\prod x$ ; confidence 0.487
142. ; $d \in C$ ; confidence 0.487
143. ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
144. ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
145. ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
146. ; $x$ ; confidence 0.485
147. ; $A ( \vec { G } )$ ; confidence 0.484
148. ; $g ^ { ( i ) }$ ; confidence 0.484
149. ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483
150. ; $k = R / m$ ; confidence 0.483
151. ; $N = L . L$ ; confidence 0.482
152. ; $y = Arc$ ; confidence 0.482
153. ; $Z _ { 13 }$ ; confidence 0.481
154. ; $P Q = P \times Q$ ; confidence 0.481
155. ; $\theta _ { T } ^ { * }$ ; confidence 0.481
156. ; $X \times F$ ; confidence 0.480
157. ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
158. ; $i = 1 , \ldots , m$ ; confidence 0.480
159. ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
160. ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479
161. ; $18$ ; confidence 0.479
162. ; $y$ ; confidence 0.478
163. ; $| w | < r _ { 0 }$ ; confidence 0.478
164. ; $O ( \epsilon _ { N } )$ ; confidence 0.478
165. ; $\phi$ ; confidence 0.476
166. ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
167. ; $V \oplus \mathfrak { g }$ ; confidence 0.476
168. ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
169. ; $x$ ; confidence 0.475
170. ; $E \neq \emptyset$ ; confidence 0.475
171. ; $i$ ; confidence 0.474
172. ; $t \in S$ ; confidence 0.474
173. ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
174. ; $\lambda \geq \gamma$ ; confidence 0.474
175. ; $2$ ; confidence 0.473
176. ; $W _ { C }$ ; confidence 0.473
177. ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
178. ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
179. ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
180. ; $( S ^ { 1 } )$ ; confidence 0.472
181. ; $c = \operatorname { const } \neq 0$ ; confidence 0.470
182. ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470
183. ; $T ^ { \aleph } x \in A$ ; confidence 0.469
184. ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467
185. ; $\phi ( t ) \equiv$ ; confidence 0.467
186. ; $9 -$ ; confidence 0.467
187. ; $E _ { x } ( s )$ ; confidence 0.467
188. ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467
189. ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
190. ; $t \rightarrow t + w z$ ; confidence 0.466
191. ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
192. ; $S ^ { * } = S$ ; confidence 0.463
193. ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
194. ; $Z _ { \zeta } ( T )$ ; confidence 0.463
195. ; $P$ ; confidence 0.462
196. ; $u = q ( x ) \text { on } g$ ; confidence 0.462
197. ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
198. ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
199. ; $2 \pi \alpha$ ; confidence 0.461
200. ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
201. ; $| \epsilon | < \epsilon$ ; confidence 0.461
202. ; $p _ { i }$ ; confidence 0.459
203. ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
204. ; $t = ( t _ { x } )$ ; confidence 0.458
205. ; $1$ ; confidence 0.458
206. ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
207. ; $A ( \iota X A ( x ) )$ ; confidence 0.456
208. ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
209. ; $M$ ; confidence 0.455
210. ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
211. ; $T _ { F }$ ; confidence 0.455
212. ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
213. ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
214. ; $i$ ; confidence 0.450
215. ; $F _ { b }$ ; confidence 0.450
216. ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
217. ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
218. ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
219. ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
220. ; $\Omega \frac { p } { x }$ ; confidence 0.447
221. ; $X ^ { * }$ ; confidence 0.447
222. ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
223. ; $T _ { 1 }$ ; confidence 0.446
224. ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
225. ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
226. ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
227. ; $d ^ { \prime }$ ; confidence 0.445
228. ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
229. ; $\alpha _ { i } \in R$ ; confidence 0.443
230. ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
231. ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
232. ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
233. ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
234. ; $Y$ ; confidence 0.441
235. ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
236. ; $300$ ; confidence 0.440
237. ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
238. ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
239. ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
240. ; $\mathfrak { a } / W$ ; confidence 0.438
241. ; $u \in C ^ { G }$ ; confidence 0.438
242. ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
243. ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
244. ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
245. ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
246. ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
247. ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
248. ; $\pi$ ; confidence 0.434
249. ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
250. ; $P _ { C } ^ { 1 }$ ; confidence 0.433
251. ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
252. ; $X \subset M ^ { n }$ ; confidence 0.432
253. ; $A \supset B$ ; confidence 0.432
254. ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
255. ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
256. ; $\varepsilon \in X$ ; confidence 0.430
257. ; $\nu ( n ) = \alpha$ ; confidence 0.430
258. ; $1$ ; confidence 0.430
259. ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
260. ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
261. ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
262. ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
263. ; $l \mapsto ( . l )$ ; confidence 0.425
264. ; $c _ { q }$ ; confidence 0.425
265. ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
266. ; $x <$ ; confidence 0.424
267. ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
268. ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
269. ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
270. ; $6 \pi \eta \alpha$ ; confidence 0.422
271. ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
272. ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
273. ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
274. ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
275. ; $q ^ { 1 }$ ; confidence 0.419
276. ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
277. ; $LOC$ ; confidence 0.417
278. ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
279. ; $\mathfrak { x } \times x$ ; confidence 0.416
280. ; $\pi / \rho$ ; confidence 0.416
281. ; $\operatorname { ad } X$ ; confidence 0.415
282. ; $x \in G _ { n }$ ; confidence 0.415
283. ; $X \beta$ ; confidence 0.414
284. ; $B _ { j } \in B$ ; confidence 0.414
285. ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
286. ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
287. ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
288. ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
289. ; $v \in G$ ; confidence 0.413
290. ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
291. ; $v \in A _ { p } ( G )$ ; confidence 0.412
292. ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
293. ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
294. ; $\tau _ { k + 1 } = t$ ; confidence 0.410
295. ; $C _ { \psi }$ ; confidence 0.409
296. ; $\tau ^ { n }$ ; confidence 0.408
297. ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
298. ; $\mu = \beta \nu$ ; confidence 0.406
299. ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
300. ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
Maximilian Janisch/latexlist/latex/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/9&oldid=43859