Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/11"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 11 out of 11 with 83 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 11 out of 11 with 83 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
+
1. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
  
2. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097040/w0970409.png ; $\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$ ; confidence 0.964
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
  
3. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097060/w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
  
4. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097090/w0970903.png ; $F ( x )$ ; confidence 1.000
+
4. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
  
5. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980
+
5. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
  
6. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097290/w09729017.png ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499
+
6. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097310/w09731010.png ; $\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$ ; confidence 0.997
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
  
8. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png ; $A = N \oplus s$ ; confidence 0.521
+
8. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
  
9. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
  
10. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
+
10. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
  
11. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
+
11. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
  
12. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980
+
12. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
  
13. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004043.png ; $K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$ ; confidence 0.571
+
13. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
  
14. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
  
15. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
  
16. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
+
16. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
  
17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
  
18. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097600/w09760044.png ; $H ^ { i } ( X )$ ; confidence 0.995
+
18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
  
19. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097600/w0976009.png ; $H ^ { 2 n } ( X )$ ; confidence 0.999
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
  
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007023.png ; $\beta$ ; confidence 0.911
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
  
21. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
21. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
  
22. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
+
22. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
  
23. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670151.png ; $A _ { k + 1 } ( C )$ ; confidence 0.634
+
23. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
  
24. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670153.png ; $\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$ ; confidence 0.970
+
24. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
  
25. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
+
25. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
  
26. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
+
26. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
  
27. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
+
27. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
  
28. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463
+
28. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
  
29. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771067.png ; $N _ { G } ( T ) / Z _ { G } ( T )$ ; confidence 0.990
+
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
  
30. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w0977109.png ; $N _ { G } ( T )$ ; confidence 0.970
+
30. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
  
31. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097720/w0977202.png ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.966
+
31. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
+
32. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090399.png ; $L ( \mu )$ ; confidence 0.993
+
33. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
+
35. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
  
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
+
36. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
  
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
+
37. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
  
38. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
+
38. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
+
39. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
  
40. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110192.png ; $X \in \Phi$ ; confidence 0.895
+
40. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
  
42. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
+
42. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
  
43. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014036.png ; $S \square T$ ; confidence 0.898
+
43. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
  
44. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080142.png ; $T _ { n }$ ; confidence 0.602
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
  
45. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008076.png ; $N = 2$ ; confidence 0.996
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
+
46. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
  
47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998
+
47. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
  
48. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
48. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
  
49. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017064.png ; $l \equiv 2 ( \operatorname { mod } 3 )$ ; confidence 0.997
+
49. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
  
50. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w0979106.png ; $B ( \lambda )$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
  
51. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
+
51. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
  
52. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591
+
52. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
  
53. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
+
53. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
  
54. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000
+
54. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
  
55. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018046.png ; $t _ { 1 } \in D ^ { - }$ ; confidence 0.997
+
55. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
  
56. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110070/w11007022.png ; $\| x \| _ { 1 }$ ; confidence 0.650
+
56. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
  
57. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
+
57. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
  
58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
  
59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
+
59. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
  
60. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021059.png ; $B _ { m } = R$ ; confidence 0.993
+
60. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070370/o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076
  
61. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098040/w09804013.png ; $p ( n + 1 ) / 2$ ; confidence 0.997
+
61. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076
  
62. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110120/w11012047.png ; $( D ) \leq c \text { length } ( C )$ ; confidence 0.985
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869
+
63. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
  
64. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012800/a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072
  
65. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
+
65. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
  
66. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002033.png ; $D ( R )$ ; confidence 0.960
+
66. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
  
67. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001021.png ; $J ( \phi )$ ; confidence 0.976
+
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
  
68. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071
  
69. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
  
70. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
  
71. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001017.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.996
+
71. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
  
72. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
+
72. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
  
73. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
+
73. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066
  
74. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y09903095.png ; $\sigma ( M ^ { 4 } )$ ; confidence 1.000
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
  
75. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099030/y099030101.png ; $\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$ ; confidence 0.998
+
75. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060
  
76. https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
+
76. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087300/s08730040.png ; $Q _ { 1 }$ ; confidence 0.060
  
77. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
+
77. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
  
78. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930
+
78. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
  
79. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005046.png ; $I = ( f )$ ; confidence 0.997
+
79. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056
  
80. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $( f g f h )$ ; confidence 0.723
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
  
81. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002043.png ; $1.609$ ; confidence 0.997
+
81. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
  
82. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
82. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
  
83. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
+
83. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051

Revision as of 11:46, 1 September 2019

List

1. l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155

2. c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152

3. a011600198.png ; $N _ { 0 }$ ; confidence 0.151

4. l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148

5. o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147

6. q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146

7. a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144

8. g043780134.png ; $F = p t$ ; confidence 0.143

9. i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143

10. t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143

11. d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142

12. h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142

13. s08677096.png ; $5 + 7 n$ ; confidence 0.141

14. a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140

15. a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139

16. s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138

17. a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137

18. l12009013.png ; $Q _ { A }$ ; confidence 0.136

19. a13001017.png ; $3 + 5$ ; confidence 0.136

20. a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134

21. w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134

22. d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132

23. l05911037.png ; $p i n$ ; confidence 0.132

24. p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131

25. d11011084.png ; $L \cup O$ ; confidence 0.130

26. r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130

27. l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129

28. m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128

29. t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127

30. g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124

31. c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121

32. v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119

33. t130140169.png ; $q _ { A }$ ; confidence 0.118

34. a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117

35. d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117

36. c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114

37. d03021016.png ; $2$ ; confidence 0.110

38. h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106

39. i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106

40. t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104

41. a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104

42. g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103

43. e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101

44. a13013073.png ; $Q$ ; confidence 0.095

45. s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094

46. t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092

47. p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090

48. m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089

49. e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088

50. a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088

51. q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087

52. h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085

53. p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083

54. b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082

55. d12002092.png ; $V _ { V }$ ; confidence 0.082

56. c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081

57. c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078

58. a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076

59. d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076

60. o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076

61. t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076

62. s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075

63. c02203033.png ; $C _ { \omega }$ ; confidence 0.073

64. a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072

65. j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072

66. e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071

67. f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071

68. s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071

69. b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069

70. i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069

71. d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068

72. l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066

73. t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066

74. a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061

75. b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060

76. s08730040.png ; $Q _ { 1 }$ ; confidence 0.060

77. w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058

78. g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057

79. m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056

80. a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055

81. g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055

82. e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053

83. j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/11&oldid=43841