Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/7"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 7 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 7 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850
+
1. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
  
2. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050970/i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
  
3. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051000/i05100028.png ; $- \infty < a < + \infty$ ; confidence 0.959
+
3. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076810/q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051040/i05104010.png ; $3 a$ ; confidence 0.497
+
4. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
  
5. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051130/i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896
+
5. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
+
6. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338502.png ; $x \square ^ { j }$ ; confidence 0.818
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107042.png ; $c ( I ) = \frac { 1 } { 2 }$ ; confidence 0.667
+
7. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051090/i05109035.png ; $\Theta$ ; confidence 0.952
+
8. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
+
9. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
  
10. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
  
11. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i051410114.png ; $\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$ ; confidence 0.598
+
11. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816
  
12. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i05141058.png ; $0 < \alpha < a$ ; confidence 0.971
+
12. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
  
13. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051410/i05141060.png ; $h ( \lambda )$ ; confidence 1.000
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
  
14. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
+
14. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
  
15. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
+
15. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
  
16. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143036.png ; $\{ \alpha _ { i } ( x ) \}$ ; confidence 0.971
+
16. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
  
17. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051560/i05156047.png ; $| t - \tau |$ ; confidence 0.984
+
17. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050910/i05091079.png ; $Y _ { n k }$ ; confidence 0.813
  
18. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954
+
18. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812
  
19. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
+
19. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
  
20. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051620/i05162064.png ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$ ; confidence 0.997
+
20. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
  
21. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004046.png ; $\partial D \times D$ ; confidence 0.998
+
21. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
  
22. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008014.png ; $g \in E$ ; confidence 0.988
+
22. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
  
23. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976
+
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
  
24. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810
  
25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051870/i05187033.png ; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984
+
25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
  
26. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
  
27. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930181.png ; $Y = C$ ; confidence 0.871
+
27. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110040/d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809
  
28. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051930/i051930154.png ; $\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$ ; confidence 0.968
+
28. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031540/d03154015.png ; $G r$ ; confidence 0.809
  
29. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051940/i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000
+
29. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
  
30. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
+
30. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $Z / p$ ; confidence 0.808
  
31. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981
+
31. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280193.png ; $m = E X ( s )$ ; confidence 0.808
  
32. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
+
32. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110040/r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807
  
33. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
+
33. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807
  
34. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202038.png ; $B = Y \backslash 0$ ; confidence 0.999
+
34. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806
  
35. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $r$ ; confidence 0.805
  
36. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052110/i05211013.png ; $T \subset R ^ { 1 }$ ; confidence 0.989
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
  
37. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
+
37. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
  
38. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052150/i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
+
38. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $T ^ { S }$ ; confidence 0.805
  
39. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522303.png ; $x \leq z \leq y$ ; confidence 0.995
+
39. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805
  
40. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
+
40. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110150/r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805
  
41. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
  
42. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005074.png ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
  
43. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005080.png ; $s > - \infty$ ; confidence 0.985
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png ; $- u _ { 3 }$ ; confidence 0.803
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
+
44. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
  
45. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
+
45. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
  
46. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
+
46. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
  
47. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
+
47. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802
  
48. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241017.png ; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000
+
48. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802
  
49. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524507.png ; $F [ \phi ( w ) ]$ ; confidence 0.983
+
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
  
50. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
+
50. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
  
51. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250047.png ; $P ^ { N } ( k )$ ; confidence 0.999
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020160/c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800
  
52. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
52. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800
  
53. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250023.png ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
+
53. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
  
54. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052520/i05252091.png ; $f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$ ; confidence 0.984
+
54. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800
  
55. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255041.png ; $\omega ^ { \beta }$ ; confidence 0.626
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
  
56. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052660/i05266017.png ; $0 \in R ^ { 3 }$ ; confidence 0.983
+
56. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
  
57. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008061.png ; $H = 0$ ; confidence 0.999
+
57. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
  
58. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $m s$ ; confidence 0.683
+
58. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067310/n06731043.png ; $B O$ ; confidence 0.799
  
59. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659
+
59. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
  
60. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052730/i05273034.png ; $p : G \rightarrow G$ ; confidence 0.995
+
60. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
  
61. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
  
62. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
+
62. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
  
63. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i052800127.png ; $E ^ { 2 k + 1 }$ ; confidence 0.996
+
63. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
  
64. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052860/i052860119.png ; $( = 2 / \pi )$ ; confidence 0.994
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797
  
65. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294039.png ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
  
66. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294012.png ; $Y \times t$ ; confidence 0.546
+
66. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249026.png ; $G$ ; confidence 0.797
  
67. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
67. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797
  
68. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302031.png ; $\kappa _ { k } = a _ { n n } ^ { ( k ) }$ ; confidence 0.556
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
  
69. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
+
69. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
  
70. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053040/i05304033.png ; $F _ { 0 }$ ; confidence 0.994
+
70. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795
  
71. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
+
71. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
  
72. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090151.png ; $p < 12000000$ ; confidence 1.000
+
72. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
  
73. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090126.png ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997
+
73. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
  
74. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
  
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689
+
75. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794
  
76. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009026.png ; $\mu _ { m }$ ; confidence 0.969
+
76. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830278.png ; $u \leq \theta u$ ; confidence 0.794
  
77. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
+
77. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068190/o0681907.png ; $T ( t ) x$ ; confidence 0.794
  
78. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050109.png ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
+
78. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
  
79. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
79. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
  
80. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050155.png ; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995
+
80. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
  
81. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
  
82. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054070/j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
  
83. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054090/j05409038.png ; $x = B x + g$ ; confidence 0.998
+
83. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
  
84. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
  
85. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420048.png ; $f _ { 0 } ( \Delta )$ ; confidence 0.998
+
85. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
  
86. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
+
86. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093890/t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792
  
87. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791
  
88. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020240.png ; $B M O$ ; confidence 0.973
+
88. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
  
89. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $K ^ { * }$ ; confidence 0.718
+
89. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png ; $d \Phi$ ; confidence 0.791
  
90. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004062.png ; $\operatorname { cr } ( K )$ ; confidence 0.995
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
  
91. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
  
92. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998
+
92. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
  
93. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025640/c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788
  
94. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786
  
95. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
+
95. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786
  
96. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007082.png ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994
+
96. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
  
97. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k055030100.png ; $t = [ \xi _ { E } ]$ ; confidence 0.983
+
97. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $\alpha < t < b$ ; confidence 0.786
  
98. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k05503063.png ; $T ( X )$ ; confidence 0.996
+
98. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
  
99. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055040/k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
+
99. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510011.png ; $h = K \eta \leq 1 / 2$ ; confidence 0.997
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
  
101. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
+
101. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
+
102. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010322.png ; $j$ ; confidence 0.784
  
103. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
103. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
  
104. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001019.png ; $T ( s )$ ; confidence 1.000
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783
  
105. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783
  
106. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012160/a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783
  
107. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
+
107. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081250/r08125011.png ; $H ( t ) = E N$ ; confidence 0.783
  
108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005074.png ; $m \geq m _ { 0 }$ ; confidence 0.997
+
108. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
  
109. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055180/k05518015.png ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
  
110. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
  
111. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
+
111. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782
  
112. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008015.png ; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782
  
113. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055340/k0553405.png ; $K _ { \mu }$ ; confidence 0.997
+
113. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781
  
114. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055350/k05535065.png ; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
  
115. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055440/k05544031.png ; $\Delta u = - f ( x )$ ; confidence 0.986
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178016.png ; $b a P$ ; confidence 0.779
  
116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055450/k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837
+
116. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
  
117. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548037.png ; $R \phi / 6$ ; confidence 0.994
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
  
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554806.png ; $\mu = m c / \hbar$ ; confidence 0.999
+
118. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064550/m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778
  
119. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
+
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240248.png ; $( q , n - r )$ ; confidence 0.777
  
120. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548012.png ; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $K ^ { * }$ ; confidence 0.777
  
121. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552076.png ; $\Omega ( \Gamma )$ ; confidence 1.000
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
  
122. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
+
122. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
  
123. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552062.png ; $D _ { 1 } / \Gamma$ ; confidence 0.999
+
123. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
  
124. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k055520124.png ; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776
  
125. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k055580126.png ; $\hat { M } _ { 0 }$ ; confidence 0.537
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
  
126. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055610/k055610105.png ; $Q _ { 1 } : A \rightarrow T ^ { \prime } A T$ ; confidence 0.990
+
126. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776
  
127. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775
  
128. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055660/k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768
+
128. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
  
129. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
+
129. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
  
130. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570014.png ; $I _ { \Gamma } ( x )$ ; confidence 0.999
+
130. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r082050121.png ; $AH _ { p }$ ; confidence 0.775
  
131. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
  
132. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774
  
133. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110130/k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
+
133. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774
  
134. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055800/k05580079.png ; $( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$ ; confidence 0.562
+
134. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773
  
135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055820/k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
+
135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
  
136. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
+
136. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090720/s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773
  
137. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772
  
138. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840354.png ; $C = C ^ { * }$ ; confidence 0.990
+
138. https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
  
139. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585032.png ; $W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$ ; confidence 0.991
+
139. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769
  
140. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374
+
140. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047470/h04747031.png ; $F ^ { p }$ ; confidence 0.768
  
141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585059.png ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
+
141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055660/k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768
  
142. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
+
142. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768
  
143. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594036.png ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
+
143. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
  
144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594016.png ; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966
+
144. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
  
145. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594047.png ; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
  
146. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019034.png ; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972
+
146. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766
  
147. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019069.png ; $P = Q$ ; confidence 0.998
+
147. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
  
148. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
+
148. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765
  
149. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $P ( S )$ ; confidence 0.765
  
150. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110290/c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764
  
151. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
+
151. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764
  
152. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180152.png ; $\gamma$ ; confidence 0.764
  
153. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998
+
153. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764
  
154. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519
+
154. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002085.png ; $x \preceq y$ ; confidence 0.956
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493
+
156. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $c \rightarrow N$ ; confidence 0.335
+
157. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050113.png ; $\overline { B } \rightarrow \overline { B }$ ; confidence 0.985
+
158. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
  
159. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050165.png ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
+
159. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025420/c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
  
161. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
+
161. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057120/l0571208.png ; $1 \leq p < + \infty$ ; confidence 0.999
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
  
163. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715028.png ; $3 N + k + m$ ; confidence 0.919
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110090/b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758
  
165. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335
+
165. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i050730155.png ; $\nu _ { S }$ ; confidence 0.758
  
166. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820124.png ; $M \times N$ ; confidence 0.757
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057200/l0572001.png ; $T + V = h$ ; confidence 0.994
+
167. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757
  
168. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110050/l11005048.png ; $v ( P ) - v ( D )$ ; confidence 0.999
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
  
169. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755
  
170. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867
+
170. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
  
171. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
171. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755
  
172. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
+
172. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085790/s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755
  
173. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754
  
174. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
  
175. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057430/l05743029.png ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032480/d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057440/l05744010.png ; $D = 2 \gamma k T / M$ ; confidence 0.990
+
176. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420330.png ; $B = B _ { E }$ ; confidence 0.754
  
177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455
+
177. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
  
178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
+
178. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
  
179. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057450/l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795
+
179. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
  
180. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087820/s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753
  
181. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754082.png ; $| t | ^ { - 1 }$ ; confidence 1.000
+
181. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752
  
182. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756010.png ; $E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$ ; confidence 0.586
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
  
183. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
+
183. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
  
184. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
+
184. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091960/s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752
  
185. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761040.png ; $U _ { 0 } = 1$ ; confidence 0.997
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
+
186. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
  
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
  
188. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
+
188. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780212.png ; $31$ ; confidence 0.915
+
189. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750
  
190. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780113.png ; $\mu \approx 18.431$ ; confidence 0.997
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024160/c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748
  
191. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l05778086.png ; $4.60$ ; confidence 0.967
+
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
  
192. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780230.png ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
+
192. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073980/p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748
  
193. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747
  
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
+
194. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
  
195. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
+
195. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011059.png ; $2 i$ ; confidence 0.747
  
196. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
+
196. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
  
197. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
197. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
  
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745
  
199. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699
+
199. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744
  
200. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l05814017.png ; $v = v ( t )$ ; confidence 0.987
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330250.png ; $U ^ { N }$ ; confidence 0.743
  
201. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
+
201. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
  
202. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058170/l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773
+
202. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
  
203. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821011.png ; $\zeta = 0$ ; confidence 0.999
+
203. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743
  
204. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821012.png ; $- \operatorname { log } | \zeta |$ ; confidence 0.998
+
204. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
  
205. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058210/l05821045.png ; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998
+
205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
  
206. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058240/l0582408.png ; $\operatorname { grad } \phi ( \zeta ) \neq 0$ ; confidence 0.967
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742
  
207. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836041.png ; $x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$ ; confidence 0.625
+
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
  
208. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000
+
208. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742
  
209. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
+
209. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
  
210. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980
+
210. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081130/r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899
+
211. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
  
212. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
+
212. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090180/s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740
  
213. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
  
214. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058470/l05847082.png ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $I Y \subset O$ ; confidence 0.739
  
215. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998
+
215. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739
  
216. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510173.png ; $A _ { I l }$ ; confidence 0.608
+
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848075.png ; $L ( H )$ ; confidence 0.995
+
217. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738
  
219. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $I$ ; confidence 0.738
  
220. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859076.png ; $x ( 1 )$ ; confidence 1.000
+
220. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861031.png ; $Z \times T$ ; confidence 0.994
+
221. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057640/l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
  
222. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
+
222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
  
223. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866027.png ; $G \subset N ( F )$ ; confidence 0.979
+
223. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738
  
224. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868041.png ; $\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$ ; confidence 0.992
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
  
225. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
+
225. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
  
226. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
  
227. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
+
227. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082130/r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737
  
228. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
  
229. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100122.png ; $R ^ { n } \times R ^ { n }$ ; confidence 0.554
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
  
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
230. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
  
231. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
+
231. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
+
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
  
233. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
+
233. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733
  
234. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733
  
235. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883068.png ; $- \Delta u + c u$ ; confidence 0.993
+
235. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035530/e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732
  
236. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
  
237. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059020/l05902046.png ; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000
+
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
  
238. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110158.png ; $f _ { h } \in F _ { k }$ ; confidence 0.549
+
238. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064950/m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731
  
239. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
+
239. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731
  
240. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
+
240. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661012.png ; $N _ { A }$ ; confidence 0.730
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110155.png ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
+
241. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729
  
242. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
  
244. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
+
244. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
  
245. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l05914024.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
+
246. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916065.png ; $A ^ { ( 0 ) }$ ; confidence 0.506
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
  
248. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
248. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916072.png ; $\operatorname { ln } t$ ; confidence 0.999
+
249. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024510/c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724
  
250. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160335.png ; $T _ { \Delta }$ ; confidence 0.636
+
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724
  
251. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
+
251. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724
  
252. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l05917055.png ; $\Gamma _ { 0 } ( . )$ ; confidence 0.995
+
252. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l059170161.png ; $H ^ { k }$ ; confidence 0.998
+
253. https://www.encyclopediaofmath.org/legacyimages/z/z110/z110010/z11001018.png ; $( f g f h )$ ; confidence 0.723
  
254. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
+
254. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
  
255. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png ; $\gamma m$ ; confidence 0.719
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059340/l059340213.png ; $A -$ ; confidence 0.967
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935016.png ; $x ( t ) \equiv 0$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
  
258. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
+
258. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
  
259. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977
+
259. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054250/j05425028.png ; $K ^ { * }$ ; confidence 0.718
  
260. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
  
261. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935079.png ; $W ( t ) \neq 0$ ; confidence 0.995
+
261. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094650/t09465066.png ; $\in M$ ; confidence 0.717
  
262. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
  
263. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350126.png ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
+
263. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
  
264. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059410/l05941048.png ; $Q _ { 3 } ( b )$ ; confidence 0.962
+
264. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
  
265. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949079.png ; $x = F ( t ) y$ ; confidence 0.992
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
+
267. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461
+
268. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $| T | _ { p }$ ; confidence 0.714
  
269. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490127.png ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
+
269. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
  
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059540/l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000
+
270. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
  
271. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
+
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
  
272. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059710/l05971012.png ; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
  
273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
  
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
  
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
+
275. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711
  
276. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024039.png ; $p \times p$ ; confidence 0.711
  
277. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060160/l06016034.png ; $\alpha = E X _ { 1 }$ ; confidence 0.670
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
  
278. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060190/l06019071.png ; $d ( A )$ ; confidence 0.998
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240362.png ; $22$ ; confidence 0.710
  
279. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060220/l0602207.png ; $\in \Theta$ ; confidence 0.953
+
279. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
  
280. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060250/l06025052.png ; $m = n = 1$ ; confidence 0.998
+
280. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
  
281. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060290/l06029012.png ; $\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$ ; confidence 0.590
+
281. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
  
282. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709
  
283. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060530/l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708
  
284. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015025.png ; $w \in T V$ ; confidence 0.524
+
284. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
  
285. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060022.png ; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986
+
285. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706
  
286. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060030.png ; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972
+
286. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066410/n06641020.png ; $x \in b M$ ; confidence 0.705
  
287. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
+
287. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
  
288. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110170/l110170115.png ; $Q \alpha = Q \beta \gamma$ ; confidence 0.989
+
288. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703
  
289. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875
+
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
  
290. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060820/l06082028.png ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
+
290. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
  
291. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060830/l06083045.png ; $b \in Q$ ; confidence 0.934
+
291. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
  
292. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060830/l06083024.png ; $Q _ { i - 1 } / Q _ { i }$ ; confidence 0.640
+
292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
  
293. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
  
294. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700
  
295. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060970/l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234035.png ; $a \in V$ ; confidence 0.699
  
296. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
+
296. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058080/l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699
  
297. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
+
297. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699
  
298. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
+
298. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067400/n06740041.png ; $U$ ; confidence 0.698
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019010.png ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991
+
299. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
  
300. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696

Revision as of 11:46, 1 September 2019

List

1. e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820

2. c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819

3. q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819

4. c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818

5. c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818

6. d0338502.png ; $x \square ^ { j }$ ; confidence 0.818

7. i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817

8. l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817

9. r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817

10. a01243088.png ; $f$ ; confidence 0.816

11. b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816

12. s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815

13. a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814

14. n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814

15. s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814

16. f12009069.png ; $F \mu$ ; confidence 0.813

17. i05091079.png ; $Y _ { n k }$ ; confidence 0.813

18. p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812

19. r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812

20. m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811

21. q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811

22. r08116074.png ; $t + \tau$ ; confidence 0.811

23. t12001035.png ; $SU ( 2 )$ ; confidence 0.811

24. a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810

25. i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810

26. b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809

27. d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809

28. d03154015.png ; $G r$ ; confidence 0.809

29. q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809

30. h047930299.png ; $Z / p$ ; confidence 0.808

31. s087280193.png ; $m = E X ( s )$ ; confidence 0.808

32. r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807

33. r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807

34. n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806

35. a110680200.png ; $r$ ; confidence 0.805

36. a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805

37. d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805

38. q07680012.png ; $T ^ { S }$ ; confidence 0.805

39. q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805

40. r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805

41. a13013016.png ; $8$ ; confidence 0.804

42. d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804

43. c02104057.png ; $- u _ { 3 }$ ; confidence 0.803

44. e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802

45. l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802

46. p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802

47. q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802

48. q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802

49. l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801

50. p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801

51. c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800

52. c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800

53. f03838022.png ; $C _ { 0 }$ ; confidence 0.800

54. s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800

55. t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799

56. c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799

57. l058360142.png ; $P _ { 8 }$ ; confidence 0.799

58. n06731043.png ; $B O$ ; confidence 0.799

59. w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799

60. t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798

61. c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798

62. g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798

63. h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798

64. a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797

65. b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797

66. d03249026.png ; $G$ ; confidence 0.797

67. y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797

68. b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796

69. m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796

70. l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795

71. m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795

72. p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795

73. s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795

74. a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795

75. a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794

76. d031830278.png ; $u \leq \theta u$ ; confidence 0.794

77. o0681907.png ; $T ( t ) x$ ; confidence 0.794

78. q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794

79. r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794

80. y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794

81. a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793

82. c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793

83. h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793

84. a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793

85. g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792

86. t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792

87. a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791

88. h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791

89. t09326056.png ; $d \Phi$ ; confidence 0.791

90. t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790

91. a130240453.png ; $q = 1$ ; confidence 0.790

92. e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789

93. c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788

94. a110420158.png ; $A _ { \theta }$ ; confidence 0.786

95. d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786

96. p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786

97. s0902702.png ; $\alpha < t < b$ ; confidence 0.786

98. y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786

99. b01539032.png ; $d ^ { x }$ ; confidence 0.785

100. b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784

101. d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784

102. r110010322.png ; $j$ ; confidence 0.784

103. s08755022.png ; $\alpha \leq p b$ ; confidence 0.784

104. a120310159.png ; $\Omega$ ; confidence 0.783

105. a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783

106. a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783

107. r08125011.png ; $H ( t ) = E N$ ; confidence 0.783

108. v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783

109. a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783

110. t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782

111. t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782

112. a110420138.png ; $I \mapsto I$ ; confidence 0.782

113. i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781

114. a130240147.png ; $\mu$ ; confidence 0.780

115. a01178016.png ; $b a P$ ; confidence 0.779

116. t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779

117. a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779

118. m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778

119. a130240248.png ; $( q , n - r )$ ; confidence 0.777

120. b11061011.png ; $K ^ { * }$ ; confidence 0.777

121. f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777

122. n06634090.png ; $x \in V _ { n }$ ; confidence 0.777

123. r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777

124. c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776

125. l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776

126. m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776

127. c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775

128. i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775

129. q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775

130. r082050121.png ; $AH _ { p }$ ; confidence 0.775

131. b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774

132. a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774

133. r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774

134. l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773

135. r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773

136. s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773

137. a110420123.png ; $\pi$ ; confidence 0.772

138. i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769

139. m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769

140. h04747031.png ; $F ^ { p }$ ; confidence 0.768

141. k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768

142. m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768

143. v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768

144. e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766

145. i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766

146. n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766

147. s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766

148. f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765

149. t09386023.png ; $P ( S )$ ; confidence 0.765

150. c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764

151. c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764

152. c120180152.png ; $\gamma$ ; confidence 0.764

153. f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764

154. t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763

155. c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763

156. h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763

157. s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763

158. t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761

159. c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760

160. c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760

161. f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760

162. a12022010.png ; $X = c 0$ ; confidence 0.759

163. b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759

164. e03623076.png ; $2 d \geq n$ ; confidence 0.758

165. i050730155.png ; $\nu _ { S }$ ; confidence 0.758

166. a011820124.png ; $M \times N$ ; confidence 0.757

167. h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757

168. l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756

169. a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755

170. p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755

171. p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755

172. s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755

173. a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754

174. a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754

175. d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754

176. h046420330.png ; $B = B _ { E }$ ; confidence 0.754

177. s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754

178. c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753

179. j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753

180. s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753

181. b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752

182. d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752

183. m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752

184. s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752

185. a130240101.png ; $x$ ; confidence 0.751

186. h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751

187. a12022021.png ; $T$ ; confidence 0.750

188. c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750

189. f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750

190. c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748

191. e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748

192. p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748

193. b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747

194. c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747

195. v13011059.png ; $2 i$ ; confidence 0.747

196. p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746

197. b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745

198. a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745

199. c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744

200. b017330250.png ; $U ^ { N }$ ; confidence 0.743

201. f041940175.png ; $S \subset T$ ; confidence 0.743

202. g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743

203. m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743

204. p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743

205. t1200109.png ; $1$ ; confidence 0.742

206. f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742

207. m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742

208. t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742

209. e03640030.png ; $2 - 2 g - l$ ; confidence 0.741

210. r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741

211. n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740

212. s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740

213. a130240444.png ; $N$ ; confidence 0.740

214. a012430100.png ; $I Y \subset O$ ; confidence 0.739

215. b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739

216. f1200101.png ; $S h$ ; confidence 0.739

217. n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739

218. a130240485.png ; $B$ ; confidence 0.738

219. a130240219.png ; $I$ ; confidence 0.738

220. e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738

221. l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738

222. m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738

223. o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738

224. a110420169.png ; $K$ ; confidence 0.738

225. b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737

226. i05023059.png ; $1 < m \leq n$ ; confidence 0.737

227. r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737

228. a11042091.png ; $x \in G$ ; confidence 0.737

229. b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736

230. l05718018.png ; $x g$ ; confidence 0.734

231. m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734

232. t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734

233. e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733

234. f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733

235. e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732

236. a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731

237. m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731

238. m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731

239. r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731

240. q07661012.png ; $N _ { A }$ ; confidence 0.730

241. c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729

242. a01024027.png ; $2$ ; confidence 0.729

243. a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727

244. p07253081.png ; $d f ^ { j }$ ; confidence 0.726

245. a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726

246. l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725

247. b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724

248. b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724

249. c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724

250. m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724

251. q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724

252. i12006014.png ; $x < \varrho y$ ; confidence 0.723

253. z11001018.png ; $( f g f h )$ ; confidence 0.723

254. b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722

255. a01130060.png ; $\gamma m$ ; confidence 0.719

256. b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719

257. s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719

258. c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718

259. j05425028.png ; $K ^ { * }$ ; confidence 0.718

260. b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717

261. t09465066.png ; $\in M$ ; confidence 0.717

262. l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716

263. q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716

264. r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716

265. a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716

266. a11042086.png ; $z \in G$ ; confidence 0.715

267. b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714

268. s08652091.png ; $| T | _ { p }$ ; confidence 0.714

269. d03002056.png ; $D x$ ; confidence 0.713

270. l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712

271. w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712

272. a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711

273. d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711

274. l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711

275. n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711

276. a13024039.png ; $p \times p$ ; confidence 0.711

277. b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710

278. a130240362.png ; $22$ ; confidence 0.710

279. t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710

280. t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710

281. l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709

282. s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709

283. a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708

284. l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708

285. e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706

286. n06641020.png ; $x \in b M$ ; confidence 0.705

287. l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704

288. m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703

289. t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702

290. d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702

291. f0412109.png ; $A / \eta$ ; confidence 0.702

292. k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702

293. a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701

294. a11042092.png ; $x > 0$ ; confidence 0.700

295. a01234035.png ; $a \in V$ ; confidence 0.699

296. l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699

297. t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699

298. n06740041.png ; $U$ ; confidence 0.698

299. p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697

300. s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43837