Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/1"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 1 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(AUTOMATIC EDIT of page 1 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
+
1. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054200/j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png ; $A , B , C \in C$ ; confidence 0.982
+
2. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
+
3. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png ; $R el$ ; confidence 0.544
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988
+
6. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531
+
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992
+
9. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087300/s08730040.png ; $Q _ { 1 }$ ; confidence 0.060
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
+
11. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
  
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png ; $( S , g )$ ; confidence 0.978
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066
  
13. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png ; $3$ ; confidence 1.000
+
13. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
  
14. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538
+
14. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
  
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885
+
15. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
  
16. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png ; $F _ { 3 }$ ; confidence 0.996
+
16. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
  
17. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958
+
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
  
18. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png ; $\geq 7$ ; confidence 0.562
+
18. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071
  
19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png ; $( 4 n + 3 )$ ; confidence 1.000
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012800/a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072
  
20. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763
+
20. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
  
21. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
+
21. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
  
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png ; $4 n$ ; confidence 0.999
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
  
23. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png ; $m > 3$ ; confidence 0.916
+
23. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
  
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937
+
24. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
  
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
+
25. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070370/o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png ; $S ( p )$ ; confidence 0.693
+
26. https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076
  
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png ; $SO ( 3 )$ ; confidence 0.940
+
28. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png ; $n \geq 1$ ; confidence 0.967
+
31. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png ; $SU ( 2 )$ ; confidence 0.811
+
32. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png ; $11$ ; confidence 1.000
+
33. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010128.png ; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
35. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
36. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png ; $m = 4 n + 3$ ; confidence 0.997
+
37. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
  
38. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
38. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
  
39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994
+
39. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
+
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
  
41. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998
+
41. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
  
42. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
+
42. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
  
43. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
  
44. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
44. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
  
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633
+
45. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
  
46. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
46. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
  
47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png ; $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.999
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001053.png ; $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
51. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
  
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png ; $n + 2$ ; confidence 1.000
+
52. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
  
53. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010118.png ; $4 n + 3$ ; confidence 1.000
+
53. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
  
54. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png ; $15$ ; confidence 1.000
+
54. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $5$ ; confidence 0.574
+
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
+
56. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
  
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734
+
57. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
  
58. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702
+
58. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
  
59. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
+
59. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
  
60. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
+
60. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
  
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png ; $\operatorname { dim } ( O ) = 4$ ; confidence 0.996
+
61. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
  
62. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799
+
62. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
  
63. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997
+
63. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
  
64. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png ; $F _ { \tau } \subset F _ { 3 } \subset S$ ; confidence 0.996
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
  
65. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
  
67. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
  
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
  
69. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
  
70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png ; $z$ ; confidence 1.000
+
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
  
71. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
  
72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png ; $T ^ { n }$ ; confidence 0.616
+
72. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
  
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
+
73. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
  
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378
+
74. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
  
75. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png ; $s ^ { 3 }$ ; confidence 0.948
+
75. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
  
76. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png ; $D$ ; confidence 0.661
+
76. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
  
77. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
  
78. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png ; $n \geq 0$ ; confidence 0.996
+
78. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
  
79. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
+
79. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
  
80. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
+
80. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
  
81. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png ; $m = 2 i + 1$ ; confidence 0.871
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
  
82. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
  
83. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png ; $\xi ( \tau )$ ; confidence 0.999
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
  
84. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
+
84. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
  
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png ; $1 > 1$ ; confidence 0.983
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
  
86. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png ; $b _ { 2 } ( s ) \leq 1$ ; confidence 0.580
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
  
87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355
+
87. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
  
88. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png ; $1$ ; confidence 0.998
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
  
89. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png ; $2$ ; confidence 1.000
+
89. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
  
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974
+
90. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
  
91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987
+
91. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
  
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010110.png ; $k > 7$ ; confidence 0.997
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
  
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906
+
95. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png ; $t$ ; confidence 0.637
+
96. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
97. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
+
98. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png ; $\sigma \delta$ ; confidence 0.999
+
99. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
+
103. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $M$ ; confidence 0.626
+
104. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475
+
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png ; $\pi$ ; confidence 0.772
+
106. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
+
107. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420153.png ; $K _ { 0 } ( B ) ^ { + }$ ; confidence 0.993
+
108. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png ; $K _ { 1 }$ ; confidence 0.970
+
109. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540
+
110. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420108.png ; $\tau ( x y ) = \tau ( y x )$ ; confidence 0.993
+
111. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420163.png ; $\theta = 1 - \theta$ ; confidence 0.998
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
+
113. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png ; $n > 0$ ; confidence 0.998
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042070.png ; $K _ { 0 } ( \varphi ) = \alpha$ ; confidence 0.993
+
115. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
+
116. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420112.png ; $f : G \rightarrow R$ ; confidence 0.996
+
117. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866
+
118. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042050.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990
+
119. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png ; $I \mapsto I$ ; confidence 0.782
+
121. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977
+
122. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420113.png ; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000
+
123. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042064.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990
+
125. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745
+
126. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420117.png ; $H ^ { + } = G ^ { + } \cap H$ ; confidence 0.999
+
127. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png ; $\square ^ { * }$ ; confidence 0.982
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
+
130. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042088.png ; $( G , G ^ { + } )$ ; confidence 1.000
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png ; $25$ ; confidence 0.396
+
132. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420162.png ; $\theta = \theta ^ { \prime }$ ; confidence 0.994
+
133. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420121.png ; $y \leq x$ ; confidence 0.998
+
134. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042066.png ; $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.991
+
135. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042067.png ; $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$ ; confidence 0.997
+
136. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042055.png ; $K _ { 0 } ( A ) ^ { + }$ ; confidence 0.988
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420161.png ; $A _ { \theta } \cong A _ { \theta }$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png ; $f$ ; confidence 1.000
+
140. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042089.png ; $\geq 0$ ; confidence 1.000
+
141. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978
+
142. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png ; $2 n$ ; confidence 1.000
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042068.png ; $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$ ; confidence 0.988
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978
+
146. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042087.png ; $x _ { i } \leq z \leq y _ { j }$ ; confidence 0.967
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png ; $K _ { 0 }$ ; confidence 0.936
+
148. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420137.png ; $\tau \mapsto K _ { 0 } ( \tau )$ ; confidence 0.994
+
149. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png ; $x \in G$ ; confidence 0.737
+
150. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
+
151. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
+
152. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png ; $x , y \in A$ ; confidence 0.906
+
154. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png ; $x > 0$ ; confidence 0.700
+
155. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png ; $A _ { \theta }$ ; confidence 0.786
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042065.png ; $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$ ; confidence 0.997
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420107.png ; $\tau : A \rightarrow C$ ; confidence 0.987
+
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980
+
160. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042056.png ; $\Sigma ( A )$ ; confidence 0.626
+
161. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518
+
162. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png ; $1$ ; confidence 0.989
+
164. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042085.png ; $x _ { i } \leq y _ { j }$ ; confidence 0.993
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
+
166. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042098.png ; $K _ { 1 } ( A ) = 0$ ; confidence 0.997
+
167. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
+
168. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
+
169. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $i$ ; confidence 0.570
+
170. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910
+
171. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png ; $( g )$ ; confidence 0.981
+
173. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
+
174. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013067.png ; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593
+
176. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png ; $A K N S$ ; confidence 0.971
+
178. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
+
179. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
181. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
+
182. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png ; $h$ ; confidence 0.644
+
183. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
185. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $5$ ; confidence 0.571
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993
+
189. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998
+
191. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
+
192. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996
+
193. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971
+
194. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
+
195. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }$ ; confidence 0.991
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
  
199. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
+
199. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png ; $t _ { n }$ ; confidence 0.933
+
201. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981
+
202. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$ ; confidence 0.963
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434
+
205. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013029.png ; $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( x , t ) z ^ { j } )$ ; confidence 0.999
+
206. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
207. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
208. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
210. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
211. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889
+
212. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013024.png ; $g ( z )$ ; confidence 0.996
+
213. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585
+
214. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
  
215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
+
215. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869
+
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976
+
217. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
+
218. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
+
221. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
+
222. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
+
223. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png ; $P _ { 1 }$ ; confidence 0.674
+
224. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998
+
225. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380
+
227. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png ; $12$ ; confidence 0.590
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
+
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
231. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999
+
235. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png ; $F _ { j k }$ ; confidence 0.974
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
+
239. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
243. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png ; $T$ ; confidence 0.973
+
244. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
+
245. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
  
246. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022034.png ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430
+
247. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
  
249. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
249. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863
+
250. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914
+
251. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841
+
253. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
254. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022039.png ; $S < T$ ; confidence 0.984
+
255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
256. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396
+
258. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814
+
259. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998
+
260. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
+
261. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022012.png ; $1 \leq p < \infty$ ; confidence 0.999
+
262. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
+
263. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
+
264. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202208.png ; $| x | | \leq 1$ ; confidence 0.929
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240286.png ; $1 - \alpha$ ; confidence 0.993
+
266. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
+
267. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240204.png ; $74$ ; confidence 0.550
+
268. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891
+
269. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
+
270. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
+
271. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
+
273. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946
+
274. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024048.png ; $s \times p$ ; confidence 0.642
+
275. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024059.png ; $( i , j )$ ; confidence 0.935
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240137.png ; $B$ ; confidence 0.651
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240478.png ; $0$ ; confidence 0.969
+
278. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240397.png ; $M _ { E }$ ; confidence 0.680
+
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
+
281. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
+
282. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
+
283. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616
+
284. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
  
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240545.png ; $2$ ; confidence 0.985
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
  
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
286. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
+
287. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240516.png ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628
+
289. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240431.png ; $a ^ { \prime } \Theta$ ; confidence 0.987
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
+
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
293. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240399.png ; $X _ { 3 }$ ; confidence 0.593
+
294. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
+
295. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
  
296. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779
+
297. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
+
298. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548
+
299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672
+
300. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332

Revision as of 11:44, 1 September 2019

List

1. j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051

2. e03691064.png ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053

3. g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055

4. a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055

5. m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056

6. g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057

7. w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058

8. b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060

9. s08730040.png ; $Q _ { 1 }$ ; confidence 0.060

10. a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061

11. l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066

12. t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066

13. d03334050.png ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068

14. b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069

15. i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069

16. e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071

17. f12021089.png ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071

18. s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071

19. a01280065.png ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072

20. j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072

21. c02203033.png ; $C _ { \omega }$ ; confidence 0.073

22. s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075

23. a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076

24. d0335707.png ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076

25. o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076

26. t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076

27. c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078

28. c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081

29. b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082

30. d12002092.png ; $V _ { V }$ ; confidence 0.082

31. p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083

32. h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085

33. q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087

34. a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088

35. e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088

36. m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089

37. p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090

38. t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092

39. s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094

40. a13013073.png ; $Q$ ; confidence 0.095

41. e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101

42. g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103

43. a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104

44. t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104

45. h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106

46. i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106

47. d03021016.png ; $2$ ; confidence 0.110

48. c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114

49. a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117

50. d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117

51. t130140169.png ; $q _ { A }$ ; confidence 0.118

52. v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119

53. c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121

54. g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124

55. t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127

56. m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128

57. l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129

58. d11011084.png ; $L \cup O$ ; confidence 0.130

59. r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130

60. p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131

61. d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132

62. l05911037.png ; $p i n$ ; confidence 0.132

63. w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134

64. a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134

65. a13001017.png ; $3 + 5$ ; confidence 0.136

66. l12009013.png ; $Q _ { A }$ ; confidence 0.136

67. a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137

68. s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138

69. a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139

70. a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140

71. s08677096.png ; $5 + 7 n$ ; confidence 0.141

72. d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142

73. h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142

74. t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143

75. g043780134.png ; $F = p t$ ; confidence 0.143

76. i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143

77. a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144

78. q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146

79. o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147

80. l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148

81. a011600198.png ; $N _ { 0 }$ ; confidence 0.151

82. c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152

83. l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155

84. z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156

85. a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156

86. a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159

87. i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160

88. a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161

89. m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163

90. t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164

91. s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165

92. s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167

93. a13024067.png ; $e _ { j k }$ ; confidence 0.169

94. a11068093.png ; $L f \theta$ ; confidence 0.169

95. d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170

96. c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172

97. h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172

98. r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172

99. s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172

100. a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173

101. c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173

102. a13013083.png ; $C$ ; confidence 0.175

103. d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176

104. a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179

105. b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179

106. n1200405.png ; $A _ { i \psi }$ ; confidence 0.179

107. p0728502.png ; $_ { k }$ ; confidence 0.179

108. g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180

109. g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180

110. t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182

111. c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182

112. a13013090.png ; $N$ ; confidence 0.183

113. c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183

114. s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183

115. c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185

116. g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185

117. p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185

118. d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187

119. h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187

120. t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187

121. c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188

122. p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189

123. t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190

124. c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191

125. l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191

126. p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191

127. r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191

128. b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192

129. a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192

130. e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193

131. s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193

132. c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195

133. l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195

134. e12019037.png ; $l _ { x }$ ; confidence 0.196

135. t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197

136. d03342015.png ; $\sigma _ { k }$ ; confidence 0.198

137. a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199

138. a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200

139. c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200

140. b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204

141. d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204

142. t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204

143. a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205

144. a01431097.png ; $| x$ ; confidence 0.207

145. f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207

146. t12001098.png ; $k$ ; confidence 0.208

147. a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209

148. d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209

149. d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209

150. d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210

151. r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210

152. g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212

153. b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213

154. l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215

155. s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216

156. d03175051.png ; $Z _ { h }$ ; confidence 0.217

157. b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219

158. a130240383.png ; $H ^ { \prime }$ ; confidence 0.219

159. a012460130.png ; $X \equiv 0$ ; confidence 0.220

160. r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220

161. g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221

162. m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222

163. c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223

164. c1102508.png ; $20$ ; confidence 0.225

165. c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225

166. c11041043.png ; $C X Y$ ; confidence 0.226

167. p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226

168. e03704050.png ; $n + = n - = n$ ; confidence 0.228

169. x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228

170. m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229

171. t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229

172. b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230

173. c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230

174. k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230

175. c02019023.png ; $C A$ ; confidence 0.232

176. d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232

177. b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233

178. s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233

179. j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234

180. s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234

181. h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235

182. b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236

183. c02645091.png ; $X _ { 1 }$ ; confidence 0.237

184. a13013020.png ; $0.00$ ; confidence 0.237

185. w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238

186. a130240527.png ; $( n$ ; confidence 0.239

187. a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240

188. b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241

189. b11099011.png ; $V _ { Q }$ ; confidence 0.244

190. a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245

191. e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245

192. k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245

193. o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245

194. t130140116.png ; $q R$ ; confidence 0.245

195. k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246

196. a1301308.png ; $s l _ { 2 }$ ; confidence 0.247

197. d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248

198. l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248

199. q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248

200. b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250

201. p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250

202. q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250

203. a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251

204. a01082073.png ; $X \in Ob \odot$ ; confidence 0.251

205. b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251

206. i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252

207. q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252

208. c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253

209. a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254

210. c027180124.png ; $7$ ; confidence 0.254

211. g044350101.png ; $D \Re \subset M$ ; confidence 0.255

212. i05250054.png ; $L ^ { \prime }$ ; confidence 0.256

213. o06837057.png ; $x _ { C }$ ; confidence 0.256

214. p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256

215. v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258

216. a1201308.png ; $m$ ; confidence 0.259

217. s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259

218. v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259

219. a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259

220. a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260

221. q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261

222. c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262

223. l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262

224. l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263

225. r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264

226. i130030178.png ; $h ( [ a ] )$ ; confidence 0.265

227. t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265

228. c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268

229. f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269

230. f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269

231. l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270

232. a1202207.png ; $| e | | < 1$ ; confidence 0.271

233. a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271

234. b016960150.png ; $99$ ; confidence 0.271

235. g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272

236. a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273

237. a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275

238. a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277

239. r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278

240. a130040685.png ; $X \in X$ ; confidence 0.278

241. a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281

242. a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284

243. c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284

244. f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285

245. a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287

246. a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287

247. i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288

248. d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290

249. g04468049.png ; $t \circ \in E$ ; confidence 0.290

250. o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291

251. r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291

252. a0142305.png ; $\{ A \rangle$ ; confidence 0.294

253. p072430105.png ; $\phi _ { im }$ ; confidence 0.294

254. t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295

255. d120280147.png ; $\overline { U }$ ; confidence 0.299

256. l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299

257. c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300

258. r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300

259. v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300

260. e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301

261. s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301

262. p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303

263. b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304

264. r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304

265. a110420128.png ; $h$ ; confidence 0.307

266. d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307

267. i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307

268. f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308

269. t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308

270. k05552082.png ; $\Gamma 20$ ; confidence 0.310

271. q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310

272. t12001057.png ; $0$ ; confidence 0.311

273. j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312

274. p07340055.png ; $M ^ { 0 }$ ; confidence 0.312

275. e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313

276. a0143102.png ; $e$ ; confidence 0.314

277. b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315

278. c024100277.png ; $\partial _ { r }$ ; confidence 0.315

279. w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315

280. a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315

281. h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316

282. o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316

283. k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320

284. b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321

285. a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322

286. t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322

287. f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322

288. s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322

289. n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323

290. a130240141.png ; $c$ ; confidence 0.324

291. b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326

292. t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326

293. r08221030.png ; $o = e K$ ; confidence 0.327

294. m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329

295. c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330

296. c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330

297. l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331

298. c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332

299. c1202808.png ; $F T op$ ; confidence 0.332

300. r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/1&oldid=43830