Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT: Updated image/latex database (currently 525 images latexified; order by confidence, reverse: True.)
(AUTOMATIC EDIT: Updated image/latex database (currently 1525 images latexified; order by confidence, reverse: True.)
Line 2: Line 2:
  
 
== List ==
 
== List ==
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010041.png ; $( 8 \times 8 )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094000/t09400030.png ; $f ( x ) = g ( y )$ ; confidence 1.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185088.png ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005048.png ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110140/r11014050.png ; $( n + 1,2,1 )$ ; confidence 1.000
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m1201208.png ; $( A , f )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540062.png ; $s ( z ) = q ( z )$ ; confidence 1.000
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001019.png ; $T ( s )$ ; confidence 1.000
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001019.png ; $T ( s )$ ; confidence 1.000
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050310/i05031036.png ; $\delta _ { 0 } > 0$ ; confidence 1.000
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c02240053.png ; $( k \times n )$ ; confidence 1.000
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p11012025.png ; $\lambda < \mu$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b016920121.png ; $( M )$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b016920121.png ; $( M )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310117.png ; $R ^ { 12 }$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416038.png ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416038.png ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051940/i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051940/i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b01762024.png ; $r ^ { 2 }$ ; confidence 1.000
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090710/s09071014.png ; $f = 1$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026540/c02654026.png ; $B ( t , s ) = R ( t - s )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006046.png ; $( n , r )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850143.png ; $\{ \lambda \}$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850143.png ; $\{ \lambda \}$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p07285071.png ; $( A , i )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005024.png ; $r ( 1,2 )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005024.png ; $r ( 1,2 )$ ; confidence 1.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044082.png ; $C ( n ) = 0$ ; confidence 1.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044082.png ; $C ( n ) = 0$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150017.png ; $y ^ { \prime \prime } - y > f ( x )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090151.png ; $p < 12000000$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062630/m06263022.png ; $\int _ { - \infty } ^ { \infty } x d F ( x )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840118.png ; $[ x , y ] = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840118.png ; $[ x , y ] = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066560/n06656013.png ; $A ( u ) = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066560/n06656013.png ; $A ( u ) = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727069.png ; $F ( \lambda , \alpha )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727069.png ; $F ( \lambda , \alpha )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080121.png ; $B ( G , G )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537016.png ; $0 < p , q < \infty$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537016.png ; $0 < p , q < \infty$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h04844022.png ; $\alpha - \beta$ ; confidence 1.000
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068330/o06833050.png ; $f _ { 1 } ( \lambda , t )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093980/t0939808.png ; $V = f ^ { - 1 } ( X )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970134.png ; $( C , A )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970134.png ; $( C , A )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195052.png ; $( x _ { k } , y _ { k } )$ ; confidence 1.000
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544049.png ; $( E , \mu )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011094.png ; $\mu ( i , m + 1 ) - \mu ( i , m ) =$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011094.png ; $\mu ( i , m + 1 ) - \mu ( i , m ) =$ ; confidence 1.000
 
# 18 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225011.png ; $R > 0$ ; confidence 1.000
 
# 18 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012250/a01225011.png ; $R > 0$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077250/r07725048.png ; $( n - \mu _ { 1 } ) / 2$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011034.png ; $( T , - )$ ; confidence 1.000
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011034.png ; $( T , - )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059540/l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206074.png ; $f ( - x ) = - f ( x )$ ; confidence 1.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f04206074.png ; $f ( - x ) = - f ( x )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002080.png ; $( A )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041140/f04114018.png ; $P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097090/w0970903.png ; $F ( x )$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689035.png ; $b = 7$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044780/g04478033.png ; $\mu ( \alpha )$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r08216030.png ; $n < 7$ ; confidence 0.999
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110010/m1100107.png ; $[ n , k ]$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830116.png ; $\{ A \}$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490122.png ; $R ( t + T , s ) = R ( t , s )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490122.png ; $R ( t + T , s ) = R ( t , s )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638020.png ; $X ^ { \prime } \cap \pi ^ { - 1 } ( b )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638020.png ; $X ^ { \prime } \cap \pi ^ { - 1 } ( b )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660219.png ; $F = \{ f ( z ) \}$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660219.png ; $F = \{ f ( z ) \}$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202038.png ; $B = Y \backslash 0$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202038.png ; $B = Y \backslash 0$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620248.png ; $x > y > z$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062620/m062620248.png ; $x > y > z$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110370/h11037062.png ; $n \neq 0$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480138.png ; $g ( x _ { 0 } , y )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062350/m06235096.png ; $\mu ^ { - 1 }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062350/m06235096.png ; $\mu ^ { - 1 }$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030038.png ; $| B ( 2,4 ) | = 2 ^ { 12 }$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081670/r08167086.png ; $\phi ( x , t )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916072.png ; $\operatorname { ln } t$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007018.png ; $( \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , \frac { 2 t } { 1 + t ^ { 2 } } )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090990/s09099057.png ; $M _ { \gamma } ( r , f )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094210/t09421013.png ; $B = ( 1,0 )$ ; confidence 0.999
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257019.png ; $( s , v )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242028.png ; $\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673605.png ; $\phi ( x ) \geq 0$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673605.png ; $\phi ( x ) \geq 0$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png ; $( U ) = n - 1$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png ; $( U ) = n - 1$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057430/l05743029.png ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057430/l05743029.png ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011021.png ; $B ( 0 , r / 2 )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780019.png ; $2 ^ { 12 }$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064013.png ; $\lambda : V \rightarrow P$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379044.png ; $\Delta _ { D } ( z )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016083.png ; $F ( K , A )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016083.png ; $F ( K , A )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007015.png ; $\pi ( m )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png ; $\sigma \delta$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330215.png ; $F ^ { \prime } ( w )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005053.png ; $\sigma ^ { \prime } ( A )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907018.png ; $( 5,4,4,4,2,1 )$ ; confidence 0.999
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733087.png ; $N ^ { * } ( D )$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140160.png ; $E = T B$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011011.png ; $\xi ( x ) = 1$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s08649063.png ; $( r , - r + 1 )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372075.png ; $\sigma > 1 / 2$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300305.png ; $u ( x , t ) = v ( x ) w ( t )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036120/e03612012.png ; $m ( M )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036120/e03612012.png ; $m ( M )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072700/p07270029.png ; $f ( L )$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150156.png ; $\beta ( A - K ) < \infty$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110131.png ; $( 0 , m h )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110131.png ; $( 0 , m h )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399032.png ; $A = \pi r ^ { 2 }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399032.png ; $A = \pi r ^ { 2 }$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250103.png ; $s > n / 2$ ; confidence 0.999
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png ; $\phi ( p )$ ; confidence 0.999
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png ; $\phi ( p )$ ; confidence 0.999
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015260/b0152609.png ; $D \cup \Gamma$ ; confidence 0.999
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060128.png ; $2 g - 1$ ; confidence 0.999
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060128.png ; $2 g - 1$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007033.png ; $< 1$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007033.png ; $< 1$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020680/c0206802.png ; $= f ( x , y )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158014.png ; $( x M ) ( M ^ { - 1 } y )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037053.png ; $K ( t ) \equiv 1$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090220/s09022010.png ; $x ( \phi )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092640/t09264011.png ; $\frac { \partial u ( x ) } { \partial N } + \alpha ( x ) u ( x ) = v ( x ) , \quad x \in \Gamma$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068330/o06833067.png ; $e ^ { - \lambda s }$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012038.png ; $| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570014.png ; $I _ { \Gamma } ( x )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570014.png ; $I _ { \Gamma } ( x )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460237.png ; $( f ) = D$ ; confidence 0.999
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020041.png ; $d \in [ 0,3 ]$ ; confidence 0.999
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020041.png ; $d \in [ 0,3 ]$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064910/m06491014.png ; $Y ( K )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072680/p07268062.png ; $\Phi ( f ( t ) , h ( t ) ) \equiv 0$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652038.png ; $( n , \rho _ { n } )$ ; confidence 0.999
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250047.png ; $P ^ { N } ( k )$ ; confidence 0.999
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250047.png ; $P ^ { N } ( k )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008012.png ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008012.png ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594047.png ; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412030.png ; $f ( z ) = 1 / ( e ^ { z } - 1 )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089054.png ; $f ( x ) = x ^ { t } M x$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089054.png ; $f ( x ) = x ^ { t } M x$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110050/l11005048.png ; $v ( P ) - v ( D )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110260/s11026022.png ; $\eta \in R ^ { k }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110260/s11026022.png ; $\eta \in R ^ { k }$ ; confidence 0.999
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296094.png ; $n > r$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242026.png ; $\phi ( x ) \equiv 1$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062540/m06254054.png ; $| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087710/s08771037.png ; $\omega ( R )$ ; confidence 0.999
 +
# 9 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008061.png ; $H = 0$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015680/b01568021.png ; $2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097850/w0978506.png ; $M _ { \lambda , \mu } ( z ) , M _ { \lambda , - \mu } ( z )$ ; confidence 0.999
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097850/w0978506.png ; $M _ { \lambda , \mu } ( z ) , M _ { \lambda , - \mu } ( z )$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055580/k05558059.png ; $s _ { i } , s _ { i } ^ { - 1 }$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196055.png ; $\{ C , D , F ( C , D ) \}$ ; confidence 0.999
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060250/l06025052.png ; $m = n = 1$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190168.png ; $b ( t , s ) = B ( t , s ) - m ( t ) m ( s )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001076.png ; $( V ^ { * } , A )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004046.png ; $\partial D \times D$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184054.png ; $G ( s , t )$ ; confidence 0.998
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032920/d03292042.png ; $\sigma > h$ ; confidence 0.998
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068350/o068350148.png ; $\phi \in D ( A )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016033.png ; $H ( q , d )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016033.png ; $H ( q , d )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690064.png ; $G \rightarrow A$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014300/a0143001.png ; $\epsilon - \delta$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035430/e0354309.png ; $h = h ( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } )$ ; confidence 0.998
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200142.png ; $m > - 1$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085036.png ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020116.png ; $f ( z ) \in K$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544020.png ; $U ( \epsilon )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544020.png ; $U ( \epsilon )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090122.png ; $\psi _ { k } ( \xi )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090122.png ; $\psi _ { k } ( \xi )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082690/r08269033.png ; $| \chi | < \pi$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180107.png ; $\mu ( 0 , x ) \neq 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180107.png ; $\mu ( 0 , x ) \neq 0$ ; confidence 0.998
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047210/h04721043.png ; $\Sigma _ { n } ^ { 0 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062950/m0629503.png ; $f \in L _ { 1 } ( X , \mu )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062950/m0629503.png ; $f \in L _ { 1 } ( X , \mu )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b01753018.png ; $\frac { \partial F ( t , s ) } { \partial t } | _ { t = 0 } = f ( s )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038130/f0381302.png ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840162.png ; $P _ { k } ( x )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047330/h04733016.png ; $L _ { 2 } ( X \times X , \mu \times \mu )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047330/h04733016.png ; $L _ { 2 } ( X \times X , \mu \times \mu )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310127.png ; $R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033720/d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p0737503.png ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p0737503.png ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055040/k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019069.png ; $P = Q$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019069.png ; $P = Q$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c02266075.png ; $\mu ( E ) = \mu _ { 1 } ( E ) = 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075150/p07515035.png ; $\alpha _ { 0 } \in A$ ; confidence 0.998
 
# 1217 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
 
# 1217 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081150/r0811504.png ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081150/r0811504.png ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086380/s0863808.png ; $s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d03191051.png ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; $0 < l < n$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031920/d03192079.png ; $0 < l < n$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059170/l059170161.png ; $H ^ { k }$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043540/g04354016.png ; $\chi = \chi ( m , p )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w0975906.png ; $H ^ { 1 } ( k , A )$ ; confidence 0.998
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d03128077.png ; $f t = g t$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024540/c0245407.png ; $\dot { \phi } = \omega$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f04106025.png ; $\phi \in C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510126.png ; $\gamma ( u ) < \infty$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r1301406.png ; $\sigma ( R ) \backslash \lambda$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043930/g0439304.png ; $m : A ^ { \prime } \rightarrow A$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043930/g0439304.png ; $m : A ^ { \prime } \rightarrow A$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086450/s08645013.png ; $A _ { \delta }$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086450/s08645013.png ; $A _ { \delta }$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090900/s09090013.png ; $S ( x _ { 0 } , r )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090900/s09090013.png ; $S ( x _ { 0 } , r )$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572060.png ; $x - y \in U$ ; confidence 0.997
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020650/c02065027.png ; $\phi , \lambda$ ; confidence 0.997
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020650/c02065027.png ; $\phi , \lambda$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761040.png ; $U _ { 0 } = 1$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346020.png ; $| w - \beta _ { 0 } | = | \zeta _ { 0 } |$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091390/s09139063.png ; $x _ { 1 } ^ { 2 } = 0$ ; confidence 0.997
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015043.png ; $\beta ( A ) < \infty$ ; confidence 0.997
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380038.png ; $\theta _ { n } ( \partial \pi )$ ; confidence 0.997
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380038.png ; $\theta _ { n } ( \partial \pi )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250142.png ; $d y / d s \geq 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250142.png ; $d y / d s \geq 0$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110370/h110370125.png ; $T [ - 1 ; ( - 1 , - 1 ) ; \varepsilon ]$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013570/a01357020.png ; $g ( u ) d u$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047512/h04751218.png ; $A = \operatorname { sup } _ { y \in E } A ( y ) < \infty$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055100/k05510011.png ; $h = K \eta \leq 1 / 2$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062550/m06255040.png ; $u ( y ) \geq 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f041420175.png ; $| \lambda | < B ^ { - 1 }$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p073750105.png ; $e ( \xi \otimes C )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p073750105.png ; $e ( \xi \otimes C )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005019.png ; $q ( 0 ) \neq 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005019.png ; $q ( 0 ) \neq 0$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094600/t09460022.png ; $f _ { 0 } \neq 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690039.png ; $H ^ { 0 } ( X , F ) = F ( X )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690039.png ; $H ^ { 0 } ( X , F ) = F ( X )$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040131.png ; $( v , z ) = ( \pm i , \pm i \sqrt { 2 } )$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090780/s09078074.png ; $\Phi ^ { \prime \prime } ( + 0 ) = - h$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f04142082.png ; $D ( \lambda ) \neq 0$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150291.png ; $\pi _ { n } ( E ) = \pi$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150156.png ; $i ^ { * } ( \phi ) = 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150156.png ; $i ^ { * } ( \phi ) = 0$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o070340106.png ; $U _ { n } ( x ) = ( n + 1 ) F ( - n , n + 2 ; \frac { 3 } { 2 } ; \frac { 1 - x } { 2 } )$ ; confidence 0.997
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o070340106.png ; $U _ { n } ( x ) = ( n + 1 ) F ( - n , n + 2 ; \frac { 3 } { 2 } ; \frac { 1 - x } { 2 } )$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110220/f11022029.png ; $A ^ { p } \geq ( A ^ { p / 2 } B ^ { p } A ^ { p / 2 } ) ^ { 1 / 2 }$ ; confidence 0.997
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004038.png ; $K > 1$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002017.png ; $0 \leq k < 1$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085820/s085820122.png ; $y ( t , \epsilon ) \rightarrow \overline { y } ( t ) , \quad 0 \leq t \leq T$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340129.png ; $\overline { R } ( X , Y ) \xi$ ; confidence 0.997
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013024.png ; $H \mapsto \alpha ( H )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059710/l05971012.png ; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023095.png ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140162.png ; $X \in V ( B )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140162.png ; $X \in V ( B )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490146.png ; $A ( t , \epsilon ) = A _ { 0 } ( t ) + \epsilon A _ { 1 } ( t ) + \epsilon ^ { 2 } A _ { 2 } ( t ) +$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764046.png ; $D _ { n - 2 }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764046.png ; $D _ { n - 2 }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235028.png ; $f ( x , y ) = a x ^ { 3 } + 3 b x ^ { 2 } y + 3 c x y ^ { 2 } + d y ^ { 3 }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235028.png ; $f ( x , y ) = a x ^ { 3 } + 3 b x ^ { 2 } y + 3 c x y ^ { 2 } + d y ^ { 3 }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185094.png ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185094.png ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285080.png ; $( n , A ^ { * } )$ ; confidence 0.996
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s08562096.png ; $S ( X , Y )$ ; confidence 0.996
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085620/s08562096.png ; $S ( X , Y )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i052800127.png ; $E ^ { 2 k + 1 }$ ; confidence 0.996
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038060/f03806015.png ; $V$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023840/c023840111.png ; $\phi ( A , z ) = \frac { ( A z , z ) } { ( z , z ) }$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406041.png ; $( x , y ) \leq F ( x ) G ( y )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096740/v0967406.png ; $v _ { \nu } ( t _ { 0 } ) = 0$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096740/v0967406.png ; $v _ { \nu } ( t _ { 0 } ) = 0$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540011.png ; $( g - 1 ) ^ { n } = 0$ ; confidence 0.996
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k05503063.png ; $T ( X )$ ; confidence 0.996
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055030/k05503063.png ; $T ( X )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582023.png ; $v ( x ) \geq f ( x )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021520/c02152013.png ; $V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021520/c02152013.png ; $V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484501.png ; $z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484501.png ; $z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747069.png ; $P _ { 1 / 2 }$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747069.png ; $P _ { 1 / 2 }$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380128.png ; $w : \xi \oplus \zeta \rightarrow \pi$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250023.png ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250023.png ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p110230101.png ; $( \Omega , A , P )$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093180/t093180434.png ; $D ( R ^ { n + k } )$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093180/t093180434.png ; $D ( R ^ { n + k } )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024450/c0244507.png ; $U ( A ) \subset Y$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024450/c0244507.png ; $U ( A ) \subset Y$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023550/c023550172.png ; $\overline { f } : \mu X \rightarrow \mu Y$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031100/d0311001.png ; $\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m06346056.png ; $D ( z ) \neq 0$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269016.png ; $X ( x ^ { 0 } , x )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522303.png ; $x \leq z \leq y$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052230/i0522303.png ; $x \leq z \leq y$ ; confidence 0.995
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075360/p07536031.png ; $\operatorname { Proj } ( R )$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097600/w09760044.png ; $H ^ { i } ( X )$ ; confidence 0.995
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c02565066.png ; $D \subset R$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100392.png ; $T _ { K } ( K )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100392.png ; $T _ { K } ( K )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780245.png ; $\operatorname { arg } z = c$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780245.png ; $\operatorname { arg } z = c$ ; confidence 0.995
Line 106: Line 277:
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040442.png ; $h ^ { - 1 } ( F _ { 0 } )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040442.png ; $h ^ { - 1 } ( F _ { 0 } )$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810205.png ; $\beta ( M )$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810205.png ; $\beta ( M )$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727064.png ; $H ^ { 3 } ( V , C )$ ; confidence 0.995
 +
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016064.png ; $\lambda < 1$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050155.png ; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069050.png ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.995
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069050.png ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380332.png ; $E = N$ ; confidence 0.995
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380332.png ; $E = N$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052730/i05273034.png ; $p : G \rightarrow G$ ; confidence 0.995
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052860/i052860119.png ; $( = 2 / \pi )$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024820/c02482046.png ; $\leq ( n + 1 ) ( n + 2 ) / 2$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780157.png ; $T \xi$ ; confidence 0.994
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960175.png ; $M _ { 1 } \cup M _ { 2 }$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072880/p07288011.png ; $\{ z _ { k } \} \subset \Delta$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057200/l0572001.png ; $T + V = h$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066440/n06644040.png ; $\sum _ { n = 0 } ^ { \infty } A ^ { n } f$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066440/n06644040.png ; $\sum _ { n = 0 } ^ { \infty } A ^ { n } f$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548037.png ; $R \phi / 6$ ; confidence 0.994
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073340/p0733402.png ; $X ( t _ { 2 } ) - X ( t _ { 1 } )$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640033.png ; $2 - m - 1$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640033.png ; $2 - m - 1$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100421.png ; $S : \Omega \rightarrow L ( Y , X )$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100421.png ; $S : \Omega \rightarrow L ( Y , X )$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021026.png ; $\lambda K + t$ ; confidence 0.994
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150169.png ; $F \in \gamma$ ; confidence 0.994
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150169.png ; $F \in \gamma$ ; confidence 0.994
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601045.png ; $M _ { 0 } \times [ 0,1 ]$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094490/t09449010.png ; $\{ z \in D : 0 < \lambda \leq \omega ( z ; \alpha , D ) < 1 \}$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180114.png ; $\{ ( x , y ) : 0 < x < h , \square 0 < y < T \}$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091570/s09157097.png ; $T ^ { * } Y \backslash 0$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091570/s09157097.png ; $T ^ { * } Y \backslash 0$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022740/c02274043.png ; $\xi = K ( X ) F , \quad \eta = K ( Y ) F$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067840/n06784093.png ; $A \in L _ { \infty } ( H )$ ; confidence 0.994
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067840/n06784093.png ; $A \in L _ { \infty } ( H )$ ; confidence 0.994
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022047.png ; $\int M ( u , \xi ) d \xi = u + k$ ; confidence 0.993
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f04207074.png ; $T _ { N } ( t )$ ; confidence 0.993
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f04207074.png ; $T _ { N } ( t )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007056.png ; $D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063460/m063460176.png ; $\psi _ { z } \neq 0$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761056.png ; $( d \nu ) ( x _ { i } ) ( T _ { i } )$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350126.png ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350126.png ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012026.png ; $f \phi = 0$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012026.png ; $f \phi = 0$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090399.png ; $L ( \mu )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110060/r1100601.png ; $G = ( N , T , S , P )$ ; confidence 0.993
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087460/s08746026.png ; $\{ \epsilon _ { t } \}$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594036.png ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594036.png ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007067.png ; $y ^ { 2 } = R ( x )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o0702405.png ; $d W ( t ) / d t = W ^ { \prime } ( t )$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021059.png ; $B _ { m } = R$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021059.png ; $B _ { m } = R$ ; confidence 0.993
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367039.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367039.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022970/c02297061.png ; $H ^ { i } ( X , O _ { X } ( \nu ) ) = 0$ ; confidence 0.993
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022970/c02297061.png ; $H ^ { i } ( X , O _ { X } ( \nu ) ) = 0$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747076.png ; $1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535038.png ; $d ( S )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120234.png ; $\alpha : H ^ { p } ( X , F ) \rightarrow H ^ { p } ( Y , F )$ ; confidence 0.993
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062280/m0622804.png ; $C X = ( X \times [ 0,1 ] ) / ( X \times \{ 0 \} )$ ; confidence 0.993
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068055.png ; $x ( t ) \in D ^ { c }$ ; confidence 0.992
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068055.png ; $x ( t ) \in D ^ { c }$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681021.png ; $H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$ ; confidence 0.992
 +
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046470/h046470224.png ; $d \sigma ( y )$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l05949079.png ; $x = F ( t ) y$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057039.png ; $H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640019.png ; $\chi ( K ) = \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } \operatorname { dim } _ { F } ( H _ { k } ( K ; F ) )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206032.png ; $f ( t , x ) \equiv A x + f ( t )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206032.png ; $f ( t , x ) \equiv A x + f ( t )$ ; confidence 0.992
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160021.png ; $A$ ; confidence 0.992
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662027.png ; $\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086620/s08662027.png ; $\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010079.png ; $( I + \lambda A )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007016.png ; $\Pi _ { p } ( X , Y )$ ; confidence 0.992
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007016.png ; $\Pi _ { p } ( X , Y )$ ; confidence 0.992
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m064250141.png ; $x = x ( s ) , y = y ( s )$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021067.png ; $( 1 / z ) d z$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025150/c02515011.png ; $Y \in T _ { y } ( P )$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127030.png ; $\alpha < \beta < \gamma$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041270/f04127030.png ; $\alpha < \beta < \gamma$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b01740070.png ; $k ^ { \prime } = 1$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100140.png ; $G = T$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018050.png ; $J ( F G / I ) = 0$ ; confidence 0.991
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018050.png ; $J ( F G / I ) = 0$ ; confidence 0.991
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c0257107.png ; $U = U ( x _ { 0 } )$ ; confidence 0.991
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025710/c0257107.png ; $U = U ( x _ { 0 } )$ ; confidence 0.991
 +
# 12 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087670/s087670100.png ; $S ( t , k , v )$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172012.png ; $\operatorname { Red } : X ( K ) \rightarrow X _ { 0 } ( k )$ ; confidence 0.991
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040520/f04052043.png ; $| x - x _ { 0 } | \leq b$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035560/e03556014.png ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240457.png ; $\mu _ { i } ( X _ { i } ) = 1$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240457.png ; $\mu _ { i } ( X _ { i } ) = 1$ ; confidence 0.990
 +
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632072.png ; $( A , \phi )$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057440/l05744010.png ; $D = 2 \gamma k T / M$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057440/l05744010.png ; $D = 2 \gamma k T / M$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660213.png ; $S _ { k } ( \zeta _ { 0 } ) \backslash R ( f , \zeta _ { 0 } ; D )$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660213.png ; $S _ { k } ( \zeta _ { 0 } ) \backslash R ( f , \zeta _ { 0 } ; D )$ ; confidence 0.990
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055350/k05535065.png ; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074140/p074140115.png ; $1 \leq p \leq n / 2$ ; confidence 0.990
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008051.png ; $\frac { d ^ { 2 } u } { d t ^ { 2 } } + A ( t ) u = f ( t ) , t \in [ 0 , T ]$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003026.png ; $[ T ^ { * } M ]$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003026.png ; $[ T ^ { * } M ]$ ; confidence 0.990
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110400/b11040029.png ; $F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$ ; confidence 0.990
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350372.png ; $\{ \xi _ { t } \}$ ; confidence 0.990
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350372.png ; $\{ \xi _ { t } \}$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h11040046.png ; $\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$ ; confidence 0.990
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110400/h11040046.png ; $\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$ ; confidence 0.990
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249090.png ; $\alpha _ { \epsilon } ( h ) = o ( h )$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249090.png ; $\alpha _ { \epsilon } ( h ) = o ( h )$ ; confidence 0.989
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050400/i05040021.png ; $[ t ^ { n } : t ^ { n - 1 } ] = 0$ ; confidence 0.989
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294039.png ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052940/i05294039.png ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520138.png ; $\theta _ { T } = \theta$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s086520138.png ; $\theta _ { T } = \theta$ ; confidence 0.989
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036530/e03653023.png ; $t h$ ; confidence 0.989
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052110/i05211013.png ; $T \subset R ^ { 1 }$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930255.png ; $\alpha \in \pi _ { 1 } ( X , x _ { 0 } )$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930255.png ; $\alpha \in \pi _ { 1 } ( X , x _ { 0 } )$ ; confidence 0.989
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064320/m06432067.png ; $s , t \in W$ ; confidence 0.989
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063800/m06380081.png ; $\sigma ( W )$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165078.png ; $H \times H \rightarrow H$ ; confidence 0.989
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165078.png ; $H \times H \rightarrow H$ ; confidence 0.989
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024990/c02499018.png ; $\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$ ; confidence 0.988
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020660/c020660133.png ; $J _ { i } ( u , v , m ^ { * } , n ^ { * } , \psi , \theta ) = 0 , \quad i = 1,2$ ; confidence 0.988
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010167.png ; $k ( \pi )$ ; confidence 0.988
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729088.png ; $A = R ( X )$ ; confidence 0.988
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729088.png ; $A = R ( X )$ ; confidence 0.988
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041077.png ; $B _ { 1 }$ ; confidence 0.988
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240221.png ; $E \in S ( R )$ ; confidence 0.988
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684027.png ; $X = N ( A ) + X , \quad Y = Z + R ( A )$ ; confidence 0.988
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684027.png ; $X = N ( A ) + X , \quad Y = Z + R ( A )$ ; confidence 0.988
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009092.png ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019033.png ; $U$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002014.png ; $d , d ^ { \prime } \in D$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734036.png ; $+ \int _ { \partial S } \mu ( t ) d t + i c , \quad \text { if } m \geq 1$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734036.png ; $+ \int _ { \partial S } \mu ( t ) d t + i c , \quad \text { if } m \geq 1$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038019.png ; $w = \pi ( z )$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017360/b0173603.png ; $\frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x _ { 2 } ^ { 2 } } = - f ( x _ { 1 } , x _ { 2 } ) , \quad ( x _ { 1 } , x _ { 2 } ) \in G$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017360/b0173603.png ; $\frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x _ { 2 } ^ { 2 } } = - f ( x _ { 1 } , x _ { 2 } ) , \quad ( x _ { 1 } , x _ { 2 } ) \in G$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075160/p07516085.png ; $K _ { 1 } ( O _ { 1 } , E _ { 1 } , U _ { 1 } )$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075160/p07516085.png ; $K _ { 1 } ( O _ { 1 } , E _ { 1 } , U _ { 1 } )$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265044.png ; $c < 2$ ; confidence 0.987
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265044.png ; $c < 2$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042087.png ; $\overline { B } ^ { \nu }$ ; confidence 0.987
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090260/s09026037.png ; $d x = A ( t ) x d t + B ( t ) d w ( t )$ ; confidence 0.986
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032100/d032100109.png ; $\dot { x } ( t ) = A x ( t - h ) - D x ( t )$ ; confidence 0.986
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756028.png ; $f ^ { - 1 } \circ f ( z ) = z$ ; confidence 0.986
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756028.png ; $f ^ { - 1 } \circ f ( z ) = z$ ; confidence 0.986
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013590/a01359029.png ; $\Phi ^ { ( 3 ) } ( x )$ ; confidence 0.986
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013590/a01359029.png ; $\Phi ^ { ( 3 ) } ( x )$ ; confidence 0.986
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060022.png ; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $E ^ { \prime } = 0$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010055.png ; $E ^ { \prime } = 0$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068460/o0684606.png ; $x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068460/o0684606.png ; $x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063980/m06398045.png ; $\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063980/m06398045.png ; $\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$ ; confidence 0.985
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064430/m064430134.png ; $w = \lambda ( z )$ ; confidence 0.985
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003071.png ; $I _ { p } ( L )$ ; confidence 0.985
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003071.png ; $I _ { p } ( L )$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650408.png ; $\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650408.png ; $\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$ ; confidence 0.985
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r0825605.png ; $V = 5$ ; confidence 0.985
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164083.png ; $H _ { i } ( V , Z )$ ; confidence 0.985
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681038.png ; $n ( z ) = n _ { 0 } e ^ { - m g z / k T }$ ; confidence 0.985
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c110400102.png ; $M ^ { \perp } = \{ x \in G$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160147.png ; $\kappa = \mu ^ { * }$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160147.png ; $\kappa = \mu ^ { * }$ ; confidence 0.985
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005080.png ; $s > - \infty$ ; confidence 0.985
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005080.png ; $s > - \infty$ ; confidence 0.985
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040023.png ; $T ^ { * }$ ; confidence 0.984
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040023.png ; $T ^ { * }$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070020.png ; $\beta : S \rightarrow B / L$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026250/c0262506.png ; $x , y \in A , \quad 0 \leq \alpha \leq 1$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051870/i05187033.png ; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066980/n06698028.png ; $Q ^ { \prime } \subset Q$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001038.png ; $( \nabla _ { X } J ) Y = g ( X , Y ) Z - \alpha ( Y ) X$ ; confidence 0.984
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004089.png ; $D$ ; confidence 0.984
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004089.png ; $D$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006079.png ; $[ Q , [ \Gamma , \Gamma ] ] = 2 [ [ Q , \Gamma ] , \Gamma ]$ ; confidence 0.984
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n06679025.png ; $D \cap \{ x ^ { 1 } = c \}$ ; confidence 0.983
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087330/s08733032.png ; $H _ { i } ( \omega )$ ; confidence 0.983
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090219.png ; $L ( \Sigma )$ ; confidence 0.983
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052660/i05266017.png ; $0 \in R ^ { 3 }$ ; confidence 0.983
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052660/i05266017.png ; $0 \in R ^ { 3 }$ ; confidence 0.983
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.983
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091970/s09197066.png ; $F ( u _ { 1 } , u _ { 2 } , u _ { 3 } ) = 0$ ; confidence 0.982
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043770/g04377031.png ; $\Gamma _ { 2 } ( z , \zeta )$ ; confidence 0.982
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002050.png ; $( L )$ ; confidence 0.982
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092980/t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031890/d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050100/i05010030.png ; $\rho ( x _ { i } , x _ { j } )$ ; confidence 0.981
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051770/i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta }$ ; confidence 0.981
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta }$ ; confidence 0.981
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006027.png ; $\phi \in H$ ; confidence 0.981
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036620/e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110200/h11020026.png ; $( F , \tau _ { K , G } ( F ) )$ ; confidence 0.980
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110200/h11020026.png ; $( F , \tau _ { K , G } ( F ) )$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086550/s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086550/s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980
 +
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048200/h0482005.png ; $Z = 1$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752010.png ; $g : ( Y , B ) \rightarrow ( Z , C )$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087520/s08752010.png ; $g : ( Y , B ) \rightarrow ( Z , C )$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016016.png ; $j = 1 : n$ ; confidence 0.980
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097150/w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090190/s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080640/r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080640/r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n110/n110010/n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360189.png ; $\alpha _ { 2 } ( \alpha ; \omega )$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360189.png ; $\alpha _ { 2 } ( \alpha ; \omega )$ ; confidence 0.979
 +
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016160/b01616036.png ; $0 < c < 1$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087032.png ; $\pi ( \chi )$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045000/g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png ; $F \subset G$ ; confidence 0.978
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png ; $F \subset G$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t0939001.png ; $\Omega \nabla \phi + \Sigma \phi = \int d v ^ { \prime } \int d \Omega ^ { \prime } \phi w ( x , \Omega , \Omega ^ { \prime } , v , v ^ { \prime } ) + f$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048300/h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083470/s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083470/s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097940/w097940116.png ; $t \mapsto L ( t , x )$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068076.png ; $\alpha \geq b$ ; confidence 0.978
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092530/t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085710/s0857105.png ; $f ( v _ { 1 } , v _ { 2 } ) = - f ( v _ { 2 } , v _ { 1 } ) \quad \text { for all } v _ { 1 } , v _ { 2 } \in V$ ; confidence 0.977
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002034.png ; $F , F _ { \tau } \subset P$ ; confidence 0.977
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002034.png ; $F , F _ { \tau } \subset P$ ; confidence 0.977
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094420/t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png ; $\Omega _ { X }$ ; confidence 0.976
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067640/n06764043.png ; $\Omega _ { X }$ ; confidence 0.976
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s09191051.png ; $\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093360/t0933606.png ; $t \in [ 0,2 \pi q ]$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093360/t0933606.png ; $t \in [ 0,2 \pi q ]$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044660/g04466018.png ; $A = \sum _ { i \geq 0 } A$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044660/g04466018.png ; $A = \sum _ { i \geq 0 } A$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110060/b11006026.png ; $( X , R )$ ; confidence 0.975
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300902.png ; $u ( x , t ) : R \times R \rightarrow R$ ; confidence 0.975
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160173.png ; $E$ ; confidence 0.975
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110130/e11013060.png ; $p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$ ; confidence 0.974
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045040/g0450402.png ; $f _ { 12 }$ ; confidence 0.974
 +
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005021.png ; $\Gamma$ ; confidence 0.974
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097940/w09794024.png ; $X ( t ) = \sum _ { k = 0 } ^ { m - 1 } \Delta X ( \frac { k } { n } ) + ( n t - m ) \Delta X ( \frac { m } { n } ) , \quad 0 \leq t \leq 1$ ; confidence 0.974
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684024.png ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.974
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684024.png ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.974
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165039.png ; $E X ^ { 2 n } < \infty$ ; confidence 0.974
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165039.png ; $E X ^ { 2 n } < \infty$ ; confidence 0.974
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r08146017.png ; $g \mapsto ( \operatorname { det } g ) ^ { k } R ( g )$ ; confidence 0.974
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h04642087.png ; $L _ { \infty } ( \hat { G } )$ ; confidence 0.973
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h04642087.png ; $L _ { \infty } ( \hat { G } )$ ; confidence 0.973
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633098.png ; $A \Phi \subset \Phi$ ; confidence 0.973
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077390/r0773909.png ; $( \Xi , A )$ ; confidence 0.973
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g110/g110260/g1102602.png ; $B M$ ; confidence 0.973
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g1200408.png ; $C = C _ { f , K } > 0$ ; confidence 0.973
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548012.png ; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093170/t0931709.png ; $U , V \subset W$ ; confidence 0.972
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093170/t0931709.png ; $U , V \subset W$ ; confidence 0.972
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060600/l06060030.png ; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110190/k11019034.png ; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041890/f0418904.png ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.972
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065560/m06556075.png ; $\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$ ; confidence 0.972
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065560/m06556075.png ; $\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$ ; confidence 0.972
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940245.png ; $\Delta _ { q }$ ; confidence 0.971
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940245.png ; $\Delta _ { q }$ ; confidence 0.971
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188062.png ; $V _ { 0 } ( z )$ ; confidence 0.971
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m0640004.png ; $\epsilon > 0$ ; confidence 0.971
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582032.png ; $u ( x ) = \operatorname { inf } \{ v ( x ) : v \in \Phi ( G , f ) \} =$ ; confidence 0.970
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350101.png ; $E _ { 1 } \rightarrow E _ { 1 }$ ; confidence 0.970
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025350/c025350101.png ; $E _ { 1 } \rightarrow E _ { 1 }$ ; confidence 0.970
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300055.png ; $D _ { n } D _ { n } \theta = \theta$ ; confidence 0.970
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940314.png ; $L _ { p } ( X )$ ; confidence 0.970
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670153.png ; $\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$ ; confidence 0.970
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c0217608.png ; $p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$ ; confidence 0.970
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024330/c02433093.png ; $L , R , S$ ; confidence 0.970
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024330/c02433093.png ; $L , R , S$ ; confidence 0.970
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008031.png ; $R ( s ) = | \frac { r ( s ) - \sqrt { 1 - s ^ { 2 } } } { r ( s ) + \sqrt { 1 - s ^ { 2 } } } | , \quad s \in [ - 1,1 ]$ ; confidence 0.969
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008031.png ; $R ( s ) = | \frac { r ( s ) - \sqrt { 1 - s ^ { 2 } } } { r ( s ) + \sqrt { 1 - s ^ { 2 } } } | , \quad s \in [ - 1,1 ]$ ; confidence 0.969
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710024.png ; $\tau ( x ) \cup T ( A , X )$ ; confidence 0.968
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710024.png ; $\tau ( x ) \cup T ( A , X )$ ; confidence 0.968
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093230/t09323012.png ; $H ^ { * } ( X , X \backslash x ; Z )$ ; confidence 0.968
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044660/g04466023.png ; $A _ { 0 } = \mathfrak { A } _ { 0 }$ ; confidence 0.968
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g04381012.png ; $\overline { O } _ { k }$ ; confidence 0.968
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055180/k05518015.png ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055180/k05518015.png ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020051.png ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.967
 +
# 9 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050230.png ; $A ^ { \# }$ ; confidence 0.967
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055940/k05594016.png ; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006030.png ; $V _ { g , n }$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006030.png ; $V _ { g , n }$ ; confidence 0.966
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024025.png ; $- \beta V$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097720/w0977202.png ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097720/w0977202.png ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094660/t09466044.png ; $t \in [ - 1,1 ]$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094660/t09466044.png ; $t \in [ - 1,1 ]$ ; confidence 0.966
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056013.png ; $w _ { 2 } ( F )$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696030.png ; $\| x _ { 0 } \| \leq \delta$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696030.png ; $\| x _ { 0 } \| \leq \delta$ ; confidence 0.966
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020187.png ; $\delta : G ^ { \prime } \rightarrow W$ ; confidence 0.965
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020187.png ; $\delta : G ^ { \prime } \rightarrow W$ ; confidence 0.965
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s11004021.png ; $g ( \phi x , \phi Y ) = g ( X , Y ) - \eta ( X ) \eta ( Y )$ ; confidence 0.965
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400446.png ; $X \rightarrow \Delta [ 0 ]$ ; confidence 0.965
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093180/t093180232.png ; $k , r \in Z _ { + }$ ; confidence 0.965
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c02412065.png ; $J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$ ; confidence 0.964
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062590/m06259061.png ; $\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$ ; confidence 0.964
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012100/a01210023.png ; $| \alpha | = \sqrt { \overline { \alpha } \alpha }$ ; confidence 0.964
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$ ; confidence 0.964
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$ ; confidence 0.964
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110080/r11008062.png ; $\lambda _ { j , k }$ ; confidence 0.964
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110080/r11008062.png ; $\lambda _ { j , k }$ ; confidence 0.964
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280177.png ; $\underline { C } ( E ) = \operatorname { sup } C ( K )$ ; confidence 0.963
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.963
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300068.png ; $P _ { 0 } ( z )$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m06514041.png ; $S _ { n }$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646046.png ; $\{ x _ { k } \}$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020104.png ; $P _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121023.png ; $x > 0 , x \gg 1$ ; confidence 0.963
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110190/m11019012.png ; $u ( t , . )$ ; confidence 0.962
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555028.png ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.962
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035550/e03555028.png ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.962
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059410/l05941048.png ; $Q _ { 3 } ( b )$ ; confidence 0.962
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069072.png ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.962
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040690/f04069072.png ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.962
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201505.png ; $\eta \in A \mapsto \xi \eta \in A$ ; confidence 0.962
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240300.png ; $F ^ { \prime } , F ^ { \prime \prime } \in S$ ; confidence 0.961
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240300.png ; $F ^ { \prime } , F ^ { \prime \prime } \in S$ ; confidence 0.961
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058140/l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073063.png ; $K \subset H$ ; confidence 0.959
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011780/a01178066.png ; $p \in C$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s086810108.png ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s086810108.png ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003037.png ; $K _ { \omega }$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o110/o110030/o11003037.png ; $K _ { \omega }$ ; confidence 0.958
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074160/p07416055.png ; $\rho = | y |$ ; confidence 0.958
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073270/p07327037.png ; $q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$ ; confidence 0.958
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040165.png ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.957
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040165.png ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.957
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202105.png ; $| z | < r$ ; confidence 0.957
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026250/c0262508.png ; $( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$ ; confidence 0.957
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p0724307.png ; $\epsilon \ll 1$ ; confidence 0.957
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d03185095.png ; $x \neq \pm 1$ ; confidence 0.956
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087110/s08711028.png ; $\delta < \alpha$ ; confidence 0.956
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755034.png ; $| \mu _ { k } ( 0 ) = 1 ; \mu _ { i } ( 0 ) = 0 , i \neq k \}$ ; confidence 0.955
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755034.png ; $| \mu _ { k } ( 0 ) = 1 ; \mu _ { i } ( 0 ) = 0 , i \neq k \}$ ; confidence 0.955
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420157.png ; $d g = d h d k$ ; confidence 0.955
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313036.png ; $A \mapsto H ^ { n } ( G , A )$ ; confidence 0.955
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a1104901.png ; $D = d / d t$ ; confidence 0.954
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110490/a1104901.png ; $D = d / d t$ ; confidence 0.954
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png ; $r > n$ ; confidence 0.953
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060220/l0602207.png ; $\in \Theta$ ; confidence 0.953
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060220/l0602207.png ; $\in \Theta$ ; confidence 0.953
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065140/m06514010.png ; $f ( x | \mu , V )$ ; confidence 0.951
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055820/k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055820/k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c1101705.png ; $D _ { p }$ ; confidence 0.949
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110170/c1101705.png ; $D _ { p }$ ; confidence 0.949
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448050.png ; $F _ { X } ( x | Y = y ) = \frac { 1 } { f _ { Y } ( y ) } \frac { \partial } { \partial y } F _ { X , Y } ( x , y )$ ; confidence 0.949
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094540/t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
 
# 14 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
 
# 14 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014039.png ; $a ( z )$ ; confidence 0.948
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082510/r0825108.png ; $V ( \mu ) = \int \int _ { K \times K } E _ { n } ( x , y ) d \mu ( x ) d \mu ( y )$ ; confidence 0.948
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068500/o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024730/c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
 +
# 9 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t09315093.png ; <font color="red">Missing</font> ; confidence 0.945
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066480/n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945
 +
# 13 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $F _ { m }$ ; confidence 0.945
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086190/s08619099.png ; $GL ^ { + } ( n , R )$ ; confidence 0.945
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485065.png ; $A . B$ ; confidence 0.944
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485065.png ; $A . B$ ; confidence 0.944
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035810/e03581038.png ; $\Phi \Psi$ ; confidence 0.943
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930175.png ; $\pi _ { n } ( X , x _ { n } )$ ; confidence 0.943
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097880/w097880164.png ; $L _ { 2 } ( [ - \pi , \pi ] )$ ; confidence 0.943
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $C = Z ( Q )$ ; confidence 0.941
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063270/m06327013.png ; $( X , \mathfrak { A } , \mu )$ ; confidence 0.941
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063270/m06327013.png ; $( X , \mathfrak { A } , \mu )$ ; confidence 0.941
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s08681011.png ; $\omega _ { k } ( f , \delta ) _ { q }$ ; confidence 0.941
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520403.png ; $\omega _ { k } = \operatorname { min } | ( Q , \Lambda ) |$ ; confidence 0.940
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020850/c02085014.png ; $= p ( x ; \lambda _ { 1 } + \ldots + \lambda _ { n } , \mu _ { 1 } + \ldots + \mu _ { n } )$ ; confidence 0.938
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070290/o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070290/o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360182.png ; $F ( x ; \alpha )$ ; confidence 0.936
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360182.png ; $F ( x ; \alpha )$ ; confidence 0.936
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064990/m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073330/p07333012.png ; $d S _ { n }$ ; confidence 0.935
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850122.png ; $A \rightarrow w$ ; confidence 0.934
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850122.png ; $A \rightarrow w$ ; confidence 0.934
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110200/h11020058.png ; $\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$ ; confidence 0.934
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206019.png ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070113.png ; $[ \alpha - h , \alpha + h ]$ ; confidence 0.931
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103309.png ; $p _ { i } \in S$ ; confidence 0.931
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831095.png ; $\alpha ( x , t )$ ; confidence 0.931
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831095.png ; $\alpha ( x , t )$ ; confidence 0.931
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023890/c02389043.png ; $\{ d F _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.930
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h04774059.png ; $0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$ ; confidence 0.930
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.930
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081460/r081460129.png ; $V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$ ; confidence 0.929
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080060/r080060177.png ; $\{ r _ { n } + r _ { n } ^ { \prime } \}$ ; confidence 0.928
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110490/b1104909.png ; $P _ { 1 }$ ; confidence 0.928
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110490/b1104909.png ; $P _ { 1 }$ ; confidence 0.928
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530022.png ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530022.png ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820199.png ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026039.png ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.925
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g04328069.png ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014012.png ; $d _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.923
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050430/i05043015.png ; $m = 0 , \dots , r$ ; confidence 0.922
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051360/i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f04117058.png ; $| D ^ { \alpha } \eta _ { k } ( x ; y ) | \leq c _ { \alpha }$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110160/l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.921
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690095.png ; $\rightarrow H ^ { 1 } ( G , B ) \rightarrow H ^ { 1 } ( G , A )$ ; confidence 0.920
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690095.png ; $\rightarrow H ^ { 1 } ( G , B ) \rightarrow H ^ { 1 } ( G , A )$ ; confidence 0.920
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006058.png ; $N \geq Z$ ; confidence 0.919
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.919
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110130/c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038220/f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033400/d03340011.png ; $\phi ( x , t ) = A \operatorname { exp } ( i k x - i \omega t )$ ; confidence 0.916
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a11059012.png ; $( n - L _ { n } ^ { \prime } , S _ { n } )$ ; confidence 0.916
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002040.png ; $\{ \lambda _ { 1 } , \lambda _ { 2 } \}$ ; confidence 0.913
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017370/b0173701.png ; $\frac { d x } { d t } = f ( t , x ) , \quad t \in J , \quad x \in R ^ { n }$ ; confidence 0.913
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057980/l05798044.png ; $H ^ { p , q } ( X )$ ; confidence 0.913
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057980/l05798044.png ; $H ^ { p , q } ( X )$ ; confidence 0.913
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150515.png ; $( C , F )$ ; confidence 0.913
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068530/o06853056.png ; $R ( x , u ) = \phi _ { x } f ( x , u ) - f ^ { 0 } ( x , u )$ ; confidence 0.912
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o068/o068530/o06853056.png ; $R ( x , u ) = \phi _ { x } f ( x , u ) - f ^ { 0 } ( x , u )$ ; confidence 0.912
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096770/v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005098.png ; $e ^ { s } ( T , V )$ ; confidence 0.909
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005098.png ; $e ^ { s } ( T , V )$ ; confidence 0.909
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002056.png ; $x \in J$ ; confidence 0.908
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064190/m06419041.png ; $- \sum _ { i = 1 } ^ { n } b _ { i } ( x , t ) \mathfrak { u } _ { i } - c ( x , t ) u = f ( x , t ) , \quad ( x , t ) \in D$ ; confidence 0.907
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043330/g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075650/p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081470/r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043290/g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090760/s09076059.png ; $p ( \alpha )$ ; confidence 0.904
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090276.png ; $\dot { x } = A x + B u , \quad y = C x$ ; confidence 0.904
 
# 8 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
 
# 8 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050730/i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041420/f04142062.png ; $D ( x , s ; \lambda ) = \sum _ { m = 0 } ^ { \infty } \frac { ( - 1 ) ^ { m } } { m ! } B _ { m } ( x , s ) \lambda ^ { m }$ ; confidence 0.902
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075680/p0756806.png ; $( k a , b ) = k ( a , b )$ ; confidence 0.901
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067940/n06794014.png ; $N > 5$ ; confidence 0.901
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.900
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016850/b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007015.png ; $q$ ; confidence 0.899
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png ; $x$ ; confidence 0.899
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082430/r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c02055049.png ; $1$ ; confidence 0.897
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z099/z099270/z0992701.png ; $\mathfrak { A } = \langle A , \Omega \}$ ; confidence 0.897
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740331.png ; $\operatorname { Set } ( E , V ( A ) ) \cong \operatorname { Ring } ( F E , A )$ ; confidence 0.896
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740331.png ; $\operatorname { Set } ( E , V ( A ) ) \cong \operatorname { Ring } ( F E , A )$ ; confidence 0.896
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048046.png ; $D ^ { \perp }$ ; confidence 0.893
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086160/s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024900/c02490030.png ; $q = p ^ { r }$ ; confidence 0.892
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048440/h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780356.png ; $\Omega$ ; confidence 0.892
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579047.png ; $\gamma ^ { - 1 } ( \operatorname { Th } ( \mathfrak { M } , \nu ) ) \in \Delta _ { 1 } ^ { 1 , A }$ ; confidence 0.888
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072370/p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r08018011.png ; $C _ { c } ^ { * } ( R , S )$ ; confidence 0.886
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080180/r08018011.png ; $C _ { c } ^ { * } ( R , S )$ ; confidence 0.886
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png ; $n \geq 12$ ; confidence 0.886
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097910/w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png ; $t \subset v$ ; confidence 0.885
 +
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019044.png ; $T ( M )$ ; confidence 0.884
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033210/d03321033.png ; $P ( 2 | 1 ; R ) = \int _ { R _ { 2 } } p _ { 1 } ( x ) d x , \quad P ( 1 | 2 ; R ) = \int _ { R _ { 1 } } p _ { 2 } ( x ) d x$ ; confidence 0.882
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014038.png ; $\epsilon$ ; confidence 0.882
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048420/h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/y/y099/y099070/y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006098.png ; $H \phi$ ; confidence 0.878
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025170/c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520250.png ; $d j \neq 0$ ; confidence 0.877
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043620/g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064440/m06444056.png ; $c = 0$ ; confidence 0.874
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \cup _ { i < m } N _ { i } \}$ ; confidence 0.874
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \cup _ { i < m } N _ { i } \}$ ; confidence 0.874
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085830/s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022080/c0220805.png ; $t \geq t _ { 0 } , \quad \sum _ { s = 1 } ^ { n } x _ { s } ^ { 2 } < A$ ; confidence 0.873
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087000/s0870008.png ; $i = 2 , \dots , N - 1$ ; confidence 0.872
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120197.png ; $\operatorname { Ext } _ { \Psi } ^ { n - p } ( X ; F , \Omega )$ ; confidence 0.872
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022960/c02296023.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ Y / i ( X ) , K ] \leftarrow [ C _ { 1 } , K ]$ ; confidence 0.871
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022960/c02296023.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ Y / i ( X ) , K ] \leftarrow [ C _ { 1 } , K ]$ ; confidence 0.871
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png ; $M _ { A g }$ ; confidence 0.870
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095042.png ; $\frac { \partial ^ { k } u } { \partial \nu ^ { k } } | _ { S } = \phi _ { k } , \quad 0 \leq k \leq m - 1$ ; confidence 0.870
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091022.png ; $( v _ { 5 } , v _ { 6 } ) \rightarrow ( v _ { 1 } , v _ { 2 } )$ ; confidence 0.869
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095430/u09543074.png ; $U _ { \partial } = \{ z = x + i y \in C ^ { n } : | x - x ^ { 0 } | < r , \square y = y ^ { 0 } \}$ ; confidence 0.867
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095430/u09543074.png ; $U _ { \partial } = \{ z = x + i y \in C ^ { n } : | x - x ^ { 0 } | < r , \square y = y ^ { 0 } \}$ ; confidence 0.867
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201406.png ; $( \gamma _ { j } - k ) j , k \geq 0$ ; confidence 0.866
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062760/m0627602.png ; $\frac { d ^ { 2 } u } { d z ^ { 2 } } + ( \alpha + 16 q \operatorname { cos } 2 z ) u = 0 , \quad z \in R$ ; confidence 0.865
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062760/m0627602.png ; $\frac { d ^ { 2 } u } { d z ^ { 2 } } + ( \alpha + 16 q \operatorname { cos } 2 z ) u = 0 , \quad z \in R$ ; confidence 0.865
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660195.png ; $P \in S _ { \rho , \delta } ^ { m }$ ; confidence 0.857
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057024.png ; $G , F \in C ^ { \infty } ( R ^ { 2 n } )$ ; confidence 0.854
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062280/m06228020.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ { f } , K ]$ ; confidence 0.850
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062280/m06228020.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ { f } , K ]$ ; confidence 0.850
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $= v : q$ ; confidence 0.846
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r0820705.png ; $l , k , i , q = 1 , \dots , n$ ; confidence 0.841
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
 +
# 23 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740328.png ; $e \in E$ ; confidence 0.839
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041950/f04195012.png ; $T ( r , f )$ ; confidence 0.839
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041950/f04195012.png ; $T ( r , f )$ ; confidence 0.839
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359032.png ; $T ( p , p ) : T ( p , p ) \rightarrow R$ ; confidence 0.839
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060128.png ; $( \zeta , \eta )$ ; confidence 0.835
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058770/l05877024.png ; $( g , m \in G )$ ; confidence 0.833
 +
# 10 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015580/b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140103.png ; $\overline { \psi } ( s , \alpha ) = s$ ; confidence 0.830
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140103.png ; $\overline { \psi } ( s , \alpha ) = s$ ; confidence 0.830
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015720/b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107038.png ; $= \operatorname { min } \operatorname { max } \{ I ( R : P ) , I ( R : Q ) \}$ ; confidence 0.827
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075830/p0758301.png ; $a \vee b$ ; confidence 0.827
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590585.png ; $\| x \| = \rho$ ; confidence 0.826
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168302.png ; $\frac { \partial f } { \partial t } + \langle c , \nabla _ { x } f \rangle = \frac { 1 } { \epsilon } L ( f , f )$ ; confidence 0.825
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031770/d03177037.png ; $\frac { d \eta _ { 1 } } { d t } = f _ { X } ( t , x ( t , 0 ) , 0 ) \eta _ { 1 } + f _ { \mu } ( t , x ( t , 0 ) , 0 )$ ; confidence 0.823
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063090/m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059140/l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082050/r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035790/e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026460/c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057110/l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081940/r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051150/i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a01243088.png ; $f$ ; confidence 0.816
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026420/c02642013.png ; $R ( x _ { 0 } ) = \operatorname { inf } \{ R ( x , f ) : f \in \mathfrak { M } \}$ ; confidence 0.815
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012011.png ; $\emptyset , X \in L$ ; confidence 0.814
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012011.png ; $\emptyset , X \in L$ ; confidence 0.814
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813
Line 298: Line 836:
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081160/r08116074.png ; $t + \tau$ ; confidence 0.811
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051430/i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a01367015.png ; $\sum _ { n = 0 } ^ { \infty } \psi _ { n } ( x ) , \quad \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \phi _ { n } ( x )$ ; confidence 0.809
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670218.png ; $[ g , g ] = c$ ; confidence 0.808
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110230/b11023028.png ; $\tilde { \alpha } _ { i } , \overline { \beta } _ { j } \in \Sigma$ ; confidence 0.808
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047930/h047930299.png ; $Z / p$ ; confidence 0.808
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041290/f0412903.png ; $u = u ( x , t )$ ; confidence 0.808
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094010/t09401026.png ; $( t _ { 2 } , x _ { 2 } ^ { 1 } , \ldots , x _ { 2 } ^ { n } )$ ; confidence 0.805
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094010/t09401026.png ; $( t _ { 2 } , x _ { 2 } ^ { 1 } , \ldots , x _ { 2 } ^ { n } )$ ; confidence 0.805
 +
# 15 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680012.png ; $T ^ { S }$ ; confidence 0.805
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680200.png ; $r$ ; confidence 0.805
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014140/a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l061/l061160/l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094024.png ; $\operatorname { det } X ( \theta , \tau ) = \operatorname { exp } \int ^ { \theta } \operatorname { tr } A ( \xi ) d \xi$ ; confidence 0.801
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020940/c02094024.png ; $\operatorname { det } X ( \theta , \tau ) = \operatorname { exp } \int ^ { \theta } \operatorname { tr } A ( \xi ) d \xi$ ; confidence 0.801
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f038/f038380/f03838022.png ; $C _ { 0 }$ ; confidence 0.800
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png ; $P _ { 8 }$ ; confidence 0.799
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i05065043.png ; $B _ { 1 } , \ldots , B _ { m / 2 }$ ; confidence 0.797
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067170/n06717041.png ; $\frac { \partial u } { \partial t } + \sum _ { i = 1 } ^ { n } \frac { \partial } { \partial x _ { i } } \phi _ { i } ( t , x , u ) + \psi ( t , x , u ) = 0$ ; confidence 0.796
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065580/m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e037040152.png ; $( \theta _ { i j } ) _ { i , j = 1 } ^ { n }$ ; confidence 0.795
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080620/r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035660/e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s0902702.png ; $\alpha < t < b$ ; confidence 0.786
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076080/q076080281.png ; $R ( q , b ) = \frac { \pi ^ { n / 2 } b ^ { n / 2 - 1 } } { \Gamma ( n / 2 ) d ( q ) } H ( q , b ) + O ( b ^ { ( n - 1 ) / 4 + \epsilon } )$ ; confidence 0.785
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087550/s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
Line 316: Line 882:
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649013.png ; $N ( r , \alpha , f ) = \int _ { 0 } ^ { r } \frac { n ( t , \alpha , f ) - n ( 0 , \alpha , f ) } { t } d t + n ( 0 , \alpha , f ) \operatorname { ln } r$ ; confidence 0.780
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066490/n06649013.png ; $N ( r , \alpha , f ) = \int _ { 0 } ^ { r } \frac { n ( t , \alpha , f ) - n ( 0 , \alpha , f ) } { t } d t + n ( 0 , \alpha , f ) \operatorname { ln } r$ ; confidence 0.780
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255029.png ; $\omega ^ { p + 1 } , \ldots , \omega ^ { n }$ ; confidence 0.778
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080930/r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
 +
# 16 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110610/b11061011.png ; $K ^ { * }$ ; confidence 0.777
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066340/n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042120/f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202604.png ; $\{ ( x _ { j } , t _ { n } ) : x _ { j } = j h , t _ { n } = n k , 0 \leq j \leq J , 0 \leq n \leq N \}$ ; confidence 0.777
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057870/l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420100.png ; $( 1 , \dots , k )$ ; confidence 0.776
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420100.png ; $( 1 , \dots , k )$ ; confidence 0.776
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052800/i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014089.png ; $Q _ { 0 } = \{ 1 , \dots , n \}$ ; confidence 0.774
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014089.png ; $Q _ { 0 } = \{ 1 , \dots , n \}$ ; confidence 0.774
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110420/c11042035.png ; $( S , < )$ ; confidence 0.772
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i110/i110060/i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066060/n0660601.png ; $x = s + \ldots , \quad y = \frac { k _ { 1 } } { 2 } s ^ { 2 } + \ldots , \quad z = \frac { k _ { 1 } k _ { 2 } } { 6 } s ^ { 3 } +$ ; confidence 0.769
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023021.png ; $\alpha _ { k } = \int _ { \Gamma } \frac { f ( \zeta ) d \zeta } { \zeta ^ { k + 1 } } , \quad k = 0,1$ ; confidence 0.766
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052370/i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093860/t09386023.png ; $P ( S )$ ; confidence 0.765
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086700/s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047610/h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021650/c02165035.png ; $\hat { \mu } \square _ { X } ^ { ( r ) } ( t ) = \int _ { - \infty } ^ { \infty } ( i x ) ^ { r } e ^ { i t x } d \mu _ { X } ( x ) , \quad t \in R ^ { 1 }$ ; confidence 0.762
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027480/c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063120/m0631205.png ; $u _ { t } \in U , \quad t = 0 , \dots , T$ ; confidence 0.760
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036230/e03623076.png ; $2 d \geq n$ ; confidence 0.758
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007037.png ; $k ( E , F , g , g ^ { - 1 } )$ ; confidence 0.756
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110290/b11029081.png ; $p _ { 1 } , \dots , p _ { 4 }$ ; confidence 0.747
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074660/p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940175.png ; $S \subset T$ ; confidence 0.743
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077740/r0777407.png ; $F ( u ) = - \lambda ( u - \frac { u ^ { 2 } } { 3 } ) , \quad \lambda =$ ; confidence 0.743
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077740/r0777407.png ; $F ( u ) = - \lambda ( u - \frac { u ^ { 2 } } { 3 } ) , \quad \lambda =$ ; confidence 0.743
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050310/i05031095.png ; $( i = 1 , \dots , n )$ ; confidence 0.741
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067080/n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430100.png ; $I Y \subset O$ ; confidence 0.739
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
 
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023059.png ; $1 < m \leq n$ ; confidence 0.737
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150258.png ; $\beta \in O _ { S } ( 1 ; Z _ { p } , Z _ { p } )$ ; confidence 0.734
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057180/l05718018.png ; $x g$ ; confidence 0.734
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110240/s11024048.png ; $k < k _ { c } = \sqrt { - ( \frac { \partial ^ { 2 } f } { \partial c ^ { 2 } } ) _ { T , c = c } / K }$ ; confidence 0.732
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s110/s110240/s11024048.png ; $k < k _ { c } = \sqrt { - ( \frac { \partial ^ { 2 } f } { \partial c ^ { 2 } } ) _ { T , c = c } / K }$ ; confidence 0.732
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110750/b11075050.png ; $B ( R , < , > )$ ; confidence 0.731
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230221.png ; $x \in ( n , n + 1 ]$ ; confidence 0.729
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.727
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.727
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037030/e03703035.png ; $H ^ { 2 } ( R , I )$ ; confidence 0.726
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037030/e03703035.png ; $H ^ { 2 } ( R , I )$ ; confidence 0.726
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072530/p07253081.png ; $d f ^ { j }$ ; confidence 0.726
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002043.png ; $\alpha _ { n , F } \circ Q + \beta _ { n , F }$ ; confidence 0.726
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057720/l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017530/b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < \varrho y$ ; confidence 0.723
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091670/s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r077/r077380/r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.716
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086520/s08652091.png ; $| T | _ { p }$ ; confidence 0.714
 
# 41 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
 
# 41 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png ; $D x$ ; confidence 0.713
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082010/r08201023.png ; <font color="red">Missing</font> ; confidence 0.713
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006038.png ; $C ( Z \times S Y , X ) \cong C ( Z , C ( Y , X ) )$ ; confidence 0.712
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008018.png ; $D _ { \xi } = D ( \xi , R ) : = \{ z \in \Delta : \frac { | 1 - z \overline { \xi } | ^ { 2 } } { 1 - | z | ^ { 2 } } < R \}$ ; confidence 0.704
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041210/f0412109.png ; $A / \eta$ ; confidence 0.702
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033160/d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739106.png ; $\langle A x , x \} > 0$ ; confidence 0.699
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045015.png ; $\int [ 0 , t ] X \circ d X = ( 1 / 2 ) X ^ { 2 } ( t )$ ; confidence 0.698
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045015.png ; $\int [ 0 , t ] X \circ d X = ( 1 / 2 ) X ^ { 2 } ( t )$ ; confidence 0.698
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091140/s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410122.png ; $H ^ { q } ( G , K ) = 0$ ; confidence 0.692
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628092.png ; $\rho _ { 1 } ^ { - 1 } , \ldots , \rho _ { k } ^ { - 1 }$ ; confidence 0.691
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h04628092.png ; $\rho _ { 1 } ^ { - 1 } , \ldots , \rho _ { k } ^ { - 1 }$ ; confidence 0.691
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890133.png ; $W ( \zeta _ { 0 } ; \epsilon , \alpha _ { 0 } ) = \frac { 1 } { 2 \pi i } [ \int _ { \Gamma } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - z } - \int _ { \Gamma _ { \epsilon } } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - \zeta _ { 0 } } ]$ ; confidence 0.690
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020890/c020890133.png ; $W ( \zeta _ { 0 } ; \epsilon , \alpha _ { 0 } ) = \frac { 1 } { 2 \pi i } [ \int _ { \Gamma } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - z } - \int _ { \Gamma _ { \epsilon } } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - \zeta _ { 0 } } ]$ ; confidence 0.690
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486068.png ; $| f ( \zeta _ { 1 } ) - f ( \zeta _ { 2 } ) | < C | \zeta _ { 1 } - \zeta _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.689
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $x 0$ ; confidence 0.689
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c02338044.png ; $x 0$ ; confidence 0.689
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066057.png ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066057.png ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png ; $| X$ ; confidence 0.687
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032910/d032910104.png ; $v ( x ) \geq \phi ( x _ { 0 } ) , \quad x \in D , x \rightarrow x _ { 0 } ; \quad H \square _ { \phi } = \overline { H }$ ; confidence 0.686
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619018.png ; $\sigma ( x ) = \prod _ { j = 1 } ^ { m } ( x - a _ { j } ) , \quad \omega ( x ) = \prod _ { j = 1 } ^ { n } ( x - x _ { j } )$ ; confidence 0.685
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085096.png ; $\langle f _ { 1 } , f _ { 2 } \rangle = \frac { 1 } { | G | } \sum _ { g \in G } f _ { 1 } ( g ) f _ { 2 } ( g ^ { - 1 } )$ ; confidence 0.684
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230430.png ; $l = 2,3 , \dots$ ; confidence 0.683
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230430.png ; $l = 2,3 , \dots$ ; confidence 0.683
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008047.png ; $m s$ ; confidence 0.683
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744011.png ; $\lambda _ { 4 n }$ ; confidence 0.681
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047440/h04744011.png ; $\lambda _ { 4 n }$ ; confidence 0.681
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303027.png ; $\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$ ; confidence 0.679
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490130.png ; $z _ { 1 } ( t ) , \ldots , z _ { d } ( t )$ ; confidence 0.679
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086720/s08672038.png ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072890/p07289041.png ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040390/f04039058.png ; $F ^ { 2 } ( x , y ) = g _ { j } ( x , y ) y ^ { i } y ^ { j } , \quad y _ { i } = \frac { 1 } { 2 } \frac { \partial F ^ { 2 } ( x , y ) } { \partial y ^ { i } }$ ; confidence 0.675
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200179.png ; $\rho _ { M _ { 1 } } ( X , Y ) \geq \rho _ { M _ { 2 } } ( \phi ( X ) , \phi ( Y ) )$ ; confidence 0.675
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082200/r082200179.png ; $\rho _ { M _ { 1 } } ( X , Y ) \geq \rho _ { M _ { 2 } } ( \phi ( X ) , \phi ( Y ) )$ ; confidence 0.675
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033990/d0339906.png ; $y ( x ) = ( y _ { 1 } ( x ) , \ldots , y _ { n } ( x ) ) ^ { T }$ ; confidence 0.674
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png ; $( \xi ) _ { R }$ ; confidence 0.672
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png ; $( \xi ) _ { R }$ ; confidence 0.672
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097030/w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544063.png ; $i = 1 , \dots , l ( e )$ ; confidence 0.671
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png ; $r \in F$ ; confidence 0.671
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017560/b01756018.png ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021760/c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535026.png ; $S , q$ ; confidence 0.670
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060160/l06016034.png ; $\alpha = E X _ { 1 }$ ; confidence 0.670
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s08694070.png ; $\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$ ; confidence 0.669
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png ; $m \geq 3$ ; confidence 0.668
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t094/t094240/t09424015.png ; $\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$ ; confidence 0.667
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734029.png ; $C _ { \alpha }$ ; confidence 0.664
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237063.png ; $Q / Z$ ; confidence 0.664
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237063.png ; $Q / Z$ ; confidence 0.664
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472020.png ; $\Gamma _ { F }$ ; confidence 0.663
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472020.png ; $\Gamma _ { F }$ ; confidence 0.663
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086650/s086650167.png ; $Z _ { 24 }$ ; confidence 0.663
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095099.png ; $X = \xi ^ { i }$ ; confidence 0.662
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095099.png ; $X = \xi ^ { i }$ ; confidence 0.662
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055350/k0553509.png ; $V = H _ { 2 k + 1 } ( M ; Z )$ ; confidence 0.661
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260017.png ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.660
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260017.png ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.660
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060820/l06082028.png ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502055.png ; $r \uparrow 1$ ; confidence 0.659
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212040.png ; $\alpha _ { i } + 1$ ; confidence 0.659
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.658
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011031.png ; $x \in K$ ; confidence 0.658
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011031.png ; $x \in K$ ; confidence 0.658
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043640/g04364030.png ; $K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$ ; confidence 0.655
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058580/l05858097.png ; $Q = Q ( x ^ { i } , y _ { j } ^ { \ell } )$ ; confidence 0.653
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350152.png ; $\{ m _ { 1 } ( F , \Lambda ) \} ^ { n } \frac { \Delta ( C _ { F } ) } { d ( \Lambda ) } \leq 1$ ; confidence 0.652
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150139.png ; $\varphi H G$ ; confidence 0.652
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016610/b01661046.png ; $\vec { u } = A _ { j } ^ { i } u ^ { j }$ ; confidence 0.648
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.648
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s08558099.png ; $\psi ( t ) = a * ( t ) g ( t ) +$ ; confidence 0.645
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s09027020.png ; $L ^ { * } L X ( t ) = 0 , \quad \alpha < t < b$ ; confidence 0.644
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090270/s09027020.png ; $L ^ { * } L X ( t ) = 0 , \quad \alpha < t < b$ ; confidence 0.644
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566054.png ; $\alpha = ( k + 1 / 2 )$ ; confidence 0.643
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026390/c026390117.png ; $r _ { u } \times r _ { v } \neq 0$ ; confidence 0.643
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041170/f041170108.png ; $\eta \in \operatorname { ln } t \Gamma ^ { \prime }$ ; confidence 0.642
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680042.png ; $\nu _ { 1 } ^ { S }$ ; confidence 0.641
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680042.png ; $\nu _ { 1 } ^ { S }$ ; confidence 0.641
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960198.png ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632096.png ; $( T _ { s , t } ) _ { s \leq t }$ ; confidence 0.639
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632096.png ; $( T _ { s , t } ) _ { s \leq t }$ ; confidence 0.639
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585059.png ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k05585059.png ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390191.png ; $M \rightarrow \operatorname { Hom } _ { R } ( M , R )$ ; confidence 0.637
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png ; $cd _ { l } ( Spec A )$ ; confidence 0.637
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png ; $cd _ { l } ( Spec A )$ ; confidence 0.637
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058470/l05847082.png ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { k | \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.633
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { k | \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.633
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027640/c02764016.png ; $( \phi _ { 1 } , \dots , \phi _ { n } )$ ; confidence 0.631
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027640/c02764016.png ; $( \phi _ { 1 } , \dots , \phi _ { n } )$ ; confidence 0.631
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023740/c0237402.png ; $\alpha _ { i } , b _ { 2 }$ ; confidence 0.631
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810381.png ; $C = \text { int } \Gamma$ ; confidence 0.630
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810381.png ; $C = \text { int } \Gamma$ ; confidence 0.630
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035900/e03590064.png ; $j = i + 1 , \dots , n$ ; confidence 0.629
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647062.png ; $S _ { 2 m + 1 } ^ { m }$ ; confidence 0.627
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647062.png ; $S _ { 2 m + 1 } ^ { m }$ ; confidence 0.627
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096870/v09687029.png ; $+ \int _ { - \infty } ^ { + \infty } \ldots \int _ { - \infty } ^ { + \infty } h _ { n } ( \tau _ { 1 } , \ldots , \tau _ { n } ) u ( t - \tau _ { 1 } ) \ldots u ( t - \tau _ { n } )$ ; confidence 0.627
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064900/m06490036.png ; $\{ \operatorname { St } ( x , U _ { X } ) \} _ { n }$ ; confidence 0.625
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070310/o070310169.png ; $n + 1 , \dots , 2 n$ ; confidence 0.625
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372047.png ; $( U ( \alpha , R ) , f _ { \alpha } )$ ; confidence 0.624
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360228.png ; $P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$ ; confidence 0.622
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024230/c0242308.png ; $T M _ { 1 } , \dots , T M _ { i }$ ; confidence 0.620
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450404.png ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450404.png ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058830/l05883055.png ; $\frac { \partial u _ { j } } { \partial r } - i \mu _ { j } ( \omega ) u _ { j } = o ( r ^ { ( 1 - n ) / 2 } ) , \quad r \rightarrow \infty$ ; confidence 0.618
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040125.png ; $\pi \Gamma$ ; confidence 0.616
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047800/h04780058.png ; $H _ { p } ( X , X \backslash U ; G ) = H ^ { n - p } ( U , H _ { n } )$ ; confidence 0.614
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004058.png ; $\phi _ { k } = \frac { 1 } { \langle \rho ^ { \prime } , \zeta \} ^ { n } } \{ \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } ( \zeta ) , \zeta \} } , z \} ^ { k } \sigma$ ; confidence 0.612
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002010.png ; $l _ { 1 } ( P , Q )$ ; confidence 0.611
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002010.png ; $l _ { 1 } ( P , Q )$ ; confidence 0.611
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016026.png ; $A ( q , d ) ( f )$ ; confidence 0.610
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003024.png ; $\overline { P _ { 8 } }$ ; confidence 0.610
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082490/r08249025.png ; $R ( \theta , \delta ) = \int \int _ { X D } L ( \theta , d ) d Q _ { x } ( d ) d P _ { \theta } ( x )$ ; confidence 0.609
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097760/w09776027.png ; $( L _ { 2 } ) \simeq \oplus _ { n } \operatorname { Sy } L _ { 2 } ( R ^ { n } , n ! d t )$ ; confidence 0.609
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293027.png ; $L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$ ; confidence 0.607
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293027.png ; $L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$ ; confidence 0.607
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036850/e03685016.png ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036850/e03685016.png ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008021.png ; $A = \left[ \begin{array} { c } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }$ ; confidence 0.605
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780212.png ; $x \in H ^ { n } ( B U ; Q )$ ; confidence 0.605
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780212.png ; $x \in H ^ { n } ( B U ; Q )$ ; confidence 0.605
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150393.png ; $\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$ ; confidence 0.601
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704077.png ; $\lambda < \alpha$ ; confidence 0.600
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044400/g04440029.png ; $\delta \varepsilon$ ; confidence 0.600
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r110/r110010/r110010282.png ; $x = ( x _ { 1 } , x _ { 2 } , x _ { 3 } , x _ { 4 } , x _ { 5 } , x _ { 6 } )$ ; confidence 0.598
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180381.png ; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.597
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033430/d03343058.png ; $\operatorname { Re } ( A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } ) \leq 0$ ; confidence 0.596
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580113.png ; $K = \nu - \nu$ ; confidence 0.596
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580113.png ; $K = \nu - \nu$ ; confidence 0.596
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778056.png ; $w \in H ^ { * * } ( BO ; Z _ { 2 } )$ ; confidence 0.594
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778056.png ; $w \in H ^ { * * } ( BO ; Z _ { 2 } )$ ; confidence 0.594
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032890/d032890165.png ; $\operatorname { li } x / \phi ( d )$ ; confidence 0.594
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014130/a01413050.png ; $\phi ( s _ { i j } , 1 ) = s _ { i , j + 1 } , \quad \text { if } j = 1 , \dots , n - 1$ ; confidence 0.594
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076090/q07609075.png ; $a , b , c \in Z$ ; confidence 0.594
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085380/s08538041.png ; $s _ { i } : X _ { n } \rightarrow X _ { n } + 1$ ; confidence 0.593
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085380/s08538041.png ; $s _ { i } : X _ { n } \rightarrow X _ { n } + 1$ ; confidence 0.593
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062330/m06233085.png ; $\{ 1,2 , \dots \}$ ; confidence 0.593
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062330/m06233085.png ; $\{ 1,2 , \dots \}$ ; confidence 0.593
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780115.png ; $[ S ^ { k } X , M _ { n + k } ] \stackrel { S } { \rightarrow } [ S ^ { k + 1 } X , S M _ { n + k } ] \stackrel { ( s _ { n + k } ) } { \rightarrow } [ S ^ { k + 1 } X , M _ { n + k + 1 } ]$ ; confidence 0.593
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590228.png ; $R = \{ R _ { 1 } > 0 , \dots , R _ { n } > 0 \}$ ; confidence 0.591
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590228.png ; $R = \{ R _ { 1 } > 0 , \dots , R _ { n } > 0 \}$ ; confidence 0.591
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b1103309.png ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b1103309.png ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062330/m06233032.png ; $\chi ( 0 , h )$ ; confidence 0.590
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062330/m06233032.png ; $\chi ( 0 , h )$ ; confidence 0.590
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110170/p1101706.png ; $( A , \{ . . \} )$ ; confidence 0.590
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.588
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150037.png ; $m = ( m _ { 1 } , \dots , m _ { p } )$ ; confidence 0.587
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110370/c11037013.png ; $u , v \in V ^ { \times }$ ; confidence 0.585
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103302.png ; $DT ( S )$ ; confidence 0.583
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c1103302.png ; $DT ( S )$ ; confidence 0.583
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810332.png ; $E _ { t t } - E _ { X x } = \delta ( x , t )$ ; confidence 0.582
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810332.png ; $E _ { t t } - E _ { X x } = \delta ( x , t )$ ; confidence 0.582
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684017.png ; $\{ \psi _ { i } \} _ { 0 } ^ { m }$ ; confidence 0.581
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p0724304.png ; $B \operatorname { ccos } ( \omega t + \psi )$ ; confidence 0.580
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001015.png ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.580
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016050/b01605010.png ; $b ( \theta ) \equiv 0$ ; confidence 0.580
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036840/e03684018.png ; $K ( B - C _ { N } ) > K ( B - A ) > D$ ; confidence 0.579
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790050.png ; $( N , + , , 1 \}$ ; confidence 0.577
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045017.png ; $X ( t ) = ( X ^ { 1 } ( t ) , \ldots , X ^ { d } ( t ) )$ ; confidence 0.576
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090450/s09045017.png ; $X ( t ) = ( X ^ { 1 } ( t ) , \ldots , X ^ { d } ( t ) )$ ; confidence 0.576
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810186.png ; $B s$ ; confidence 0.576
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092810/t092810186.png ; $B s$ ; confidence 0.576
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092800/t09280017.png ; $X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$ ; confidence 0.575
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k055/k055680/k0556808.png ; $P _ { s , x } ( x _ { t } \in \Gamma )$ ; confidence 0.574
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080210/r08021012.png ; $f ( y + 1 , x _ { 1 } , \dots , x _ { n } ) =$ ; confidence 0.570
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085250/s08525014.png ; $\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$ ; confidence 0.569
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201408.png ; $D _ { 1 } ( x , \alpha ) = x$ ; confidence 0.569
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201408.png ; $D _ { 1 } ( x , \alpha ) = x$ ; confidence 0.569
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473023.png ; $f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$ ; confidence 0.569
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050165.png ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050165.png ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161076.png ; $\alpha _ { 20 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \alpha _ { 11 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } \partial x _ { 2 } } +$ ; confidence 0.568
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161076.png ; $\alpha _ { 20 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \alpha _ { 11 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } \partial x _ { 2 } } +$ ; confidence 0.568
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110540/a11054026.png ; $O ( n ^ { 2 } \operatorname { log } n )$ ; confidence 0.568
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005046.png ; $Y ( 1 , x ) = 1$ ; confidence 0.565
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j054050109.png ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026550/c0265505.png ; $1,2 , \dots$ ; confidence 0.563
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604025.png ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.561
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604025.png ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.561
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087280/s087280171.png ; $\phi _ { 1 } , \dots , \phi _ { 2 } \in D$ ; confidence 0.561
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c0207409.png ; <font color="red">Missing</font> ; confidence 0.560
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c0207409.png ; <font color="red">Missing</font> ; confidence 0.560
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790104.png ; $\sigma = ( \sigma _ { 1 } , \ldots , \sigma _ { n } ) , \quad | \sigma | = \sigma _ { 1 } + \ldots + \sigma _ { n } \leq k$ ; confidence 0.560
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066790/n066790104.png ; $\sigma = ( \sigma _ { 1 } , \ldots , \sigma _ { n } ) , \quad | \sigma | = \sigma _ { 1 } + \ldots + \sigma _ { n } \leq k$ ; confidence 0.560
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002049.png ; $e ^ { \prime }$ ; confidence 0.559
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t110/t110020/t11002049.png ; $e ^ { \prime }$ ; confidence 0.559
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063060/m06306029.png ; $x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$ ; confidence 0.559
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016600/b01660011.png ; $( v ^ { 1 } , \ldots , v ^ { n } )$ ; confidence 0.559
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e110/e110110/e11011021.png ; $A \subset \{ 1 , \dots , n \}$ ; confidence 0.558
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020013.png ; $e _ { i } , f _ { i } , h _ { i }$ ; confidence 0.557
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410005.png ; $J _ { \nu }$ ; confidence 0.556
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028015.png ; $\overline { E } * ( X )$ ; confidence 0.554
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028015.png ; $\overline { E } * ( X )$ ; confidence 0.554
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286015.png ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.553
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022860/c02286015.png ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.553
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015041.png ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y )$ ; confidence 0.551
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028026.png ; $\operatorname { crs } ( A \otimes B , C ) \cong \operatorname { Crs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.551
 +
# 1638 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520303.png ; $A \simeq K$ ; confidence 0.550
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840121.png ; $P \{ T _ { j } \in ( u , u + d u ) \} = \frac { 1 } { \alpha u } P \{ X ( u ) \in ( 0 , d u ) \}$ ; confidence 0.548
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840121.png ; $P \{ T _ { j } \in ( u , u + d u ) \} = \frac { 1 } { \alpha u } P \{ X ( u ) \in ( 0 , d u ) \}$ ; confidence 0.548
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073750/p07375062.png ; $x = \prod _ { i = 1 } ^ { [ n / 2 ] } f ( x _ { i } ) \in H ^ { * * } ( BO _ { n } ; Q )$ ; confidence 0.548
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080610/r08061050.png ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080610/r08061050.png ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035250/e03525041.png ; $u _ { 0 } = K ( \phi , \psi ; \kappa ) = \kappa \phi ( z ) - z \overline { \phi ^ { \prime } ( z ) } - \overline { \psi ( z ) }$ ; confidence 0.546
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b1105203.png ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b1105203.png ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022500/c02250014.png ; $j \leq n$ ; confidence 0.544
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.543
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.543
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022200/c02220015.png ; $\lambda _ { k } ^ { - 1 } = p _ { 0 } ( x _ { k } ) + \ldots + p _ { n } ( x _ { k } ) , \quad k = 1 , \dots , n$ ; confidence 0.543
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072710/p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470101.png ; $( X \times l , A \times I )$ ; confidence 0.540
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110137.png ; $( a _ { m } b ) ( x , \xi ) = r _ { N } ( \alpha , b ) +$ ; confidence 0.539
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110137.png ; $( a _ { m } b ) ( x , \xi ) = r _ { N } ( \alpha , b ) +$ ; confidence 0.539
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024020.png ; $\operatorname { max } \{ m _ { 1 } , \ldots , m _ { k } \} < m$ ; confidence 0.538
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300113.png ; $A$ ; confidence 0.535
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300113.png ; $A$ ; confidence 0.535
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015310/b01531023.png ; $X _ { s } = X \times s s$ ; confidence 0.533
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b1101602.png ; $d _ { 1 } , \dots , d _ { r } \geq 1$ ; confidence 0.527
 
# 33 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025450/c02545035.png ; $T ^ { * }$ ; confidence 0.527
 
# 33 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025450/c02545035.png ; $T ^ { * }$ ; confidence 0.527
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110010/c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400103.png ; $d _ { i } = \delta _ { i } ^ { * } : C ^ { n } ( \Delta ^ { q } ; \pi ) \rightarrow C ^ { n } ( \Delta _ { q - 1 } ; \pi )$ ; confidence 0.525
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138058.png ; $\mathfrak { B } _ { 1 } , \ldots , \mathfrak { B } _ { s }$ ; confidence 0.523
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040117.png ; $1 , \ldots , | \lambda |$ ; confidence 0.522
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040117.png ; $1 , \ldots , | \lambda |$ ; confidence 0.522
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544015.png ; $C ( t + s , e ) = C ( t , \Phi _ { S } ( e ) ) C ( s , e )$ ; confidence 0.522
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635084.png ; $a \perp b$ ; confidence 0.521
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png ; $A = N \oplus s$ ; confidence 0.521
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png ; $A = N \oplus s$ ; confidence 0.521
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970164.png ; $E X _ { k } = a$ ; confidence 0.520
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520
 +
# 20 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022071.png ; $T$ ; confidence 0.520
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021120/c0211204.png ; $\alpha : ( B ^ { n } , S ^ { n - 1 } ) \rightarrow ( E , \partial E )$ ; confidence 0.520
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r082290200.png ; $p _ { \alpha } = e$ ; confidence 0.518
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020430/c02043010.png ; $( M _ { n } ( f ) ) ^ { 1 / n } < A ( f ) \alpha _ { n } , \quad n = 0,1 , \ldots$ ; confidence 0.516
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064250/m06425068.png ; $\operatorname { sign } y . | y | ^ { \alpha } u _ { x x } + u _ { y y } = F ( x , y , u , u _ { x } , u _ { y } )$ ; confidence 0.514
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038040.png ; $\sim 2$ ; confidence 0.512
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008034.png ; $( T f ) ( x ) = \int _ { Y } T ( x , y ) f ( y ) d \nu ( y )$ ; confidence 0.511
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073030/p07303077.png ; $\mathfrak { g } = C$ ; confidence 0.510
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064260/m06426078.png ; $V ^ { n } ( K , L , \ldots , L ) \geq V ( K ) V ^ { n - 1 } ( L )$ ; confidence 0.509
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $\pi$ ; confidence 0.507
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n06796016.png ; $q 2 = 6$ ; confidence 0.507
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590192.png ; $\alpha p$ ; confidence 0.503
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s091/s091730/s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $j ( x ) = a _ { j , i } ( x )$ ; confidence 0.501
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013052.png ; <font color="red">Missing</font> ; confidence 0.499
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013052.png ; <font color="red">Missing</font> ; confidence 0.499
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052010/i0520106.png ; $D _ { 1 } , \ldots , D _ { n }$ ; confidence 0.499
 
# 6 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052010/i0520106.png ; $D _ { 1 } , \ldots , D _ { n }$ ; confidence 0.499
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820150.png ; $P _ { 0 } ( x ) , \ldots , P _ { k } ( x )$ ; confidence 0.498
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300037.png ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410104.png ; $z _ { 1 } = \zeta ^ { m } , \quad z _ { 2 } = f _ { 2 } ( \zeta ) , \ldots , z _ { n } = f _ { n } ( \zeta )$ ; confidence 0.495
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221073.png ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644053.png ; $\phi _ { i } ( t , x , \dot { x } ) = 0 , \quad i = 1 , \dots , m , \quad m < n$ ; confidence 0.494
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165082.png ; $\langle H , o \}$ ; confidence 0.492
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p07243072.png ; $C _ { n } ^ { ( 2 ) } = - \frac { 1 } { 2 } \sum _ { m \neq n } \frac { | V _ { m n } | ^ { 2 } } { ( E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } ) ^ { 2 } } ; \ldots$ ; confidence 0.491
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $G ( u )$ ; confidence 0.489
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092720/t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093180/t093180231.png ; $( t = ( t _ { 1 } , \ldots , t _ { n } ) \in R ^ { n } )$ ; confidence 0.488
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680158.png ; $a b , \alpha + b$ ; confidence 0.486
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024860/c02486016.png ; $F ( x _ { 1 } , \dots , x _ { n } ) \equiv 0$ ; confidence 0.486
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025960/c0259603.png ; $c = ( c _ { 1 } , \dots , c _ { k } ) ^ { T }$ ; confidence 0.479
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025083.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } u ( . , \varepsilon ) v ( . \varepsilon )$ ; confidence 0.470
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019018.png ; $M _ { n } = [ m _ { i } + j ] _ { i , j } ^ { n } = 0$ ; confidence 0.469
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019018.png ; $M _ { n } = [ m _ { i } + j ] _ { i , j } ^ { n } = 0$ ; confidence 0.469
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036940/e03694012.png ; $U _ { 1 } , \dots , U _ { n }$ ; confidence 0.469
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017055.png ; $\zeta = \{ Z _ { 1 } , \dots , Z _ { m } \}$ ; confidence 0.466
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s09017055.png ; $\zeta = \{ Z _ { 1 } , \dots , Z _ { m } \}$ ; confidence 0.466
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041470/f04147016.png ; $\int _ { \alpha } ^ { b } f ( x ) \overline { \psi _ { j } ( x ) } d x = 0 , \quad j = 1 , \dots , n$ ; confidence 0.464
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006011.png ; $\operatorname { exp } ( u t ( 1 - t ) ^ { - 1 } ) = \sum _ { n = 0 } ^ { \infty } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { n } \frac { L _ { n , k } u ^ { k } t ^ { n } } { n ! }$ ; confidence 0.463
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $p _ { i }$ ; confidence 0.459
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
 
# 11 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
 
# 11 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076040/q07604010.png ; $\frac { Q _ { z _ { 2 } } ( z _ { 2 } ( p ) ) } { Q _ { z _ { 1 } } ( z _ { 1 } ( p ) ) } = ( \frac { d z _ { 1 } ( p ) } { d z _ { 2 } ( p ) } ) ^ { 2 } , \quad p \in U _ { 1 } \cap U _ { 2 }$ ; confidence 0.453
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h048/h048310/h04831094.png ; $w = \left( \begin{array} { c } { u } \\ { v } \end{array} \right) , \quad A = \left( \begin{array} { c c } { 0 } & { \alpha } \\ { 1 } & { 0 } \end{array} \right)$ ; confidence 0.452
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065370/m06537078.png ; $E = \{ ( x , y , z ) : ( x , y ) \in E _ { x } y , \phi ( x , y ) \leq z \leq \psi ( x , y ) \}$ ; confidence 0.452
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b1300703.png ; $BS ( m , n ) = \{ \alpha , b | \alpha ^ { - 1 } b ^ { m } \alpha = b ^ { n } \}$ ; confidence 0.445
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850261.png ; $\partial z / \partial y = f ^ { \prime } ( x , y )$ ; confidence 0.440
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850261.png ; $\partial z / \partial y = f ^ { \prime } ( x , y )$ ; confidence 0.440
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m0651606.png ; $( \forall x , x ^ { \prime } \in X ) ( \exists l < \infty ) | f ( x ) - f ( x ^ { \prime } ) | \leq l | x - x ^ { \prime } \|$ ; confidence 0.436
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008062.png ; $( K ^ { H _ { i } } , v ^ { H _ { i } } )$ ; confidence 0.434
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $A \supset B$ ; confidence 0.432
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $1$ ; confidence 0.430
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059270/l05927010.png ; $\operatorname { det } \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) y ^ { \alpha } | _ { y _ { 0 } = \lambda } , \quad y ^ { \alpha } = ( y _ { 0 } ^ { \alpha _ { 0 } } , \ldots , y _ { n } ^ { \alpha _ { n } } )$ ; confidence 0.429
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050100/i05010033.png ; $| \exists y \phi ; x | = p r _ { n + 1 } | \phi ; x y |$ ; confidence 0.427
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960148.png ; $GL ( 1 , K ) = K ^ { * }$ ; confidence 0.425
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960148.png ; $GL ( 1 , K ) = K ^ { * }$ ; confidence 0.425
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $q ^ { 1 }$ ; confidence 0.419
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087360/s087360208.png ; $\alpha , \beta , \dots ,$ ; confidence 0.419
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
 
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840146.png ; $f ( \lambda ) = E _ { e } ^ { i \lambda \xi } , \quad f _ { + } ( \lambda ) = e ^ { i \lambda \tau ^ { s } } , \quad f - ( \lambda ) = e ^ { - i \lambda \tau ^ { e } }$ ; confidence 0.410
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076840/q076840146.png ; $f ( \lambda ) = E _ { e } ^ { i \lambda \xi } , \quad f _ { + } ( \lambda ) = e ^ { i \lambda \tau ^ { s } } , \quad f - ( \lambda ) = e ^ { - i \lambda \tau ^ { e } }$ ; confidence 0.410
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100221.png ; $R _ { R } ( X ) = \operatorname { max } \{ d ( X , Y ) : Y \in B _ { n } \}$ ; confidence 0.410
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100221.png ; $R _ { R } ( X ) = \operatorname { max } \{ d ( X , Y ) : Y \in B _ { n } \}$ ; confidence 0.410
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544064.png ; $\operatorname { lim } _ { t \rightarrow \infty } t ^ { - 1 } \operatorname { log } \| C ( t , e ) v \| = \lambda _ { é } ^ { i } \quad \Leftrightarrow \quad v \in W _ { é } ^ { i } \backslash W _ { é } ^ { i + 1 }$ ; confidence 0.404
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820111.png ; $\phi ( \mathfrak { A } , \alpha _ { 1 } , \ldots , \alpha _ { l } , S , \mathfrak { M } ^ { * } )$ ; confidence 0.402
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820111.png ; $\phi ( \mathfrak { A } , \alpha _ { 1 } , \ldots , \alpha _ { l } , S , \mathfrak { M } ^ { * } )$ ; confidence 0.402
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095700/u09570015.png ; $D ( D , G - ) : C \rightarrow$ ; confidence 0.398
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/u/u095/u095700/u09570015.png ; $D ( D , G - ) : C \rightarrow$ ; confidence 0.398
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r081/r081560/r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $H ( K )$ ; confidence 0.395
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379014.png ; $\psi _ { \nu } ( x , \mu ) = \phi _ { \nu } ( \mu ) e ^ { - x / \nu }$ ; confidence 0.394
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379014.png ; $\psi _ { \nu } ( x , \mu ) = \phi _ { \nu } ( \mu ) e ^ { - x / \nu }$ ; confidence 0.394
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110170/p11017022.png ; $[ d \alpha , f d b ] _ { P } = f [ d \alpha , d b ] P + P ^ { * } ( d \alpha ) ( f ) d b$ ; confidence 0.385
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $631$ ; confidence 0.381
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025040.png ; $k ( g _ { 1 } , \ldots , g _ { n } - k + 1 ) =$ ; confidence 0.381
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $w ^ { \prime }$ ; confidence 0.380
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $w ^ { \prime }$ ; confidence 0.380
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110126.png ; $L _ { k } u _ { h } ( t , x ) = \frac { 1 } { \tau } [ u _ { k } ( t + \frac { \tau } { 2 } , x ) - u _ { k } ( t - \frac { \tau } { 2 } , x ) ] +$ ; confidence 0.379
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161086.png ; $\mu , \nu \in Z ^ { n }$ ; confidence 0.377
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021610/c02161086.png ; $\mu , \nu \in Z ^ { n }$ ; confidence 0.377
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c02074088.png ; $H _ { C } * ( A , B ) = H _ { C } ( B , A )$ ; confidence 0.377
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p07283030.png ; $\sigma _ { i j } = A _ { k } \epsilon _ { i j } ^ { k } , \quad x \in \Omega \cup J S$ ; confidence 0.370
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110440/c11044053.png ; $a _ { y - 2,2 } = 1$ ; confidence 0.366
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i110/i110020/i11002078.png ; $A ^ { n } = \{ ( \alpha _ { 1 } , \dots , \alpha _ { n } ) : \alpha _ { j } \in A \}$ ; confidence 0.360
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.356
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620179.png ; $p _ { 1 } ^ { s } , \dots , p _ { n } ^ { s }$ ; confidence 0.356
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.355
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.355
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230234.png ; $a _ { k } , a _ { k } - 1 , \dots , 1$ ; confidence 0.354
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.347
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.347
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013022.png ; $\frac { \partial \Psi _ { i } } { \partial x _ { n } } = ( L ^ { n _ { 1 } } ) _ { + } \Psi _ { i } , \frac { \partial \Psi _ { i } } { \partial y _ { n } } = ( L _ { 2 } ^ { n } ) _ { - } \Psi _ { i }$ ; confidence 0.344
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400125.png ; $\phi _ { X } = u \phi , \quad \phi _ { t } = v \phi$ ; confidence 0.342
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057620/l0576208.png ; $\alpha _ { i j } \equiv i + j - 1 ( \operatorname { mod } n ) , \quad i , j = 1 , \dots , n$ ; confidence 0.342
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057620/l0576208.png ; $\alpha _ { i j } \equiv i + j - 1 ( \operatorname { mod } n ) , \quad i , j = 1 , \dots , n$ ; confidence 0.342
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $T _ { i j }$ ; confidence 0.337
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $T _ { \nu }$ ; confidence 0.336
 +
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590235.png ; $F ^ { ( n ) } ( h n ) = \alpha _ { n } ; \quad F ^ { ( n ) } ( \omega ^ { n } ) = \alpha _ { n }$ ; confidence 0.332
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q110/q110030/q1100304.png ; $\partial \Omega = ( [ 0 , a ] \times \{ 0 \} ) \cup ( \{ 0 , a \} \times ( 0 , T ) )$ ; confidence 0.329
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010158.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \} ) ^ { n } } , z \in E$ ; confidence 0.328
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
 
# 7 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031100/d03110038.png ; $x = 0,1 , \dots$ ; confidence 0.323
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023220/c02322020.png ; $[ L u _ { n } - f ] _ { t = t _ { i } } = 0 , \quad i = 1 , \dots , n$ ; confidence 0.320
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.317
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.317
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240421.png ; $F ( x _ { 1 } , \ldots , x _ { k } ) = x _ { 1 } \ldots x _ { k }$ ; confidence 0.310
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/y/y110/y110020/y11002087.png ; $\frac { \alpha } { T } _ { I _ { \tau } ; J _ { v } }$ ; confidence 0.302
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w097/w097750/w09775013.png ; $X = \langle X , \phi \rangle$ ; confidence 0.301
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060247.png ; $\alpha _ { \vec { \alpha } _ { 2 } } ( s _ { 1 } , s _ { 2 } ) = s _ { 1 }$ ; confidence 0.297
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203061.png ; $f ( T ) = - \frac { 1 } { \pi } \int \int _ { C } \frac { \partial \tilde { f } } { \partial z } ( \lambda ) R ( \lambda , T ) d \lambda \overline { d \lambda }$ ; confidence 0.296
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064054.png ; $\gamma , \gamma _ { 0 } , \ldots , \gamma _ { S }$ ; confidence 0.295
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l05843067.png ; $\sum _ { i = 1 } ^ { m } d x ; \wedge d x _ { m } + i$ ; confidence 0.295
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { S } }$ ; confidence 0.294
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { S } }$ ; confidence 0.294
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067900/n06790068.png ; $n , \alpha = \alpha + \ldots + \alpha > b \quad ( n \text { terms } \alpha )$ ; confidence 0.292
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864804.png ; $S ^ { ( n ) } ( t _ { 1 } , \ldots , t _ { n } ) =$ ; confidence 0.287
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086480/s0864804.png ; $S ^ { ( n ) } ( t _ { 1 } , \ldots , t _ { n } ) =$ ; confidence 0.287
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
 +
# 5 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d032/d032940/d03294037.png ; $\epsilon _ { 1 } , \dots , \quad \epsilon _ { \gamma }$ ; confidence 0.278
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050580/i05058027.png ; $A _ { k _ { 1 } } , \ldots , A _ { k _ { n } }$ ; confidence 0.278
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050580/i05058027.png ; $A _ { k _ { 1 } } , \ldots , A _ { k _ { n } }$ ; confidence 0.278
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076090/q07609025.png ; $q = ( b _ { 11 } , \dots , b _ { x - 1 , n } ) \in \mathfrak { G }$ ; confidence 0.278
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h110/h110260/h11026076.png ; $+ \langle p , B ( \overline { q } , ( 2 i \omega _ { 0 } I _ { n } - A ) ^ { - 1 } B ( q , q ) ) \} ]$ ; confidence 0.276
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511807.png ; $| \alpha | + k \leq N , \quad 0 \leq k < m , \quad x = ( x _ { 1 } , \ldots , x _ { k } )$ ; confidence 0.275
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130106.png ; $g _ { 1 } ( \alpha ) , \ldots , g _ { m } ( \alpha )$ ; confidence 0.271
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778015.png ; $w = \{ \dot { i } _ { 1 } , \ldots , i _ { k } \}$ ; confidence 0.265
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778015.png ; $w = \{ \dot { i } _ { 1 } , \ldots , i _ { k } \}$ ; confidence 0.265
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080137.png ; $\{ s _ { 1 } , \dots , S _ { N }$ ; confidence 0.261
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544091.png ; $\xi _ { j } ^ { k } \in D _ { h } , h = 1 , \dots , m ; m = 1,2$ ; confidence 0.258
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544091.png ; $\xi _ { j } ^ { k } \in D _ { h } , h = 1 , \dots , m ; m = 1,2$ ; confidence 0.258
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120424.png ; $A ^ { \circ } = \{ y \in G : \operatorname { Re } ( x , y ) \leq 1 , \forall x \in A \}$ ; confidence 0.258
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035520/e03552017.png ; $k _ { 0 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 } \leq Q ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \leq k _ { 1 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 }$ ; confidence 0.249
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035520/e03552017.png ; $k _ { 0 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 } \leq Q ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \leq k _ { 1 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 }$ ; confidence 0.249
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s08742047.png ; $P _ { t } ( A ) = P \{ ( U _ { t } ^ { V ^ { \prime } } ) ^ { - 1 } A \} , \quad A \subset \Omega _ { V }$ ; confidence 0.248
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643053.png ; $K \supset \operatorname { supp } f _ { n , } \quad n = 1,2 , \dots$ ; confidence 0.247
 +
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073320/p0733205.png ; $u ( M , t ) = \frac { \partial } { \partial t } \{ t \Gamma _ { d t } ( \phi ) \} + t \Gamma _ { \alpha t } ( \psi )$ ; confidence 0.242
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947018.png ; $x \mapsto ( s _ { 0 } ( x ) , \ldots , s _ { k } ( x ) ) , \quad x \in X$ ; confidence 0.241
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059470/l05947018.png ; $x \mapsto ( s _ { 0 } ( x ) , \ldots , s _ { k } ( x ) ) , \quad x \in X$ ; confidence 0.241
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002049.png ; $\hat { f } | x , 0 , w \} \rightarrow | x , f ( x ) , w \}$ ; confidence 0.237
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220124.png ; $r _ { D } : H _ { M } ^ { i } ( M _ { Z } , Q ( j ) ) \rightarrow H _ { D } ^ { i } ( M _ { / R } , R ( j ) )$ ; confidence 0.236
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021033.png ; $+ \sum _ { 1 \leq i < j \leq k } ( - 1 ) ^ { i + j } X \bigotimes [ X ; X _ { j } ] \wedge$ ; confidence 0.234
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} q u _ { . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.229
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961015.png ; $\{ H , \rho \} q u _ { . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.229
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536051.png ; $\alpha _ { 1 } , \dots , \alpha _ { n } \in A$ ; confidence 0.215
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035360/e03536051.png ; $\alpha _ { 1 } , \dots , \alpha _ { n } \in A$ ; confidence 0.215
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120555.png ; $f _ { 0 } ( x ) \rightarrow \operatorname { inf } , \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \dots , m , \quad x \in B$ ; confidence 0.209
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { \mathfrak { p } | p } ( 1 - \chi \omega ^ { - n } ( \mathfrak { p } ) N _ { p } ^ { n - 1 } )$ ; confidence 0.209
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017570/b01757027.png ; $E \mu _ { X , t } ( G ) \approx K e ^ { ( \alpha - \lambda _ { 1 } ) t } \phi _ { 1 } ( x )$ ; confidence 0.207
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b017/b017570/b01757027.png ; $E \mu _ { X , t } ( G ) \approx K e ^ { ( \alpha - \lambda _ { 1 } ) t } \phi _ { 1 } ( x )$ ; confidence 0.207
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940382.png ; $y _ { i _ { 1 } } = f _ { i _ { 1 } } ( x ) , \ldots , y _ { l _ { r } } = f _ { i r } ( x )$ ; confidence 0.206
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064065.png ; $\gamma ^ { \prime } \equiv \gamma ( \operatorname { mod } c ) , \gamma _ { 0 } ^ { \prime } \equiv \gamma _ { 0 } ( \operatorname { mod } \mathfrak { c } ) , \ldots , \gamma _ { s } ^ { \prime } \equiv \gamma _ { s } ( \operatorname { mod } c _ { s } )$ ; confidence 0.206
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051510/i05151010.png ; $\dot { x } _ { i } = f _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.203
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085140/s08514031.png ; $S _ { x , m } = \operatorname { sup } _ { | x | < \infty } | F _ { n } ( x ) - F _ { m } ( x ) |$ ; confidence 0.201
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085140/s08514031.png ; $S _ { x , m } = \operatorname { sup } _ { | x | < \infty } | F _ { n } ( x ) - F _ { m } ( x ) |$ ; confidence 0.201
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051780/i0517809.png ; $L _ { X } [ U ] = \lambda \int _ { \mathscr { U } } ^ { b } K ( x , y ) M _ { y } [ U ] d y + f ( x )$ ; confidence 0.201
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051780/i0517809.png ; $L _ { X } [ U ] = \lambda \int _ { \mathscr { U } } ^ { b } K ( x , y ) M _ { y } [ U ] d y + f ( x )$ ; confidence 0.201
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d030/d030160/d03016014.png ; $s _ { \tau } = \operatorname { inf } _ { \xi _ { 1 } , \ldots , \xi _ { k } } \sigma _ { \tau } , \quad S _ { \tau } = \operatorname { sup } _ { \xi _ { 1 } , \ldots \xi _ { k } } \sigma _ { \tau }$ ; confidence 0.200
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p075/p075090/p07509019.png ; $\operatorname { sr } ( x , n / 2 ) \uparrow 2 \text { elsex } \times \text { power } ( x , n - 1 )$ ; confidence 0.200
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087400/s08740073.png ; $\beta _ { n } ( \theta ) = E _ { \theta } \phi _ { n } ( X ) = \int _ { F } \phi _ { n } ( x ) d P _ { \theta } ( x ) , \quad \theta \in \Theta = \Theta _ { 0 } \cup \Theta _ { 1 }$ ; confidence 0.200
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023074.png ; $( 0 , T ) \times R ^ { R }$ ; confidence 0.197
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
 +
# 3 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.194
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n067/n067850/n06785094.png ; $\sum _ { i = 1 } ^ { \infty } \lambda _ { i } \langle y _ { i } ; x _ { l } ^ { \prime } \rangle$ ; confidence 0.191
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096820/v09682015.png ; $\int _ { | \Omega | = 1 } \int _ { | \sqrt { \Omega } } \int \theta ( x , \mu _ { 0 } ) u ( \overline { \Omega } \square ^ { \prime } , x ) d x d \overline { \Omega } \square ^ { \prime } d \overline { \Omega } = 1$ ; confidence 0.186
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
 
# 4 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c02601098.png ; $f ^ { \prime \prime } ( t , x )$ ; confidence 0.177
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l058/l058470/l05847042.png ; $[ g , \mathfrak { r } ] = [ \mathfrak { g } , \mathfrak { g } ] \cap \mathfrak { r }$ ; confidence 0.175
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b015/b015270/b0152701.png ; $x _ { 1 } , \ldots , x _ { n _ { 1 } } \in N ( a _ { 1 } , \sigma _ { 1 } ^ { 2 } )$ ; confidence 0.166
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011890/a01189037.png ; $P _ { i } \stackrel { \circ } { = } \mathfrak { A } \lfloor P _ { i - 1 } \rfloor \quad ( i = 1 , \dots , k )$ ; confidence 0.155
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230118.png ; $X _ { Y , k }$ ; confidence 0.153
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180104.png ; $[ 1 , \dots , c )$ ; confidence 0.152
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031610/d03161041.png ; $| x _ { n } - x * | \leq \frac { b - a - \epsilon } { 2 ^ { n } } + \frac { \epsilon } { 2 } , \quad n = 1,2$ ; confidence 0.149
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074810/p07481050.png ; $\operatorname { sup } _ { x _ { 1 } \in X _ { 1 } } \operatorname { inf } _ { y _ { 1 } \in Y _ { 1 } } \ldots \operatorname { sup } _ { x _ { n } \in X _ { n } } \operatorname { inf } _ { y _ { n } \in Y _ { n } } f ( x _ { 1 } , y _ { 1 } , \ldots , x _ { \gamma } , y _ { n } )$ ; confidence 0.137
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074810/p07481050.png ; $\operatorname { sup } _ { x _ { 1 } \in X _ { 1 } } \operatorname { inf } _ { y _ { 1 } \in Y _ { 1 } } \ldots \operatorname { sup } _ { x _ { n } \in X _ { n } } \operatorname { inf } _ { y _ { n } \in Y _ { n } } f ( x _ { 1 } , y _ { 1 } , \ldots , x _ { \gamma } , y _ { n } )$ ; confidence 0.137
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d033/d033340/d033340149.png ; $\{ x _ { j } ; k - x _ { j } ; * \}$ ; confidence 0.135
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302056.png ; $H _ { \Phi } ^ { q } ( M , A ; H _ { n } ( G ) ) = H _ { \Phi | B } ^ { q } ( M ; H _ { n } ( G ) ) = H _ { \Phi | B } ^ { q } ( B ; H _ { n } ( G ) )$ ; confidence 0.133
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi _ { \alpha } } ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi$ ; confidence 0.133
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { i , 0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { l , 1 } ^ { A } ( \alpha , b , c , d ) \text { for alli } < m$ ; confidence 0.129
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { i , 0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { l , 1 } ^ { A } ( \alpha , b , c , d ) \text { for alli } < m$ ; confidence 0.129
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } ) }$ ; confidence 0.121
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } ) }$ ; confidence 0.121
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054098.png ; $x _ { k } ^ { \mathscr { K } } , z _ { h } ^ { \xi }$ ; confidence 0.118
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c0224509.png ; $\lambda _ { 0 } , \lambda _ { i } ( t ) , \quad i = 1 , \ldots , m ; \quad e _ { \mu } , \quad \mu = 1 , \ldots , p$ ; confidence 0.114
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871708.png ; $\Delta ^ { n } = \{ ( t _ { 0 } , \ldots , t _ { k } + 1 ) : 0 \leq t _ { i } \leq 1 , \sum t _ { i } = 1 \} \subset R ^ { n + 1 }$ ; confidence 0.113
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s087/s087170/s0871708.png ; $\Delta ^ { n } = \{ ( t _ { 0 } , \ldots , t _ { k } + 1 ) : 0 \leq t _ { i } \leq 1 , \sum t _ { i } = 1 \} \subset R ^ { n + 1 }$ ; confidence 0.113
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/v/v096/v096840/v0968401.png ; $\int _ { \mathscr { A } } ^ { X } K ( x , s ) \phi ( s ) d s = f ( x )$ ; confidence 0.112
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073730/p0737309.png ; $\tilde { a } ( t ) = \pi ( x , t ) = \sum _ { k = 1 } ^ { n } \tau _ { k } u _ { k } ( t )$ ; confidence 0.111
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073730/p0737309.png ; $\tilde { a } ( t ) = \pi ( x , t ) = \sum _ { k = 1 } ^ { n } \tau _ { k } u _ { k } ( t )$ ; confidence 0.111
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405089.png ; $\operatorname { cs } u = \frac { \operatorname { cn } u } { \operatorname { sn } u } , \quad \text { ds } u = \frac { \operatorname { dn } u } { \operatorname { sin } u } , \quad \operatorname { dc } u = \frac { \operatorname { dn } u } { \operatorname { cn } u }$ ; confidence 0.105
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010044.png ; $t ^ { em } = t ^ { em , f } + ( P \otimes E ^ { \prime } - B \bigotimes M ^ { \prime } + 2 ( M ^ { \prime } . B ) 1 )$ ; confidence 0.105
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010044.png ; $t ^ { em } = t ^ { em , f } + ( P \otimes E ^ { \prime } - B \bigotimes M ^ { \prime } + 2 ( M ^ { \prime } . B ) 1 )$ ; confidence 0.105
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059310/l0593103.png ; $\alpha _ { 1 } , \ldots , \alpha _ { \mathfrak { N } } , a$ ; confidence 0.104
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l06077012.png ; $( a \alpha ) , ( \alpha a \alpha ) , \dots$ ; confidence 0.099
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q07625090.png ; $\kappa = \overline { \operatorname { lim } _ { t } } _ { t \rightarrow \infty } ( \operatorname { ln } \| u ( t , 0 ) \| ) / t$ ; confidence 0.093
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/q/q076/q076250/q07625090.png ; $\kappa = \overline { \operatorname { lim } _ { t } } _ { t \rightarrow \infty } ( \operatorname { ln } \| u ( t , 0 ) \| ) / t$ ; confidence 0.093
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225039.png ; $k ( A , B ) \bigotimes Z _ { l } \rightarrow \operatorname { Hom } _ { Gal ( \tilde { k } / k ) } ( T _ { l } ( A ) , T _ { l } ( B ) )$ ; confidence 0.090
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357003.png ; $X \quad ( \text { where ad } X ( Y ) = [ X , Y ] )$ ; confidence 0.089
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s085/s085660/s08566010.png ; $F ( U ) \rightarrow \prod _ { i \in I } F ( U _ { i } ) \rightarrow \prod _ { ( i , j ) \in I \times I } F ( U _ { i } \cap U _ { j } )$ ; confidence 0.083
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/p/p073/p073040/p07304041.png ; $R ( t , x _ { 1 } , \ldots , x _ { n } ; \eta _ { 1 } , \dots , \eta _ { s } ; a _ { s } + 1 , \dots , \alpha _ { k } ) =$ ; confidence 0.080
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/s/s086/s086590/s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c02203033.png ; $C _ { \omega }$ ; confidence 0.073
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/j/j054/j054340/j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum _ { 1 } ^ { i } , \ldots , i _ { S }$ ; confidence 0.070
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum _ { 1 } ^ { i } , \ldots , i _ { S }$ ; confidence 0.070
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043820/g0438203.png ; $D ^ { \alpha } f = \frac { \partial ^ { | \alpha | } f } { \partial x _ { 1 } ^ { \alpha _ { 1 } } \ldots \partial x _ { n } ^ { \alpha _ { n } } } , \quad | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.067
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043820/g0438203.png ; $D ^ { \alpha } f = \frac { \partial ^ { | \alpha | } f } { \partial x _ { 1 } ^ { \alpha _ { 1 } } \ldots \partial x _ { n } ^ { \alpha _ { n } } } , \quad | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.067
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182053.png ; $\mathfrak { M } ^ { * } = \{ \mathfrak { A } _ { 1 } ^ { \alpha _ { 11 } \ldots \alpha _ { 1 l } } , \ldots , \mathfrak { A } _ { q } ^ { \alpha _ { q 1 } \cdots \alpha _ { q l } } \}$ ; confidence 0.067
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/h/h046/h046240/h04624022.png ; $[ \nabla , a ] = \nabla \times a = \operatorname { rot } a = ( \frac { \partial a _ { 3 } } { \partial x _ { 2 } } - \frac { \partial \alpha _ { 2 } } { \partial x _ { 3 } } ) e _ { 1 } +$ ; confidence 0.065
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/l/l059/l059380/l05938014.png ; $\left. \begin{array} { l } { \text { sup } \operatorname { Re } \lambda _ { m } ( \xi , x ^ { 0 } , t ^ { 0 } ) < 0 } \\ { m } \\ { | \xi | = 1 } \end{array} \right.$ ; confidence 0.058
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653306.png ; $P \{ X _ { 1 } = n _ { 1 } , \dots , X _ { k } = n _ { k } \} = \frac { n ! } { n ! \cdots n _ { k } ! } p _ { 1 } ^ { n _ { 1 } } \dots p _ { k } ^ { n _ { k } }$ ; confidence 0.054
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653306.png ; $P \{ X _ { 1 } = n _ { 1 } , \dots , X _ { k } = n _ { k } \} = \frac { n ! } { n ! \cdots n _ { k } ! } p _ { 1 } ^ { n _ { 1 } } \dots p _ { k } ^ { n _ { k } }$ ; confidence 0.054
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/common_img/c020800a.gif ; <font color="red">Missing</font> ; confidence 0.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/common_img/c020800a.gif ; <font color="red">Missing</font> ; confidence 0.000
Line 527: Line 1,513:
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/common_img/o110030a.gif ; <font color="red">Missing</font> ; confidence 0.000
 
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/common_img/o110030a.gif ; <font color="red">Missing</font> ; confidence 0.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f04098020.png ; <font color="red">Missing</font> ; confidence 0.000
 
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f04098020.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020075.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020080.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230116.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652028.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/i/i052/i052860/i052860154.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o0700709.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023018.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c023/c023350/c02335032.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 2 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850244.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c025/c025140/c025140179.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012067.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230133.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441011.png ; <font color="red">Missing</font> ; confidence 0.000
 +
# 1 duplicate(s) ; https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850123.png ; <font color="red">Missing</font> ; confidence 0.000

Revision as of 16:25, 9 April 2019

All known classifications:

List

  1. 1 duplicate(s) ; f12010041.png ; $( 8 \times 8 )$ ; confidence 1.000
  2. 1 duplicate(s) ; t09400030.png ; $f ( x ) = g ( y )$ ; confidence 1.000
  3. 2 duplicate(s) ; l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
  4. 1 duplicate(s) ; d03185088.png ; $( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$ ; confidence 1.000
  5. 1 duplicate(s) ; f11005048.png ; $w ( x ) = | f ( x ) | ^ { 2 }$ ; confidence 1.000
  6. 1 duplicate(s) ; r11014050.png ; $( n + 1,2,1 )$ ; confidence 1.000
  7. 3 duplicate(s) ; m1201208.png ; $( A , f )$ ; confidence 1.000
  8. 1 duplicate(s) ; b01540062.png ; $s ( z ) = q ( z )$ ; confidence 1.000
  9. 3 duplicate(s) ; k13001019.png ; $T ( s )$ ; confidence 1.000
  10. 5 duplicate(s) ; i05031036.png ; $\delta _ { 0 } > 0$ ; confidence 1.000
  11. 2 duplicate(s) ; c02240053.png ; $( k \times n )$ ; confidence 1.000
  12. 3 duplicate(s) ; p11012025.png ; $\lambda < \mu$ ; confidence 1.000
  13. 1 duplicate(s) ; b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000
  14. 4 duplicate(s) ; b016920121.png ; $( M )$ ; confidence 1.000
  15. 1 duplicate(s) ; q076310117.png ; $R ^ { 12 }$ ; confidence 1.000
  16. 1 duplicate(s) ; p07416038.png ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 1.000
  17. 1 duplicate(s) ; l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000
  18. 1 duplicate(s) ; i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000
  19. 1 duplicate(s) ; b01762024.png ; $r ^ { 2 }$ ; confidence 1.000
  20. 2 duplicate(s) ; s09071014.png ; $f = 1$ ; confidence 1.000
  21. 1 duplicate(s) ; c02654026.png ; $B ( t , s ) = R ( t - s )$ ; confidence 1.000
  22. 1 duplicate(s) ; w12006046.png ; $( n , r )$ ; confidence 1.000
  23. 1 duplicate(s) ; f040850143.png ; $\{ \lambda \}$ ; confidence 1.000
  24. 4 duplicate(s) ; b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000
  25. 4 duplicate(s) ; p07285071.png ; $( A , i )$ ; confidence 1.000
  26. 1 duplicate(s) ; g13005024.png ; $r ( 1,2 )$ ; confidence 1.000
  27. 2 duplicate(s) ; c11044082.png ; $C ( n ) = 0$ ; confidence 1.000
  28. 1 duplicate(s) ; c02150017.png ; $y ^ { \prime \prime } - y > f ( x )$ ; confidence 1.000
  29. 1 duplicate(s) ; w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000
  30. 1 duplicate(s) ; i130090151.png ; $p < 12000000$ ; confidence 1.000
  31. 1 duplicate(s) ; m06263022.png ; $\int _ { - \infty } ^ { \infty } x d F ( x )$ ; confidence 1.000
  32. 1 duplicate(s) ; k055840118.png ; $[ x , y ] = 0$ ; confidence 1.000
  33. 1 duplicate(s) ; n06656013.png ; $A ( u ) = 0$ ; confidence 1.000
  34. 1 duplicate(s) ; s08727069.png ; $F ( \lambda , \alpha )$ ; confidence 1.000
  35. 1 duplicate(s) ; f120080121.png ; $B ( G , G )$ ; confidence 1.000
  36. 1 duplicate(s) ; k05537016.png ; $0 < p , q < \infty$ ; confidence 1.000
  37. 1 duplicate(s) ; h04844022.png ; $\alpha - \beta$ ; confidence 1.000
  38. 5 duplicate(s) ; c022660281.png ; $f : D \rightarrow \Omega$ ; confidence 1.000
  39. 1 duplicate(s) ; o06833050.png ; $f _ { 1 } ( \lambda , t )$ ; confidence 1.000
  40. 1 duplicate(s) ; t0939808.png ; $V = f ^ { - 1 } ( X )$ ; confidence 1.000
  41. 1 duplicate(s) ; h047970134.png ; $( C , A )$ ; confidence 1.000
  42. 1 duplicate(s) ; n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000
  43. 4 duplicate(s) ; i05195052.png ; $( x _ { k } , y _ { k } )$ ; confidence 1.000
  44. 2 duplicate(s) ; m06544049.png ; $( E , \mu )$ ; confidence 1.000
  45. 1 duplicate(s) ; z13011094.png ; $\mu ( i , m + 1 ) - \mu ( i , m ) =$ ; confidence 1.000
  46. 18 duplicate(s) ; a01225011.png ; $R > 0$ ; confidence 1.000
  47. 1 duplicate(s) ; r07725048.png ; $( n - \mu _ { 1 } ) / 2$ ; confidence 1.000
  48. 4 duplicate(s) ; t13011034.png ; $( T , - )$ ; confidence 1.000
  49. 1 duplicate(s) ; l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000
  50. 1 duplicate(s) ; f04206074.png ; $f ( - x ) = - f ( x )$ ; confidence 1.000
  51. 1 duplicate(s) ; i11002080.png ; $( A )$ ; confidence 1.000
  52. 1 duplicate(s) ; f04114018.png ; $P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$ ; confidence 1.000
  53. 1 duplicate(s) ; w0970903.png ; $F ( x )$ ; confidence 1.000
  54. 1 duplicate(s) ; w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000
  55. 1 duplicate(s) ; n06689035.png ; $b = 7$ ; confidence 0.999
  56. 1 duplicate(s) ; g04478033.png ; $\mu ( \alpha )$ ; confidence 0.999
  57. 2 duplicate(s) ; r08216030.png ; $n < 7$ ; confidence 0.999
  58. 3 duplicate(s) ; m1100107.png ; $[ n , k ]$ ; confidence 0.999
  59. 2 duplicate(s) ; d031830116.png ; $\{ A \}$ ; confidence 0.999
  60. 1 duplicate(s) ; l059490122.png ; $R ( t + T , s ) = R ( t , s )$ ; confidence 0.999
  61. 1 duplicate(s) ; v09638020.png ; $X ^ { \prime } \cap \pi ^ { - 1 } ( b )$ ; confidence 0.999
  62. 1 duplicate(s) ; l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999
  63. 1 duplicate(s) ; c022660219.png ; $F = \{ f ( z ) \}$ ; confidence 0.999
  64. 1 duplicate(s) ; i05202038.png ; $B = Y \backslash 0$ ; confidence 0.999
  65. 1 duplicate(s) ; m062620248.png ; $x > y > z$ ; confidence 0.999
  66. 1 duplicate(s) ; h11037062.png ; $n \neq 0$ ; confidence 0.999
  67. 1 duplicate(s) ; a011480138.png ; $g ( x _ { 0 } , y )$ ; confidence 0.999
  68. 1 duplicate(s) ; m06235096.png ; $\mu ^ { - 1 }$ ; confidence 0.999
  69. 1 duplicate(s) ; b13030038.png ; $| B ( 2,4 ) | = 2 ^ { 12 }$ ; confidence 0.999
  70. 1 duplicate(s) ; r08167086.png ; $\phi ( x , t )$ ; confidence 0.999
  71. 1 duplicate(s) ; l05916072.png ; $\operatorname { ln } t$ ; confidence 0.999
  72. 1 duplicate(s) ; c13007018.png ; $( \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , \frac { 2 t } { 1 + t ^ { 2 } } )$ ; confidence 0.999
  73. 1 duplicate(s) ; s09099057.png ; $M _ { \gamma } ( r , f )$ ; confidence 0.999
  74. 1 duplicate(s) ; t09421013.png ; $B = ( 1,0 )$ ; confidence 0.999
  75. 4 duplicate(s) ; t09257019.png ; $( s , v )$ ; confidence 0.999
  76. 1 duplicate(s) ; c02242028.png ; $\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$ ; confidence 0.999
  77. 1 duplicate(s) ; n0673605.png ; $\phi ( x ) \geq 0$ ; confidence 0.999
  78. 1 duplicate(s) ; c02305060.png ; $( U ) = n - 1$ ; confidence 0.999
  79. 1 duplicate(s) ; l05743029.png ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
  80. 1 duplicate(s) ; h12011021.png ; $B ( 0 , r / 2 )$ ; confidence 0.999
  81. 1 duplicate(s) ; b01780019.png ; $2 ^ { 12 }$ ; confidence 0.999
  82. 1 duplicate(s) ; c02064013.png ; $\lambda : V \rightarrow P$ ; confidence 0.999
  83. 1 duplicate(s) ; d03379044.png ; $\Delta _ { D } ( z )$ ; confidence 0.999
  84. 1 duplicate(s) ; c11016083.png ; $F ( K , A )$ ; confidence 0.999
  85. 1 duplicate(s) ; b13007015.png ; $\pi ( m )$ ; confidence 0.999
  86. 1 duplicate(s) ; a01002013.png ; $\sigma \delta$ ; confidence 0.999
  87. 1 duplicate(s) ; i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
  88. 1 duplicate(s) ; b017330215.png ; $F ^ { \prime } ( w )$ ; confidence 0.999
  89. 1 duplicate(s) ; t13005053.png ; $\sigma ^ { \prime } ( A )$ ; confidence 0.999
  90. 1 duplicate(s) ; y09907018.png ; $( 5,4,4,4,2,1 )$ ; confidence 0.999
  91. 5 duplicate(s) ; b01733087.png ; $N ^ { * } ( D )$ ; confidence 0.999
  92. 2 duplicate(s) ; c025140160.png ; $E = T B$ ; confidence 0.999
  93. 1 duplicate(s) ; n12011011.png ; $\xi ( x ) = 1$ ; confidence 0.999
  94. 1 duplicate(s) ; s08649063.png ; $( r , - r + 1 )$ ; confidence 0.999
  95. 1 duplicate(s) ; d03372075.png ; $\sigma > 1 / 2$ ; confidence 0.999
  96. 1 duplicate(s) ; n1300305.png ; $u ( x , t ) = v ( x ) w ( t )$ ; confidence 0.999
  97. 1 duplicate(s) ; e03612012.png ; $m ( M )$ ; confidence 0.999
  98. 1 duplicate(s) ; p07270029.png ; $f ( L )$ ; confidence 0.999
  99. 2 duplicate(s) ; f120150156.png ; $\beta ( A - K ) < \infty$ ; confidence 0.999
  100. 1 duplicate(s) ; l059110131.png ; $( 0 , m h )$ ; confidence 0.999
  101. 1 duplicate(s) ; m06399032.png ; $A = \pi r ^ { 2 }$ ; confidence 0.999
  102. 2 duplicate(s) ; m130250103.png ; $s > n / 2$ ; confidence 0.999
  103. 7 duplicate(s) ; f04058044.png ; $\phi ( p )$ ; confidence 0.999
  104. 4 duplicate(s) ; b0152609.png ; $D \cup \Gamma$ ; confidence 0.999
  105. 2 duplicate(s) ; r082060128.png ; $2 g - 1$ ; confidence 0.999
  106. 1 duplicate(s) ; a13007033.png ; $< 1$ ; confidence 0.999
  107. 2 duplicate(s) ; c0206802.png ; $= f ( x , y )$ ; confidence 0.999
  108. 1 duplicate(s) ; f04158014.png ; $( x M ) ( M ^ { - 1 } y )$ ; confidence 0.999
  109. 1 duplicate(s) ; b11037053.png ; $K ( t ) \equiv 1$ ; confidence 0.999
  110. 2 duplicate(s) ; s09022010.png ; $x ( \phi )$ ; confidence 0.999
  111. 1 duplicate(s) ; t09264011.png ; $\frac { \partial u ( x ) } { \partial N } + \alpha ( x ) u ( x ) = v ( x ) , \quad x \in \Gamma$ ; confidence 0.999
  112. 2 duplicate(s) ; o06833067.png ; $e ^ { - \lambda s }$ ; confidence 0.999
  113. 1 duplicate(s) ; h13012038.png ; $| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$ ; confidence 0.999
  114. 1 duplicate(s) ; k05570014.png ; $I _ { \Gamma } ( x )$ ; confidence 0.999
  115. 1 duplicate(s) ; m063460237.png ; $( f ) = D$ ; confidence 0.999
  116. 6 duplicate(s) ; t12020041.png ; $d \in [ 0,3 ]$ ; confidence 0.999
  117. 1 duplicate(s) ; m06491014.png ; $Y ( K )$ ; confidence 0.999
  118. 1 duplicate(s) ; p07268062.png ; $\Phi ( f ( t ) , h ( t ) ) \equiv 0$ ; confidence 0.999
  119. 1 duplicate(s) ; n06652038.png ; $( n , \rho _ { n } )$ ; confidence 0.999
  120. 3 duplicate(s) ; i05250047.png ; $P ^ { N } ( k )$ ; confidence 0.999
  121. 1 duplicate(s) ; c12008012.png ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.999
  122. 1 duplicate(s) ; k05594047.png ; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999
  123. 1 duplicate(s) ; c02412030.png ; $f ( z ) = 1 / ( e ^ { z } - 1 )$ ; confidence 0.999
  124. 1 duplicate(s) ; v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999
  125. 1 duplicate(s) ; b11089054.png ; $f ( x ) = x ^ { t } M x$ ; confidence 0.999
  126. 2 duplicate(s) ; l11005048.png ; $v ( P ) - v ( D )$ ; confidence 0.999
  127. 1 duplicate(s) ; s11026022.png ; $\eta \in R ^ { k }$ ; confidence 0.999
  128. 2 duplicate(s) ; a01296094.png ; $n > r$ ; confidence 0.999
  129. 1 duplicate(s) ; w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
  130. 1 duplicate(s) ; c02242026.png ; $\phi ( x ) \equiv 1$ ; confidence 0.999
  131. 1 duplicate(s) ; m06254054.png ; $| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$ ; confidence 0.999
  132. 1 duplicate(s) ; b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
  133. 1 duplicate(s) ; s08771037.png ; $\omega ( R )$ ; confidence 0.999
  134. 9 duplicate(s) ; i12008061.png ; $H = 0$ ; confidence 0.999
  135. 1 duplicate(s) ; b01568021.png ; $2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$ ; confidence 0.999
  136. 1 duplicate(s) ; w0978506.png ; $M _ { \lambda , \mu } ( z ) , M _ { \lambda , - \mu } ( z )$ ; confidence 0.999
  137. 1 duplicate(s) ; k05558059.png ; $s _ { i } , s _ { i } ^ { - 1 }$ ; confidence 0.999
  138. 1 duplicate(s) ; i05196055.png ; $\{ C , D , F ( C , D ) \}$ ; confidence 0.999
  139. 1 duplicate(s) ; l06025052.png ; $m = n = 1$ ; confidence 0.998
  140. 1 duplicate(s) ; s090190168.png ; $b ( t , s ) = B ( t , s ) - m ( t ) m ( s )$ ; confidence 0.998
  141. 1 duplicate(s) ; a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.998
  142. 1 duplicate(s) ; p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998
  143. 1 duplicate(s) ; b13001076.png ; $( V ^ { * } , A )$ ; confidence 0.998
  144. 1 duplicate(s) ; i12004046.png ; $\partial D \times D$ ; confidence 0.998
  145. 1 duplicate(s) ; m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998
  146. 2 duplicate(s) ; a01184054.png ; $G ( s , t )$ ; confidence 0.998
  147. 3 duplicate(s) ; d03292042.png ; $\sigma > h$ ; confidence 0.998
  148. 3 duplicate(s) ; o068350148.png ; $\phi \in D ( A )$ ; confidence 0.998
  149. 1 duplicate(s) ; c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998
  150. 1 duplicate(s) ; s12016033.png ; $H ( q , d )$ ; confidence 0.998
  151. 1 duplicate(s) ; n06690064.png ; $G \rightarrow A$ ; confidence 0.998
  152. 1 duplicate(s) ; a0143001.png ; $\epsilon - \delta$ ; confidence 0.998
  153. 1 duplicate(s) ; e0354309.png ; $h = h ( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } )$ ; confidence 0.998
  154. 5 duplicate(s) ; t120200142.png ; $m > - 1$ ; confidence 0.998
  155. 1 duplicate(s) ; b11085036.png ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998
  156. 1 duplicate(s) ; v096020116.png ; $f ( z ) \in K$ ; confidence 0.998
  157. 1 duplicate(s) ; f04033018.png ; $f ^ { - 1 } ( f ( x ) ) \cap U$ ; confidence 0.998
  158. 1 duplicate(s) ; u09544020.png ; $U ( \epsilon )$ ; confidence 0.998
  159. 1 duplicate(s) ; g045090122.png ; $\psi _ { k } ( \xi )$ ; confidence 0.998
  160. 1 duplicate(s) ; b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
  161. 2 duplicate(s) ; r08269033.png ; $| \chi | < \pi$ ; confidence 0.998
  162. 1 duplicate(s) ; m130180107.png ; $\mu ( 0 , x ) \neq 0$ ; confidence 0.998
  163. 2 duplicate(s) ; h04721043.png ; $\Sigma _ { n } ^ { 0 }$ ; confidence 0.998
  164. 1 duplicate(s) ; c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
  165. 1 duplicate(s) ; m0629503.png ; $f \in L _ { 1 } ( X , \mu )$ ; confidence 0.998
  166. 1 duplicate(s) ; b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998
  167. 1 duplicate(s) ; b01753018.png ; $\frac { \partial F ( t , s ) } { \partial t } | _ { t = 0 } = f ( s )$ ; confidence 0.998
  168. 1 duplicate(s) ; f0381302.png ; $G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$ ; confidence 0.998
  169. 1 duplicate(s) ; t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
  170. 1 duplicate(s) ; e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
  171. 1 duplicate(s) ; q076840162.png ; $P _ { k } ( x )$ ; confidence 0.998
  172. 1 duplicate(s) ; k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998
  173. 1 duplicate(s) ; h04733016.png ; $L _ { 2 } ( X \times X , \mu \times \mu )$ ; confidence 0.998
  174. 1 duplicate(s) ; q076310127.png ; $R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$ ; confidence 0.998
  175. 1 duplicate(s) ; d03372050.png ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.998
  176. 1 duplicate(s) ; p0737503.png ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.998
  177. 1 duplicate(s) ; k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
  178. 1 duplicate(s) ; k11019069.png ; $P = Q$ ; confidence 0.998
  179. 1 duplicate(s) ; l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
  180. 1 duplicate(s) ; c02266075.png ; $\mu ( E ) = \mu _ { 1 } ( E ) = 0$ ; confidence 0.998
  181. 1 duplicate(s) ; l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
  182. 1 duplicate(s) ; p07515035.png ; $\alpha _ { 0 } \in A$ ; confidence 0.998
  183. 1217 duplicate(s) ; a110420118.png ; $H$ ; confidence 0.998
  184. 1 duplicate(s) ; r0811504.png ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.998
  185. 1 duplicate(s) ; s0863808.png ; $s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$ ; confidence 0.998
  186. 1 duplicate(s) ; d03191051.png ; $x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$ ; confidence 0.998
  187. 1 duplicate(s) ; d03192079.png ; $0 < l < n$ ; confidence 0.998
  188. 1 duplicate(s) ; c02242019.png ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
  189. 2 duplicate(s) ; l059170161.png ; $H ^ { k }$ ; confidence 0.998
  190. 1 duplicate(s) ; l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998
  191. 1 duplicate(s) ; g04354016.png ; $\chi = \chi ( m , p )$ ; confidence 0.998
  192. 1 duplicate(s) ; w0975906.png ; $H ^ { 1 } ( k , A )$ ; confidence 0.998
  193. 1 duplicate(s) ; d03128077.png ; $f t = g t$ ; confidence 0.997
  194. 1 duplicate(s) ; c0245407.png ; $\dot { \phi } = \omega$ ; confidence 0.997
  195. 1 duplicate(s) ; f04106025.png ; $\phi \in C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.997
  196. 1 duplicate(s) ; s130510126.png ; $\gamma ( u ) < \infty$ ; confidence 0.997
  197. 1 duplicate(s) ; r1301406.png ; $\sigma ( R ) \backslash \lambda$ ; confidence 0.997
  198. 1 duplicate(s) ; g0439304.png ; $m : A ^ { \prime } \rightarrow A$ ; confidence 0.997
  199. 1 duplicate(s) ; s08645013.png ; $A _ { \delta }$ ; confidence 0.997
  200. 1 duplicate(s) ; s09090013.png ; $S ( x _ { 0 } , r )$ ; confidence 0.997
  201. 1 duplicate(s) ; c02572060.png ; $x - y \in U$ ; confidence 0.997
  202. 2 duplicate(s) ; c02065027.png ; $\phi , \lambda$ ; confidence 0.997
  203. 1 duplicate(s) ; l05761040.png ; $U _ { 0 } = 1$ ; confidence 0.997
  204. 1 duplicate(s) ; d03346020.png ; $| w - \beta _ { 0 } | = | \zeta _ { 0 } |$ ; confidence 0.997
  205. 1 duplicate(s) ; s09139063.png ; $x _ { 1 } ^ { 2 } = 0$ ; confidence 0.997
  206. 2 duplicate(s) ; f12015043.png ; $\beta ( A ) < \infty$ ; confidence 0.997
  207. 2 duplicate(s) ; m06380038.png ; $\theta _ { n } ( \partial \pi )$ ; confidence 0.997
  208. 1 duplicate(s) ; m064250142.png ; $d y / d s \geq 0$ ; confidence 0.997
  209. 1 duplicate(s) ; h110370125.png ; $T [ - 1 ; ( - 1 , - 1 ) ; \varepsilon ]$ ; confidence 0.997
  210. 1 duplicate(s) ; a01357020.png ; $g ( u ) d u$ ; confidence 0.997
  211. 1 duplicate(s) ; b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.997
  212. 1 duplicate(s) ; h04751218.png ; $A = \operatorname { sup } _ { y \in E } A ( y ) < \infty$ ; confidence 0.997
  213. 1 duplicate(s) ; k05510011.png ; $h = K \eta \leq 1 / 2$ ; confidence 0.997
  214. 1 duplicate(s) ; m06255040.png ; $u ( y ) \geq 0$ ; confidence 0.997
  215. 1 duplicate(s) ; d120230125.png ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.997
  216. 2 duplicate(s) ; f041420175.png ; $| \lambda | < B ^ { - 1 }$ ; confidence 0.997
  217. 1 duplicate(s) ; p073750105.png ; $e ( \xi \otimes C )$ ; confidence 0.997
  218. 1 duplicate(s) ; f11005019.png ; $q ( 0 ) \neq 0$ ; confidence 0.997
  219. 1 duplicate(s) ; t09460022.png ; $f _ { 0 } \neq 0$ ; confidence 0.997
  220. 1 duplicate(s) ; n06690039.png ; $H ^ { 0 } ( X , F ) = F ( X )$ ; confidence 0.997
  221. 1 duplicate(s) ; j130040131.png ; $( v , z ) = ( \pm i , \pm i \sqrt { 2 } )$ ; confidence 0.997
  222. 1 duplicate(s) ; s09078074.png ; $\Phi ^ { \prime \prime } ( + 0 ) = - h$ ; confidence 0.997
  223. 1 duplicate(s) ; f04142082.png ; $D ( \lambda ) \neq 0$ ; confidence 0.997
  224. 1 duplicate(s) ; c023150291.png ; $\pi _ { n } ( E ) = \pi$ ; confidence 0.997
  225. 1 duplicate(s) ; c023150156.png ; $i ^ { * } ( \phi ) = 0$ ; confidence 0.997
  226. 1 duplicate(s) ; o070340106.png ; $U _ { n } ( x ) = ( n + 1 ) F ( - n , n + 2 ; \frac { 3 } { 2 } ; \frac { 1 - x } { 2 } )$ ; confidence 0.997
  227. 1 duplicate(s) ; f11022029.png ; $A ^ { p } \geq ( A ^ { p / 2 } B ^ { p } A ^ { p / 2 } ) ^ { 1 / 2 }$ ; confidence 0.997
  228. 3 duplicate(s) ; q13004038.png ; $K > 1$ ; confidence 0.997
  229. 1 duplicate(s) ; d13002017.png ; $0 \leq k < 1$ ; confidence 0.997
  230. 1 duplicate(s) ; s085820122.png ; $y ( t , \epsilon ) \rightarrow \overline { y } ( t ) , \quad 0 \leq t \leq T$ ; confidence 0.997
  231. 1 duplicate(s) ; g044340129.png ; $\overline { R } ( X , Y ) \xi$ ; confidence 0.997
  232. 1 duplicate(s) ; s09013024.png ; $H \mapsto \alpha ( H )$ ; confidence 0.996
  233. 1 duplicate(s) ; l05971012.png ; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996
  234. 1 duplicate(s) ; d12023095.png ; $R - F R F ^ { * } = G J G ^ { * }$ ; confidence 0.996
  235. 1 duplicate(s) ; c025140162.png ; $X \in V ( B )$ ; confidence 0.996
  236. 1 duplicate(s) ; l059490146.png ; $A ( t , \epsilon ) = A _ { 0 } ( t ) + \epsilon A _ { 1 } ( t ) + \epsilon ^ { 2 } A _ { 2 } ( t ) +$ ; confidence 0.996
  237. 1 duplicate(s) ; r07764046.png ; $D _ { n - 2 }$ ; confidence 0.996
  238. 1 duplicate(s) ; i05235028.png ; $f ( x , y ) = a x ^ { 3 } + 3 b x ^ { 2 } y + 3 c x y ^ { 2 } + d y ^ { 3 }$ ; confidence 0.996
  239. 1 duplicate(s) ; d03185094.png ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.996
  240. 1 duplicate(s) ; c02285080.png ; $( n , A ^ { * } )$ ; confidence 0.996
  241. 3 duplicate(s) ; s08562096.png ; $S ( X , Y )$ ; confidence 0.996
  242. 1 duplicate(s) ; i052800127.png ; $E ^ { 2 k + 1 }$ ; confidence 0.996
  243. 4 duplicate(s) ; f03806015.png ; $V$ ; confidence 0.996
  244. 1 duplicate(s) ; c023840111.png ; $\phi ( A , z ) = \frac { ( A z , z ) } { ( z , z ) }$ ; confidence 0.996
  245. 1 duplicate(s) ; f12023086.png ; $L \in \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.996
  246. 1 duplicate(s) ; r130080102.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
  247. 1 duplicate(s) ; m06406041.png ; $( x , y ) \leq F ( x ) G ( y )$ ; confidence 0.996
  248. 1 duplicate(s) ; c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996
  249. 1 duplicate(s) ; a13007080.png ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.996
  250. 1 duplicate(s) ; v0967406.png ; $v _ { \nu } ( t _ { 0 } ) = 0$ ; confidence 0.996
  251. 1 duplicate(s) ; u09540011.png ; $( g - 1 ) ^ { n } = 0$ ; confidence 0.996
  252. 4 duplicate(s) ; k05503063.png ; $T ( X )$ ; confidence 0.996
  253. 1 duplicate(s) ; u09582023.png ; $v ( x ) \geq f ( x )$ ; confidence 0.996
  254. 1 duplicate(s) ; a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.996
  255. 1 duplicate(s) ; c02152013.png ; $V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$ ; confidence 0.996
  256. 1 duplicate(s) ; h0484501.png ; $z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$ ; confidence 0.996
  257. 1 duplicate(s) ; b01747069.png ; $P _ { 1 / 2 }$ ; confidence 0.996
  258. 1 duplicate(s) ; v096380128.png ; $w : \xi \oplus \zeta \rightarrow \pi$ ; confidence 0.996
  259. 1 duplicate(s) ; i05250023.png ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
  260. 1 duplicate(s) ; p110230101.png ; $( \Omega , A , P )$ ; confidence 0.995
  261. 2 duplicate(s) ; t093180434.png ; $D ( R ^ { n + k } )$ ; confidence 0.995
  262. 1 duplicate(s) ; c0244507.png ; $U ( A ) \subset Y$ ; confidence 0.995
  263. 1 duplicate(s) ; c023550172.png ; $\overline { f } : \mu X \rightarrow \mu Y$ ; confidence 0.995
  264. 1 duplicate(s) ; d0311001.png ; $\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$ ; confidence 0.995
  265. 1 duplicate(s) ; m06346056.png ; $D ( z ) \neq 0$ ; confidence 0.995
  266. 1 duplicate(s) ; c02269016.png ; $X ( x ^ { 0 } , x )$ ; confidence 0.995
  267. 1 duplicate(s) ; i0522303.png ; $x \leq z \leq y$ ; confidence 0.995
  268. 2 duplicate(s) ; p07536031.png ; $\operatorname { Proj } ( R )$ ; confidence 0.995
  269. 1 duplicate(s) ; w09760044.png ; $H ^ { i } ( X )$ ; confidence 0.995
  270. 2 duplicate(s) ; c02565066.png ; $D \subset R$ ; confidence 0.995
  271. 1 duplicate(s) ; b110100392.png ; $T _ { K } ( K )$ ; confidence 0.995
  272. 1 duplicate(s) ; c024780245.png ; $\operatorname { arg } z = c$ ; confidence 0.995
  273. 1 duplicate(s) ; k0558502.png ; $K = ( S , R , D , W )$ ; confidence 0.995
  274. 1 duplicate(s) ; a130040442.png ; $h ^ { - 1 } ( F _ { 0 } )$ ; confidence 0.995
  275. 2 duplicate(s) ; t092810205.png ; $\beta ( M )$ ; confidence 0.995
  276. 1 duplicate(s) ; c02727064.png ; $H ^ { 3 } ( V , C )$ ; confidence 0.995
  277. 6 duplicate(s) ; a12016064.png ; $\lambda < 1$ ; confidence 0.995
  278. 1 duplicate(s) ; j054050155.png ; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995
  279. 1 duplicate(s) ; f04069050.png ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.995
  280. 2 duplicate(s) ; d031380332.png ; $E = N$ ; confidence 0.995
  281. 1 duplicate(s) ; i05273034.png ; $p : G \rightarrow G$ ; confidence 0.995
  282. 1 duplicate(s) ; i052860119.png ; $( = 2 / \pi )$ ; confidence 0.994
  283. 1 duplicate(s) ; c02482046.png ; $\leq ( n + 1 ) ( n + 2 ) / 2$ ; confidence 0.994
  284. 1 duplicate(s) ; g043780157.png ; $T \xi$ ; confidence 0.994
  285. 2 duplicate(s) ; b016960175.png ; $M _ { 1 } \cup M _ { 2 }$ ; confidence 0.994
  286. 1 duplicate(s) ; p07288011.png ; $\{ z _ { k } \} \subset \Delta$ ; confidence 0.994
  287. 1 duplicate(s) ; l0572001.png ; $T + V = h$ ; confidence 0.994
  288. 1 duplicate(s) ; n06644040.png ; $\sum _ { n = 0 } ^ { \infty } A ^ { n } f$ ; confidence 0.994
  289. 1 duplicate(s) ; k05548037.png ; $R \phi / 6$ ; confidence 0.994
  290. 4 duplicate(s) ; p0733402.png ; $X ( t _ { 2 } ) - X ( t _ { 1 } )$ ; confidence 0.994
  291. 1 duplicate(s) ; e03640033.png ; $2 - m - 1$ ; confidence 0.994
  292. 1 duplicate(s) ; b110100421.png ; $S : \Omega \rightarrow L ( Y , X )$ ; confidence 0.994
  293. 1 duplicate(s) ; m12021026.png ; $\lambda K + t$ ; confidence 0.994
  294. 2 duplicate(s) ; t093150169.png ; $F \in \gamma$ ; confidence 0.994
  295. 3 duplicate(s) ; h04601045.png ; $M _ { 0 } \times [ 0,1 ]$ ; confidence 0.994
  296. 1 duplicate(s) ; t09449010.png ; $\{ z \in D : 0 < \lambda \leq \omega ( z ; \alpha , D ) < 1 \}$ ; confidence 0.994
  297. 1 duplicate(s) ; m064180114.png ; $\{ ( x , y ) : 0 < x < h , \square 0 < y < T \}$ ; confidence 0.994
  298. 1 duplicate(s) ; s09157097.png ; $T ^ { * } Y \backslash 0$ ; confidence 0.994
  299. 1 duplicate(s) ; c02274043.png ; $\xi = K ( X ) F , \quad \eta = K ( Y ) F$ ; confidence 0.994
  300. 1 duplicate(s) ; n06784093.png ; $A \in L _ { \infty } ( H )$ ; confidence 0.994
  301. 1 duplicate(s) ; b12022047.png ; $\int M ( u , \xi ) d \xi = u + k$ ; confidence 0.993
  302. 3 duplicate(s) ; c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
  303. 2 duplicate(s) ; f04207074.png ; $T _ { N } ( t )$ ; confidence 0.993
  304. 1 duplicate(s) ; a12007056.png ; $D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.993
  305. 1 duplicate(s) ; m063460176.png ; $\psi _ { z } \neq 0$ ; confidence 0.993
  306. 1 duplicate(s) ; n06761056.png ; $( d \nu ) ( x _ { i } ) ( T _ { i } )$ ; confidence 0.993
  307. 1 duplicate(s) ; l059350126.png ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
  308. 1 duplicate(s) ; h12012026.png ; $f \phi = 0$ ; confidence 0.993
  309. 1 duplicate(s) ; w120090399.png ; $L ( \mu )$ ; confidence 0.993
  310. 1 duplicate(s) ; r1100601.png ; $G = ( N , T , S , P )$ ; confidence 0.993
  311. 2 duplicate(s) ; s08746026.png ; $\{ \epsilon _ { t } \}$ ; confidence 0.993
  312. 1 duplicate(s) ; k05594036.png ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
  313. 1 duplicate(s) ; e11007067.png ; $y ^ { 2 } = R ( x )$ ; confidence 0.993
  314. 1 duplicate(s) ; o0702405.png ; $d W ( t ) / d t = W ^ { \prime } ( t )$ ; confidence 0.993
  315. 1 duplicate(s) ; w12021059.png ; $B _ { m } = R$ ; confidence 0.993
  316. 4 duplicate(s) ; b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993
  317. 1 duplicate(s) ; t09367039.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$ ; confidence 0.993
  318. 1 duplicate(s) ; c02297061.png ; $H ^ { i } ( X , O _ { X } ( \nu ) ) = 0$ ; confidence 0.993
  319. 1 duplicate(s) ; b01747076.png ; $1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$ ; confidence 0.993
  320. 1 duplicate(s) ; p07535038.png ; $d ( S )$ ; confidence 0.993
  321. 1 duplicate(s) ; d034120234.png ; $\alpha : H ^ { p } ( X , F ) \rightarrow H ^ { p } ( Y , F )$ ; confidence 0.993
  322. 1 duplicate(s) ; m0622804.png ; $C X = ( X \times [ 0,1 ] ) / ( X \times \{ 0 \} )$ ; confidence 0.993
  323. 2 duplicate(s) ; r08068055.png ; $x ( t ) \in D ^ { c }$ ; confidence 0.992
  324. 1 duplicate(s) ; b01681021.png ; $H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$ ; confidence 0.992
  325. 6 duplicate(s) ; b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992
  326. 2 duplicate(s) ; h046470224.png ; $d \sigma ( y )$ ; confidence 0.992
  327. 1 duplicate(s) ; g1200302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$ ; confidence 0.992
  328. 1 duplicate(s) ; l05949079.png ; $x = F ( t ) y$ ; confidence 0.992
  329. 1 duplicate(s) ; b11057039.png ; $H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$ ; confidence 0.992
  330. 1 duplicate(s) ; e03640019.png ; $\chi ( K ) = \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } \operatorname { dim } _ { F } ( H _ { k } ( K ; F ) )$ ; confidence 0.992
  331. 1 duplicate(s) ; d03206032.png ; $f ( t , x ) \equiv A x + f ( t )$ ; confidence 0.992
  332. 3 duplicate(s) ; n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992
  333. 5 duplicate(s) ; c02160021.png ; $A$ ; confidence 0.992
  334. 3 duplicate(s) ; w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.992
  335. 1 duplicate(s) ; c12028010.png ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.992
  336. 1 duplicate(s) ; s08662027.png ; $\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$ ; confidence 0.992
  337. 1 duplicate(s) ; a12010079.png ; $( I + \lambda A )$ ; confidence 0.992
  338. 1 duplicate(s) ; a11007016.png ; $\Pi _ { p } ( X , Y )$ ; confidence 0.992
  339. 1 duplicate(s) ; m064250141.png ; $x = x ( s ) , y = y ( s )$ ; confidence 0.991
  340. 1 duplicate(s) ; a01021067.png ; $( 1 / z ) d z$ ; confidence 0.991
  341. 1 duplicate(s) ; l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.991
  342. 1 duplicate(s) ; c02515011.png ; $Y \in T _ { y } ( P )$ ; confidence 0.991
  343. 1 duplicate(s) ; f04127030.png ; $\alpha < \beta < \gamma$ ; confidence 0.991
  344. 1 duplicate(s) ; b01740070.png ; $k ^ { \prime } = 1$ ; confidence 0.991
  345. 1 duplicate(s) ; f130100140.png ; $G = T$ ; confidence 0.991
  346. 1 duplicate(s) ; m11018050.png ; $J ( F G / I ) = 0$ ; confidence 0.991
  347. 6 duplicate(s) ; c0257107.png ; $U = U ( x _ { 0 } )$ ; confidence 0.991
  348. 12 duplicate(s) ; s087670100.png ; $S ( t , k , v )$ ; confidence 0.991
  349. 1 duplicate(s) ; a01172012.png ; $\operatorname { Red } : X ( K ) \rightarrow X _ { 0 } ( k )$ ; confidence 0.991
  350. 1 duplicate(s) ; f04052043.png ; $| x - x _ { 0 } | \leq b$ ; confidence 0.990
  351. 1 duplicate(s) ; e03556014.png ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.990
  352. 1 duplicate(s) ; m063240457.png ; $\mu _ { i } ( X _ { i } ) = 1$ ; confidence 0.990
  353. 6 duplicate(s) ; q07632072.png ; $( A , \phi )$ ; confidence 0.990
  354. 1 duplicate(s) ; l05744010.png ; $D = 2 \gamma k T / M$ ; confidence 0.990
  355. 1 duplicate(s) ; c022660213.png ; $S _ { k } ( \zeta _ { 0 } ) \backslash R ( f , \zeta _ { 0 } ; D )$ ; confidence 0.990
  356. 1 duplicate(s) ; k05535065.png ; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990
  357. 1 duplicate(s) ; p074140115.png ; $1 \leq p \leq n / 2$ ; confidence 0.990
  358. 1 duplicate(s) ; a12008051.png ; $\frac { d ^ { 2 } u } { d t ^ { 2 } } + A ( t ) u = f ( t ) , t \in [ 0 , T ]$ ; confidence 0.990
  359. 1 duplicate(s) ; i13003026.png ; $[ T ^ { * } M ]$ ; confidence 0.990
  360. 1 duplicate(s) ; b11040029.png ; $F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$ ; confidence 0.990
  361. 2 duplicate(s) ; b015350372.png ; $\{ \xi _ { t } \}$ ; confidence 0.990
  362. 1 duplicate(s) ; h11040046.png ; $\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$ ; confidence 0.990
  363. 1 duplicate(s) ; k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
  364. 1 duplicate(s) ; m06249090.png ; $\alpha _ { \epsilon } ( h ) = o ( h )$ ; confidence 0.989
  365. 1 duplicate(s) ; i05040021.png ; $[ t ^ { n } : t ^ { n - 1 } ] = 0$ ; confidence 0.989
  366. 2 duplicate(s) ; c02547051.png ; $\alpha \wedge ( d \alpha ) ^ { n }$ ; confidence 0.989
  367. 1 duplicate(s) ; i05294039.png ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
  368. 1 duplicate(s) ; s086520138.png ; $\theta _ { T } = \theta$ ; confidence 0.989
  369. 1 duplicate(s) ; e03653023.png ; $t h$ ; confidence 0.989
  370. 1 duplicate(s) ; i05211013.png ; $T \subset R ^ { 1 }$ ; confidence 0.989
  371. 1 duplicate(s) ; h047930255.png ; $\alpha \in \pi _ { 1 } ( X , x _ { 0 } )$ ; confidence 0.989
  372. 1 duplicate(s) ; m06432067.png ; $s , t \in W$ ; confidence 0.989
  373. 5 duplicate(s) ; m06380081.png ; $\sigma ( W )$ ; confidence 0.989
  374. 1 duplicate(s) ; a01165078.png ; $H \times H \rightarrow H$ ; confidence 0.989
  375. 1 duplicate(s) ; c02499018.png ; $\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$ ; confidence 0.988
  376. 1 duplicate(s) ; c020660133.png ; $J _ { i } ( u , v , m ^ { * } , n ^ { * } , \psi , \theta ) = 0 , \quad i = 1,2$ ; confidence 0.988
  377. 1 duplicate(s) ; r110010167.png ; $k ( \pi )$ ; confidence 0.988
  378. 3 duplicate(s) ; b01729088.png ; $A = R ( X )$ ; confidence 0.988
  379. 1 duplicate(s) ; c11041077.png ; $B _ { 1 }$ ; confidence 0.988
  380. 1 duplicate(s) ; m063240221.png ; $E \in S ( R )$ ; confidence 0.988
  381. 1 duplicate(s) ; n06684027.png ; $X = N ( A ) + X , \quad Y = Z + R ( A )$ ; confidence 0.988
  382. 1 duplicate(s) ; w13009092.png ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.987
  383. 1 duplicate(s) ; r08019033.png ; $U$ ; confidence 0.987
  384. 1 duplicate(s) ; a11002014.png ; $d , d ^ { \prime } \in D$ ; confidence 0.987
  385. 1 duplicate(s) ; b01734036.png ; $+ \int _ { \partial S } \mu ( t ) d t + i c , \quad \text { if } m \geq 1$ ; confidence 0.987
  386. 1 duplicate(s) ; b11038019.png ; $w = \pi ( z )$ ; confidence 0.987
  387. 1 duplicate(s) ; b0173603.png ; $\frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x _ { 2 } ^ { 2 } } = - f ( x _ { 1 } , x _ { 2 } ) , \quad ( x _ { 1 } , x _ { 2 } ) \in G$ ; confidence 0.987
  388. 1 duplicate(s) ; g13003082.png ; $\Gamma \subset \Omega$ ; confidence 0.987
  389. 1 duplicate(s) ; e12006038.png ; $Y \rightarrow J ^ { 1 } Y$ ; confidence 0.987
  390. 1 duplicate(s) ; p07516085.png ; $K _ { 1 } ( O _ { 1 } , E _ { 1 } , U _ { 1 } )$ ; confidence 0.987
  391. 1 duplicate(s) ; t09265044.png ; $c < 2$ ; confidence 0.987
  392. 1 duplicate(s) ; b11042087.png ; $\overline { B } ^ { \nu }$ ; confidence 0.987
  393. 1 duplicate(s) ; s09026037.png ; $d x = A ( t ) x d t + B ( t ) d w ( t )$ ; confidence 0.986
  394. 1 duplicate(s) ; d032100109.png ; $\dot { x } ( t ) = A x ( t - h ) - D x ( t )$ ; confidence 0.986
  395. 1 duplicate(s) ; h04756028.png ; $f ^ { - 1 } \circ f ( z ) = z$ ; confidence 0.986
  396. 1 duplicate(s) ; a01359029.png ; $\Phi ^ { ( 3 ) } ( x )$ ; confidence 0.986
  397. 2 duplicate(s) ; l06060022.png ; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986
  398. 1 duplicate(s) ; e12010055.png ; $E ^ { \prime } = 0$ ; confidence 0.985
  399. 1 duplicate(s) ; o0684606.png ; $x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$ ; confidence 0.985
  400. 1 duplicate(s) ; m06398045.png ; $\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$ ; confidence 0.985
  401. 1 duplicate(s) ; m064430134.png ; $w = \lambda ( z )$ ; confidence 0.985
  402. 2 duplicate(s) ; o11003071.png ; $I _ { p } ( L )$ ; confidence 0.985
  403. 1 duplicate(s) ; a011650408.png ; $\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$ ; confidence 0.985
  404. 1 duplicate(s) ; r0825605.png ; $V = 5$ ; confidence 0.985
  405. 1 duplicate(s) ; a01164083.png ; $H _ { i } ( V , Z )$ ; confidence 0.985
  406. 1 duplicate(s) ; b01681038.png ; $n ( z ) = n _ { 0 } e ^ { - m g z / k T }$ ; confidence 0.985
  407. 1 duplicate(s) ; c110400102.png ; $M ^ { \perp } = \{ x \in G$ ; confidence 0.985
  408. 1 duplicate(s) ; m062160147.png ; $\kappa = \mu ^ { * }$ ; confidence 0.985
  409. 2 duplicate(s) ; i13005080.png ; $s > - \infty$ ; confidence 0.985
  410. 1 duplicate(s) ; a11040023.png ; $T ^ { * }$ ; confidence 0.984
  411. 1 duplicate(s) ; a01070020.png ; $\beta : S \rightarrow B / L$ ; confidence 0.984
  412. 1 duplicate(s) ; c0262506.png ; $x , y \in A , \quad 0 \leq \alpha \leq 1$ ; confidence 0.984
  413. 1 duplicate(s) ; i05187033.png ; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984
  414. 1 duplicate(s) ; n06698028.png ; $Q ^ { \prime } \subset Q$ ; confidence 0.984
  415. 1 duplicate(s) ; k11001038.png ; $( \nabla _ { X } J ) Y = g ( X , Y ) Z - \alpha ( Y ) X$ ; confidence 0.984
  416. 5 duplicate(s) ; a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984
  417. 1 duplicate(s) ; a13004089.png ; $D$ ; confidence 0.984
  418. 1 duplicate(s) ; e12006079.png ; $[ Q , [ \Gamma , \Gamma ] ] = 2 [ [ Q , \Gamma ] , \Gamma ]$ ; confidence 0.984
  419. 1 duplicate(s) ; n06679025.png ; $D \cap \{ x ^ { 1 } = c \}$ ; confidence 0.983
  420. 5 duplicate(s) ; s08733032.png ; $H _ { i } ( \omega )$ ; confidence 0.983
  421. 1 duplicate(s) ; a014090219.png ; $L ( \Sigma )$ ; confidence 0.983
  422. 1 duplicate(s) ; i05266017.png ; $0 \in R ^ { 3 }$ ; confidence 0.983
  423. 2 duplicate(s) ; b12002049.png ; $\beta _ { n , F }$ ; confidence 0.983
  424. 1 duplicate(s) ; r13009016.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
  425. 1 duplicate(s) ; s09197066.png ; $F ( u _ { 1 } , u _ { 2 } , u _ { 3 } ) = 0$ ; confidence 0.982
  426. 1 duplicate(s) ; g04377031.png ; $\Gamma _ { 2 } ( z , \zeta )$ ; confidence 0.982
  427. 1 duplicate(s) ; a13023032.png ; $1 \rightarrow \infty$ ; confidence 0.982
  428. 1 duplicate(s) ; g12004074.png ; $D _ { x _ { k } } = - i \partial _ { x _ { k } }$ ; confidence 0.982
  429. 1 duplicate(s) ; d12002050.png ; $( L )$ ; confidence 0.982
  430. 2 duplicate(s) ; t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981
  431. 2 duplicate(s) ; d03189028.png ; $\Delta \rightarrow 0$ ; confidence 0.981
  432. 1 duplicate(s) ; i05010030.png ; $\rho ( x _ { i } , x _ { j } )$ ; confidence 0.981
  433. 1 duplicate(s) ; i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
  434. 1 duplicate(s) ; b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta }$ ; confidence 0.981
  435. 1 duplicate(s) ; l12006027.png ; $\phi \in H$ ; confidence 0.981
  436. 2 duplicate(s) ; m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981
  437. 1 duplicate(s) ; e03662025.png ; $Q _ { n - j } ( z ) \equiv 0$ ; confidence 0.981
  438. 2 duplicate(s) ; h11020026.png ; $( F , \tau _ { K , G } ( F ) )$ ; confidence 0.980
  439. 1 duplicate(s) ; s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980
  440. 7 duplicate(s) ; d03087020.png ; $C ^ { \infty } ( G )$ ; confidence 0.980
  441. 2 duplicate(s) ; h0482005.png ; $Z = 1$ ; confidence 0.980
  442. 1 duplicate(s) ; s08752010.png ; $g : ( Y , B ) \rightarrow ( Z , C )$ ; confidence 0.980
  443. 1 duplicate(s) ; c12016016.png ; $j = 1 : n$ ; confidence 0.980
  444. 1 duplicate(s) ; h0483101.png ; $\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$ ; confidence 0.980
  445. 1 duplicate(s) ; w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980
  446. 1 duplicate(s) ; s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980
  447. 1 duplicate(s) ; a12002022.png ; $F _ { 0 } = f$ ; confidence 0.979
  448. 1 duplicate(s) ; r08064034.png ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.979
  449. 1 duplicate(s) ; n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979
  450. 1 duplicate(s) ; s087360189.png ; $\alpha _ { 2 } ( \alpha ; \omega )$ ; confidence 0.979
  451. 6 duplicate(s) ; b01616036.png ; $0 < c < 1$ ; confidence 0.979
  452. 1 duplicate(s) ; l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979
  453. 1 duplicate(s) ; u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
  454. 4 duplicate(s) ; d03087032.png ; $\pi ( \chi )$ ; confidence 0.978
  455. 1 duplicate(s) ; b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
  456. 1 duplicate(s) ; g04500031.png ; $( n \operatorname { ln } n ) / 2$ ; confidence 0.978
  457. 1 duplicate(s) ; a1201008.png ; $y ( 0 ) = x$ ; confidence 0.978
  458. 2 duplicate(s) ; p07540018.png ; $F \subset G$ ; confidence 0.978
  459. 1 duplicate(s) ; t0939001.png ; $\Omega \nabla \phi + \Sigma \phi = \int d v ^ { \prime } \int d \Omega ^ { \prime } \phi w ( x , \Omega , \Omega ^ { \prime } , v , v ^ { \prime } ) + f$ ; confidence 0.978
  460. 1 duplicate(s) ; h04830032.png ; $P _ { m } ( \xi + \tau N )$ ; confidence 0.978
  461. 1 duplicate(s) ; s08347010.png ; $D ^ { - 1 } \in \pi$ ; confidence 0.978
  462. 1 duplicate(s) ; s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
  463. 1 duplicate(s) ; w097940116.png ; $t \mapsto L ( t , x )$ ; confidence 0.978
  464. 1 duplicate(s) ; a11068076.png ; $\alpha \geq b$ ; confidence 0.978
  465. 1 duplicate(s) ; t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977
  466. 1 duplicate(s) ; s0857105.png ; $f ( v _ { 1 } , v _ { 2 } ) = - f ( v _ { 2 } , v _ { 1 } ) \quad \text { for all } v _ { 1 } , v _ { 2 } \in V$ ; confidence 0.977
  467. 1 duplicate(s) ; k12003040.png ; $E = \emptyset$ ; confidence 0.977
  468. 1 duplicate(s) ; z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977
  469. 1 duplicate(s) ; w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977
  470. 1 duplicate(s) ; z13002034.png ; $F , F _ { \tau } \subset P$ ; confidence 0.977
  471. 1 duplicate(s) ; s12004026.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$ ; confidence 0.977
  472. 1 duplicate(s) ; d13009024.png ; $1 \leq u \leq 2$ ; confidence 0.976
  473. 1 duplicate(s) ; t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976
  474. 1 duplicate(s) ; l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
  475. 1 duplicate(s) ; f040230157.png ; $\Delta ^ { n } f ( x )$ ; confidence 0.976
  476. 1 duplicate(s) ; n06764043.png ; $\Omega _ { X }$ ; confidence 0.976
  477. 1 duplicate(s) ; s09191051.png ; $\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.975
  478. 1 duplicate(s) ; t0933606.png ; $t \in [ 0,2 \pi q ]$ ; confidence 0.975
  479. 1 duplicate(s) ; g04466018.png ; $A = \sum _ { i \geq 0 } A$ ; confidence 0.975
  480. 1 duplicate(s) ; q12005015.png ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.975
  481. 1 duplicate(s) ; b11006026.png ; $( X , R )$ ; confidence 0.975
  482. 1 duplicate(s) ; b1300902.png ; $u ( x , t ) : R \times R \rightarrow R$ ; confidence 0.975
  483. 3 duplicate(s) ; m062160173.png ; $E$ ; confidence 0.975
  484. 1 duplicate(s) ; e11013060.png ; $p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$ ; confidence 0.974
  485. 3 duplicate(s) ; g0450402.png ; $f _ { 12 }$ ; confidence 0.974
  486. 7 duplicate(s) ; c13005021.png ; $\Gamma$ ; confidence 0.974
  487. 1 duplicate(s) ; w09794024.png ; $X ( t ) = \sum _ { k = 0 } ^ { m - 1 } \Delta X ( \frac { k } { n } ) + ( n t - m ) \Delta X ( \frac { m } { n } ) , \quad 0 \leq t \leq 1$ ; confidence 0.974
  488. 1 duplicate(s) ; e03684024.png ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.974
  489. 1 duplicate(s) ; c02165039.png ; $E X ^ { 2 n } < \infty$ ; confidence 0.974
  490. 1 duplicate(s) ; r08146017.png ; $g \mapsto ( \operatorname { det } g ) ^ { k } R ( g )$ ; confidence 0.974
  491. 1 duplicate(s) ; h04642087.png ; $L _ { \infty } ( \hat { G } )$ ; confidence 0.973
  492. 1 duplicate(s) ; s08633098.png ; $A \Phi \subset \Phi$ ; confidence 0.973
  493. 2 duplicate(s) ; r0773909.png ; $( \Xi , A )$ ; confidence 0.973
  494. 1 duplicate(s) ; g1102602.png ; $B M$ ; confidence 0.973
  495. 1 duplicate(s) ; g1200408.png ; $C = C _ { f , K } > 0$ ; confidence 0.973
  496. 1 duplicate(s) ; k05548012.png ; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973
  497. 1 duplicate(s) ; f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972
  498. 1 duplicate(s) ; t0931709.png ; $U , V \subset W$ ; confidence 0.972
  499. 1 duplicate(s) ; l06060030.png ; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972
  500. 2 duplicate(s) ; k11019034.png ; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972
  501. 1 duplicate(s) ; f0418904.png ; $D = \{ z \in C : | z | < 1 \}$ ; confidence 0.972
  502. 1 duplicate(s) ; m06556075.png ; $\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$ ; confidence 0.972
  503. 6 duplicate(s) ; h047940245.png ; $\Delta _ { q }$ ; confidence 0.971
  504. 1 duplicate(s) ; f04188062.png ; $V _ { 0 } ( z )$ ; confidence 0.971
  505. 2 duplicate(s) ; m0640004.png ; $\epsilon > 0$ ; confidence 0.971
  506. 1 duplicate(s) ; u09582032.png ; $u ( x ) = \operatorname { inf } \{ v ( x ) : v \in \Phi ( G , f ) \} =$ ; confidence 0.970
  507. 1 duplicate(s) ; c025350101.png ; $E _ { 1 } \rightarrow E _ { 1 }$ ; confidence 0.970
  508. 1 duplicate(s) ; s08300055.png ; $D _ { n } D _ { n } \theta = \theta$ ; confidence 0.970
  509. 2 duplicate(s) ; f041940314.png ; $L _ { p } ( X )$ ; confidence 0.970
  510. 1 duplicate(s) ; w097670153.png ; $\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$ ; confidence 0.970
  511. 1 duplicate(s) ; c0217608.png ; $p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$ ; confidence 0.970
  512. 1 duplicate(s) ; c02433093.png ; $L , R , S$ ; confidence 0.970
  513. 1 duplicate(s) ; a11008031.png ; $R ( s ) = | \frac { r ( s ) - \sqrt { 1 - s ^ { 2 } } } { r ( s ) + \sqrt { 1 - s ^ { 2 } } } | , \quad s \in [ - 1,1 ]$ ; confidence 0.969
  514. 1 duplicate(s) ; s08710024.png ; $\tau ( x ) \cup T ( A , X )$ ; confidence 0.968
  515. 1 duplicate(s) ; t09323012.png ; $H ^ { * } ( X , X \backslash x ; Z )$ ; confidence 0.968
  516. 1 duplicate(s) ; g04466023.png ; $A _ { 0 } = \mathfrak { A } _ { 0 }$ ; confidence 0.968
  517. 1 duplicate(s) ; w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968
  518. 1 duplicate(s) ; n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968
  519. 3 duplicate(s) ; g04381012.png ; $\overline { O } _ { k }$ ; confidence 0.968
  520. 1 duplicate(s) ; k05518015.png ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
  521. 1 duplicate(s) ; b13020051.png ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.967
  522. 9 duplicate(s) ; a130050230.png ; $A ^ { \# }$ ; confidence 0.967
  523. 1 duplicate(s) ; k05594016.png ; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966
  524. 1 duplicate(s) ; w13006030.png ; $V _ { g , n }$ ; confidence 0.966
  525. 1 duplicate(s) ; o07024025.png ; $- \beta V$ ; confidence 0.966
  526. 1 duplicate(s) ; w0977202.png ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.966
  527. 1 duplicate(s) ; t09466044.png ; $t \in [ - 1,1 ]$ ; confidence 0.966
  528. 1 duplicate(s) ; s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966
  529. 1 duplicate(s) ; b11056013.png ; $w _ { 2 } ( F )$ ; confidence 0.966
  530. 1 duplicate(s) ; s08696030.png ; $\| x _ { 0 } \| \leq \delta$ ; confidence 0.966
  531. 1 duplicate(s) ; g043020187.png ; $\delta : G ^ { \prime } \rightarrow W$ ; confidence 0.965
  532. 1 duplicate(s) ; s11004021.png ; $g ( \phi x , \phi Y ) = g ( X , Y ) - \eta ( X ) \eta ( Y )$ ; confidence 0.965
  533. 1 duplicate(s) ; s085400446.png ; $X \rightarrow \Delta [ 0 ]$ ; confidence 0.965
  534. 1 duplicate(s) ; m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965
  535. 1 duplicate(s) ; b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
  536. 1 duplicate(s) ; t093180232.png ; $k , r \in Z _ { + }$ ; confidence 0.965
  537. 1 duplicate(s) ; c02412065.png ; $J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$ ; confidence 0.964
  538. 1 duplicate(s) ; m06259061.png ; $\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$ ; confidence 0.964
  539. 1 duplicate(s) ; a01210023.png ; $| \alpha | = \sqrt { \overline { \alpha } \alpha }$ ; confidence 0.964
  540. 1 duplicate(s) ; r08232050.png ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$ ; confidence 0.964
  541. 1 duplicate(s) ; r11008062.png ; $\lambda _ { j , k }$ ; confidence 0.964
  542. 1 duplicate(s) ; c020280177.png ; $\underline { C } ( E ) = \operatorname { sup } C ( K )$ ; confidence 0.963
  543. 1 duplicate(s) ; d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.963
  544. 1 duplicate(s) ; a01300068.png ; $P _ { 0 } ( z )$ ; confidence 0.963
  545. 1 duplicate(s) ; m06514041.png ; $S _ { n }$ ; confidence 0.963
  546. 1 duplicate(s) ; c02646046.png ; $\{ x _ { k } \}$ ; confidence 0.963
  547. 1 duplicate(s) ; h120020104.png ; $P _ { - } \phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.963
  548. 1 duplicate(s) ; a01121023.png ; $x > 0 , x \gg 1$ ; confidence 0.963
  549. 1 duplicate(s) ; m11019012.png ; $u ( t , . )$ ; confidence 0.962
  550. 1 duplicate(s) ; e03555028.png ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.962
  551. 1 duplicate(s) ; l05941048.png ; $Q _ { 3 } ( b )$ ; confidence 0.962
  552. 1 duplicate(s) ; f04069072.png ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.962
  553. 1 duplicate(s) ; t1201505.png ; $\eta \in A \mapsto \xi \eta \in A$ ; confidence 0.962
  554. 1 duplicate(s) ; m063240300.png ; $F ^ { \prime } , F ^ { \prime \prime } \in S$ ; confidence 0.961
  555. 1 duplicate(s) ; l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
  556. 1 duplicate(s) ; c02683020.png ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
  557. 1 duplicate(s) ; i05073063.png ; $K \subset H$ ; confidence 0.959
  558. 2 duplicate(s) ; a01178066.png ; $p \in C$ ; confidence 0.958
  559. 1 duplicate(s) ; e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.958
  560. 1 duplicate(s) ; s086810108.png ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958
  561. 1 duplicate(s) ; e12023094.png ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
  562. 1 duplicate(s) ; x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
  563. 1 duplicate(s) ; o11003037.png ; $K _ { \omega }$ ; confidence 0.958
  564. 1 duplicate(s) ; p07416055.png ; $\rho = | y |$ ; confidence 0.958
  565. 1 duplicate(s) ; p07327037.png ; $q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$ ; confidence 0.958
  566. 1 duplicate(s) ; g120040165.png ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.957
  567. 4 duplicate(s) ; f1202105.png ; $| z | < r$ ; confidence 0.957
  568. 1 duplicate(s) ; c0262508.png ; $( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$ ; confidence 0.957
  569. 1 duplicate(s) ; p0724307.png ; $\epsilon \ll 1$ ; confidence 0.957
  570. 1 duplicate(s) ; b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956
  571. 2 duplicate(s) ; d03185095.png ; $x \neq \pm 1$ ; confidence 0.956
  572. 1 duplicate(s) ; s08711028.png ; $\delta < \alpha$ ; confidence 0.956
  573. 1 duplicate(s) ; w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
  574. 1 duplicate(s) ; g13003048.png ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956
  575. 1 duplicate(s) ; b01755034.png ; $| \mu _ { k } ( 0 ) = 1 ; \mu _ { i } ( 0 ) = 0 , i \neq k \}$ ; confidence 0.955
  576. 1 duplicate(s) ; h046420157.png ; $d g = d h d k$ ; confidence 0.955
  577. 2 duplicate(s) ; c02313036.png ; $A \mapsto H ^ { n } ( G , A )$ ; confidence 0.955
  578. 1 duplicate(s) ; a1104901.png ; $D = d / d t$ ; confidence 0.954
  579. 1 duplicate(s) ; i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
  580. 1 duplicate(s) ; e03708021.png ; $r > n$ ; confidence 0.953
  581. 1 duplicate(s) ; b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
  582. 1 duplicate(s) ; l0602207.png ; $\in \Theta$ ; confidence 0.953
  583. 1 duplicate(s) ; m06514010.png ; $f ( x | \mu , V )$ ; confidence 0.951
  584. 1 duplicate(s) ; m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
  585. 3 duplicate(s) ; d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950
  586. 1 duplicate(s) ; b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950
  587. 1 duplicate(s) ; k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
  588. 6 duplicate(s) ; c1101705.png ; $D _ { p }$ ; confidence 0.949
  589. 1 duplicate(s) ; c02448050.png ; $F _ { X } ( x | Y = y ) = \frac { 1 } { f _ { Y } ( y ) } \frac { \partial } { \partial y } F _ { X , Y } ( x , y )$ ; confidence 0.949
  590. 1 duplicate(s) ; t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
  591. 14 duplicate(s) ; b12014039.png ; $a ( z )$ ; confidence 0.948
  592. 1 duplicate(s) ; t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
  593. 1 duplicate(s) ; b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948
  594. 1 duplicate(s) ; r0825108.png ; $V ( \mu ) = \int \int _ { K \times K } E _ { n } ( x , y ) d \mu ( x ) d \mu ( y )$ ; confidence 0.948
  595. 1 duplicate(s) ; o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947
  596. 1 duplicate(s) ; f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
  597. 1 duplicate(s) ; c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
  598. 1 duplicate(s) ; s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
  599. 1 duplicate(s) ; t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946
  600. 1 duplicate(s) ; i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
  601. 9 duplicate(s) ; t09315093.png ; Missing ; confidence 0.945
  602. 1 duplicate(s) ; n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945
  603. 1 duplicate(s) ; d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945
  604. 13 duplicate(s) ; b130300112.png ; $F _ { m }$ ; confidence 0.945
  605. 1 duplicate(s) ; s08619099.png ; $GL ^ { + } ( n , R )$ ; confidence 0.945
  606. 2 duplicate(s) ; c02485065.png ; $A . B$ ; confidence 0.944
  607. 1 duplicate(s) ; e03581038.png ; $\Phi \Psi$ ; confidence 0.943
  608. 1 duplicate(s) ; h047930175.png ; $\pi _ { n } ( X , x _ { n } )$ ; confidence 0.943
  609. 1 duplicate(s) ; w097880164.png ; $L _ { 2 } ( [ - \pi , \pi ] )$ ; confidence 0.943
  610. 1 duplicate(s) ; s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
  611. 1 duplicate(s) ; r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941
  612. 1 duplicate(s) ; m120120128.png ; $C = Z ( Q )$ ; confidence 0.941
  613. 5 duplicate(s) ; m06327013.png ; $( X , \mathfrak { A } , \mu )$ ; confidence 0.941
  614. 1 duplicate(s) ; s08681011.png ; $\omega _ { k } ( f , \delta ) _ { q }$ ; confidence 0.941
  615. 1 duplicate(s) ; s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941
  616. 1 duplicate(s) ; n067520403.png ; $\omega _ { k } = \operatorname { min } | ( Q , \Lambda ) |$ ; confidence 0.940
  617. 1 duplicate(s) ; c02085014.png ; $= p ( x ; \lambda _ { 1 } + \ldots + \lambda _ { n } , \mu _ { 1 } + \ldots + \mu _ { n } )$ ; confidence 0.938
  618. 7 duplicate(s) ; b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938
  619. 1 duplicate(s) ; o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
  620. 1 duplicate(s) ; c1202706.png ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
  621. 1 duplicate(s) ; s087360182.png ; $F ( x ; \alpha )$ ; confidence 0.936
  622. 3 duplicate(s) ; m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936
  623. 1 duplicate(s) ; p07333012.png ; $d S _ { n }$ ; confidence 0.935
  624. 2 duplicate(s) ; f040850122.png ; $A \rightarrow w$ ; confidence 0.934
  625. 1 duplicate(s) ; h11020058.png ; $\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$ ; confidence 0.934
  626. 1 duplicate(s) ; d1203009.png ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
  627. 1 duplicate(s) ; d03206019.png ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933
  628. 1 duplicate(s) ; t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
  629. 1 duplicate(s) ; o070070113.png ; $[ \alpha - h , \alpha + h ]$ ; confidence 0.931
  630. 1 duplicate(s) ; b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931
  631. 1 duplicate(s) ; c1103309.png ; $p _ { i } \in S$ ; confidence 0.931
  632. 1 duplicate(s) ; h04831095.png ; $\alpha ( x , t )$ ; confidence 0.931
  633. 1 duplicate(s) ; c02389043.png ; $\{ d F _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.930
  634. 2 duplicate(s) ; h04774059.png ; $0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$ ; confidence 0.930
  635. 1 duplicate(s) ; d0300604.png ; $C ^ { 1 } ( - \infty , + \infty )$ ; confidence 0.930
  636. 1 duplicate(s) ; w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
  637. 1 duplicate(s) ; a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
  638. 1 duplicate(s) ; r081460129.png ; $V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$ ; confidence 0.929
  639. 1 duplicate(s) ; r080060177.png ; $\{ r _ { n } + r _ { n } ^ { \prime } \}$ ; confidence 0.928
  640. 5 duplicate(s) ; b1104909.png ; $P _ { 1 }$ ; confidence 0.928
  641. 1 duplicate(s) ; m06530022.png ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927
  642. 1 duplicate(s) ; q076820199.png ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925
  643. 1 duplicate(s) ; m13026039.png ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.925
  644. 1 duplicate(s) ; g04328069.png ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924
  645. 1 duplicate(s) ; a13014012.png ; $d _ { 2 } ( f ( x ) , f ( y ) ) = r$ ; confidence 0.923
  646. 1 duplicate(s) ; j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
  647. 1 duplicate(s) ; i05043015.png ; $m = 0 , \dots , r$ ; confidence 0.922
  648. 2 duplicate(s) ; f110160161.png ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
  649. 1 duplicate(s) ; i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
  650. 1 duplicate(s) ; f04117058.png ; $| D ^ { \alpha } \eta _ { k } ( x ; y ) | \leq c _ { \alpha }$ ; confidence 0.921
  651. 1 duplicate(s) ; l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
  652. 1 duplicate(s) ; a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.921
  653. 1 duplicate(s) ; n06690095.png ; $\rightarrow H ^ { 1 } ( G , B ) \rightarrow H ^ { 1 } ( G , A )$ ; confidence 0.920
  654. 1 duplicate(s) ; p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
  655. 1 duplicate(s) ; t12006058.png ; $N \geq Z$ ; confidence 0.919
  656. 1 duplicate(s) ; a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.919
  657. 1 duplicate(s) ; c11013026.png ; $f \in C ^ { k }$ ; confidence 0.918
  658. 2 duplicate(s) ; f0382203.png ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
  659. 1 duplicate(s) ; b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
  660. 1 duplicate(s) ; d03340011.png ; $\phi ( x , t ) = A \operatorname { exp } ( i k x - i \omega t )$ ; confidence 0.916
  661. 1 duplicate(s) ; a11059012.png ; $( n - L _ { n } ^ { \prime } , S _ { n } )$ ; confidence 0.916
  662. 1 duplicate(s) ; b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
  663. 1 duplicate(s) ; b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
  664. 1 duplicate(s) ; q12002040.png ; $\{ \lambda _ { 1 } , \lambda _ { 2 } \}$ ; confidence 0.913
  665. 1 duplicate(s) ; g04347036.png ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
  666. 1 duplicate(s) ; b0173701.png ; $\frac { d x } { d t } = f ( t , x ) , \quad t \in J , \quad x \in R ^ { n }$ ; confidence 0.913
  667. 1 duplicate(s) ; l05798044.png ; $H ^ { p , q } ( X )$ ; confidence 0.913
  668. 5 duplicate(s) ; t093150515.png ; $( C , F )$ ; confidence 0.913
  669. 1 duplicate(s) ; o06853056.png ; $R ( x , u ) = \phi _ { x } f ( x , u ) - f ^ { 0 } ( x , u )$ ; confidence 0.912
  670. 1 duplicate(s) ; r082160280.png ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
  671. 1 duplicate(s) ; d032130352.png ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
  672. 1 duplicate(s) ; a13008083.png ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
  673. 1 duplicate(s) ; v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
  674. 1 duplicate(s) ; h046420200.png ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
  675. 1 duplicate(s) ; i12005098.png ; $e ^ { s } ( T , V )$ ; confidence 0.909
  676. 1 duplicate(s) ; b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909
  677. 1 duplicate(s) ; e1300704.png ; $S = o ( \# A )$ ; confidence 0.908
  678. 4 duplicate(s) ; b13002056.png ; $x \in J$ ; confidence 0.908
  679. 1 duplicate(s) ; m06419041.png ; $- \sum _ { i = 1 } ^ { n } b _ { i } ( x , t ) \mathfrak { u } _ { i } - c ( x , t ) u = f ( x , t ) , \quad ( x , t ) \in D$ ; confidence 0.907
  680. 1 duplicate(s) ; d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
  681. 1 duplicate(s) ; g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
  682. 1 duplicate(s) ; p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
  683. 1 duplicate(s) ; r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905
  684. 1 duplicate(s) ; n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
  685. 1 duplicate(s) ; u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905
  686. 1 duplicate(s) ; g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
  687. 1 duplicate(s) ; s09076059.png ; $p ( \alpha )$ ; confidence 0.904
  688. 1 duplicate(s) ; e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
  689. 2 duplicate(s) ; a014090276.png ; $\dot { x } = A x + B u , \quad y = C x$ ; confidence 0.904
  690. 8 duplicate(s) ; c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903
  691. 1 duplicate(s) ; i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
  692. 1 duplicate(s) ; e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
  693. 1 duplicate(s) ; f04142062.png ; $D ( x , s ; \lambda ) = \sum _ { m = 0 } ^ { \infty } \frac { ( - 1 ) ^ { m } } { m ! } B _ { m } ( x , s ) \lambda ^ { m }$ ; confidence 0.902
  694. 1 duplicate(s) ; p0756806.png ; $( k a , b ) = k ( a , b )$ ; confidence 0.901
  695. 3 duplicate(s) ; n06794014.png ; $N > 5$ ; confidence 0.901
  696. 3 duplicate(s) ; a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
  697. 1 duplicate(s) ; a13013013.png ; $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ ; confidence 0.900
  698. 1 duplicate(s) ; b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
  699. 1 duplicate(s) ; b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900
  700. 2 duplicate(s) ; w12007015.png ; $q$ ; confidence 0.899
  701. 1 duplicate(s) ; e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
  702. 4 duplicate(s) ; l058360168.png ; $x$ ; confidence 0.899
  703. 1 duplicate(s) ; d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
  704. 1 duplicate(s) ; h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
  705. 1 duplicate(s) ; r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
  706. 3 duplicate(s) ; c02055049.png ; $1$ ; confidence 0.897
  707. 1 duplicate(s) ; f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897
  708. 1 duplicate(s) ; z0992701.png ; $\mathfrak { A } = \langle A , \Omega \}$ ; confidence 0.897
  709. 1 duplicate(s) ; c020740331.png ; $\operatorname { Set } ( E , V ( A ) ) \cong \operatorname { Ring } ( F E , A )$ ; confidence 0.896
  710. 1 duplicate(s) ; b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
  711. 5 duplicate(s) ; c11048046.png ; $D ^ { \perp }$ ; confidence 0.893
  712. 1 duplicate(s) ; s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
  713. 1 duplicate(s) ; c02490030.png ; $q = p ^ { r }$ ; confidence 0.892
  714. 1 duplicate(s) ; h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
  715. 1 duplicate(s) ; c022780356.png ; $\Omega$ ; confidence 0.892
  716. 1 duplicate(s) ; c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
  717. 1 duplicate(s) ; f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
  718. 1 duplicate(s) ; b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
  719. 1 duplicate(s) ; a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
  720. 1 duplicate(s) ; e03579047.png ; $\gamma ^ { - 1 } ( \operatorname { Th } ( \mathfrak { M } , \nu ) ) \in \Delta _ { 1 } ^ { 1 , A }$ ; confidence 0.888
  721. 1 duplicate(s) ; v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887
  722. 1 duplicate(s) ; p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
  723. 1 duplicate(s) ; w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
  724. 1 duplicate(s) ; r08018011.png ; $C _ { c } ^ { * } ( R , S )$ ; confidence 0.886
  725. 1 duplicate(s) ; v0966506.png ; $n \geq 12$ ; confidence 0.886
  726. 1 duplicate(s) ; w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
  727. 1 duplicate(s) ; f11015067.png ; $t \subset v$ ; confidence 0.885
  728. 6 duplicate(s) ; c12019044.png ; $T ( M )$ ; confidence 0.884
  729. 2 duplicate(s) ; m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883
  730. 1 duplicate(s) ; d03321033.png ; $P ( 2 | 1 ; R ) = \int _ { R _ { 2 } } p _ { 1 } ( x ) d x , \quad P ( 1 | 2 ; R ) = \int _ { R _ { 1 } } p _ { 2 } ( x ) d x$ ; confidence 0.882
  731. 1 duplicate(s) ; l11014038.png ; $\epsilon$ ; confidence 0.882
  732. 1 duplicate(s) ; c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882
  733. 1 duplicate(s) ; s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
  734. 1 duplicate(s) ; h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
  735. 1 duplicate(s) ; y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
  736. 1 duplicate(s) ; d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
  737. 1 duplicate(s) ; t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
  738. 1 duplicate(s) ; l12006098.png ; $H \phi$ ; confidence 0.878
  739. 2 duplicate(s) ; c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
  740. 1 duplicate(s) ; c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
  741. 1 duplicate(s) ; f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
  742. 1 duplicate(s) ; n067520250.png ; $d j \neq 0$ ; confidence 0.877
  743. 1 duplicate(s) ; g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
  744. 1 duplicate(s) ; a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
  745. 1 duplicate(s) ; i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
  746. 1 duplicate(s) ; m06444056.png ; $c = 0$ ; confidence 0.874
  747. 1 duplicate(s) ; s13051051.png ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \cup _ { i < m } N _ { i } \}$ ; confidence 0.874
  748. 1 duplicate(s) ; s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874
  749. 1 duplicate(s) ; c0220805.png ; $t \geq t _ { 0 } , \quad \sum _ { s = 1 } ^ { n } x _ { s } ^ { 2 } < A$ ; confidence 0.873
  750. 1 duplicate(s) ; s0870008.png ; $i = 2 , \dots , N - 1$ ; confidence 0.872
  751. 1 duplicate(s) ; d034120197.png ; $\operatorname { Ext } _ { \Psi } ^ { n - p } ( X ; F , \Omega )$ ; confidence 0.872
  752. 2 duplicate(s) ; b11033038.png ; $P ^ { \prime }$ ; confidence 0.871
  753. 1 duplicate(s) ; c02296023.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ Y / i ( X ) , K ] \leftarrow [ C _ { 1 } , K ]$ ; confidence 0.871
  754. 1 duplicate(s) ; b11069080.png ; $M _ { A g }$ ; confidence 0.870
  755. 1 duplicate(s) ; d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
  756. 1 duplicate(s) ; c02095042.png ; $\frac { \partial ^ { k } u } { \partial \nu ^ { k } } | _ { S } = \phi _ { k } , \quad 0 \leq k \leq m - 1$ ; confidence 0.870
  757. 1 duplicate(s) ; w09816057.png ; $Y \times X$ ; confidence 0.869
  758. 1 duplicate(s) ; t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
  759. 1 duplicate(s) ; b11091022.png ; $( v _ { 5 } , v _ { 6 } ) \rightarrow ( v _ { 1 } , v _ { 2 } )$ ; confidence 0.869
  760. 1 duplicate(s) ; p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
  761. 1 duplicate(s) ; u09543074.png ; $U _ { \partial } = \{ z = x + i y \in C ^ { n } : | x - x ^ { 0 } | < r , \square y = y ^ { 0 } \}$ ; confidence 0.867
  762. 1 duplicate(s) ; i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
  763. 1 duplicate(s) ; d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
  764. 2 duplicate(s) ; t1201406.png ; $( \gamma _ { j } - k ) j , k \geq 0$ ; confidence 0.866
  765. 1 duplicate(s) ; d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
  766. 1 duplicate(s) ; m0627602.png ; $\frac { d ^ { 2 } u } { d z ^ { 2 } } + ( \alpha + 16 q \operatorname { cos } 2 z ) u = 0 , \quad z \in R$ ; confidence 0.865
  767. 1 duplicate(s) ; s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864
  768. 1 duplicate(s) ; s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864
  769. 1 duplicate(s) ; t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864
  770. 2 duplicate(s) ; a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
  771. 1 duplicate(s) ; c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
  772. 1 duplicate(s) ; k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
  773. 1 duplicate(s) ; n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
  774. 1 duplicate(s) ; m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
  775. 1 duplicate(s) ; e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
  776. 1 duplicate(s) ; l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
  777. 1 duplicate(s) ; p075660195.png ; $P \in S _ { \rho , \delta } ^ { m }$ ; confidence 0.857
  778. 1 duplicate(s) ; b11057024.png ; $G , F \in C ^ { \infty } ( R ^ { 2 n } )$ ; confidence 0.854
  779. 1 duplicate(s) ; l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
  780. 1 duplicate(s) ; m06228020.png ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ { f } , K ]$ ; confidence 0.850
  781. 1 duplicate(s) ; c02278052.png ; $N \gg n$ ; confidence 0.849
  782. 1 duplicate(s) ; a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847
  783. 1 duplicate(s) ; a11058047.png ; $= v : q$ ; confidence 0.846
  784. 1 duplicate(s) ; f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846
  785. 1 duplicate(s) ; c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
  786. 1 duplicate(s) ; i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
  787. 1 duplicate(s) ; r0820705.png ; $l , k , i , q = 1 , \dots , n$ ; confidence 0.841
  788. 1 duplicate(s) ; e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
  789. 23 duplicate(s) ; c020740328.png ; $e \in E$ ; confidence 0.839
  790. 1 duplicate(s) ; f04195012.png ; $T ( r , f )$ ; confidence 0.839
  791. 1 duplicate(s) ; m06359032.png ; $T ( p , p ) : T ( p , p ) \rightarrow R$ ; confidence 0.839
  792. 1 duplicate(s) ; l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837
  793. 1 duplicate(s) ; f041060128.png ; $( \zeta , \eta )$ ; confidence 0.835
  794. 2 duplicate(s) ; b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
  795. 1 duplicate(s) ; e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834
  796. 1 duplicate(s) ; a011650252.png ; $\forall x _ { k }$ ; confidence 0.834
  797. 1 duplicate(s) ; b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
  798. 2 duplicate(s) ; l05877024.png ; $( g , m \in G )$ ; confidence 0.833
  799. 10 duplicate(s) ; a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
  800. 1 duplicate(s) ; w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
  801. 1 duplicate(s) ; b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
  802. 1 duplicate(s) ; a014140103.png ; $\overline { \psi } ( s , \alpha ) = s$ ; confidence 0.830
  803. 1 duplicate(s) ; b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
  804. 1 duplicate(s) ; d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
  805. 1 duplicate(s) ; s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
  806. 1 duplicate(s) ; i05107038.png ; $= \operatorname { min } \operatorname { max } \{ I ( R : P ) , I ( R : Q ) \}$ ; confidence 0.827
  807. 2 duplicate(s) ; p0758301.png ; $a \vee b$ ; confidence 0.827
  808. 1 duplicate(s) ; o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826
  809. 2 duplicate(s) ; s085590585.png ; $\| x \| = \rho$ ; confidence 0.826
  810. 1 duplicate(s) ; b0168302.png ; $\frac { \partial f } { \partial t } + \langle c , \nabla _ { x } f \rangle = \frac { 1 } { \epsilon } L ( f , f )$ ; confidence 0.825
  811. 1 duplicate(s) ; p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
  812. 1 duplicate(s) ; d03177037.png ; $\frac { d \eta _ { 1 } } { d t } = f _ { X } ( t , x ( t , 0 ) , 0 ) \eta _ { 1 } + f _ { \mu } ( t , x ( t , 0 ) , 0 )$ ; confidence 0.823
  813. 1 duplicate(s) ; m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
  814. 1 duplicate(s) ; s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
  815. 1 duplicate(s) ; b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822
  816. 1 duplicate(s) ; l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
  817. 1 duplicate(s) ; r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
  818. 1 duplicate(s) ; e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820
  819. 1 duplicate(s) ; c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819
  820. 1 duplicate(s) ; c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818
  821. 1 duplicate(s) ; c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
  822. 3 duplicate(s) ; l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
  823. 1 duplicate(s) ; r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817
  824. 3 duplicate(s) ; i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817
  825. 1 duplicate(s) ; a01243088.png ; $f$ ; confidence 0.816
  826. 1 duplicate(s) ; s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815
  827. 1 duplicate(s) ; c02642013.png ; $R ( x _ { 0 } ) = \operatorname { inf } \{ R ( x , f ) : f \in \mathfrak { M } \}$ ; confidence 0.815
  828. 1 duplicate(s) ; s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814
  829. 2 duplicate(s) ; n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814
  830. 1 duplicate(s) ; b11012011.png ; $\emptyset , X \in L$ ; confidence 0.814
  831. 3 duplicate(s) ; f12009069.png ; $F \mu$ ; confidence 0.813
  832. 1 duplicate(s) ; r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812
  833. 1 duplicate(s) ; m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811
  834. 1 duplicate(s) ; r08116074.png ; $t + \tau$ ; confidence 0.811
  835. 1 duplicate(s) ; i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
  836. 1 duplicate(s) ; a01367015.png ; $\sum _ { n = 0 } ^ { \infty } \psi _ { n } ( x ) , \quad \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \phi _ { n } ( x )$ ; confidence 0.809
  837. 1 duplicate(s) ; q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809
  838. 1 duplicate(s) ; w097670218.png ; $[ g , g ] = c$ ; confidence 0.808
  839. 1 duplicate(s) ; b11023028.png ; $\tilde { \alpha } _ { i } , \overline { \beta } _ { j } \in \Sigma$ ; confidence 0.808
  840. 1 duplicate(s) ; h047930299.png ; $Z / p$ ; confidence 0.808
  841. 3 duplicate(s) ; f0412903.png ; $u = u ( x , t )$ ; confidence 0.808
  842. 1 duplicate(s) ; t09401026.png ; $( t _ { 2 } , x _ { 2 } ^ { 1 } , \ldots , x _ { 2 } ^ { n } )$ ; confidence 0.805
  843. 15 duplicate(s) ; q07680012.png ; $T ^ { S }$ ; confidence 0.805
  844. 3 duplicate(s) ; d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805
  845. 1 duplicate(s) ; a110680200.png ; $r$ ; confidence 0.805
  846. 1 duplicate(s) ; a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805
  847. 3 duplicate(s) ; e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802
  848. 1 duplicate(s) ; l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802
  849. 1 duplicate(s) ; p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802
  850. 4 duplicate(s) ; p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801
  851. 1 duplicate(s) ; c02094024.png ; $\operatorname { det } X ( \theta , \tau ) = \operatorname { exp } \int ^ { \theta } \operatorname { tr } A ( \xi ) d \xi$ ; confidence 0.801
  852. 2 duplicate(s) ; f03838022.png ; $C _ { 0 }$ ; confidence 0.800
  853. 1 duplicate(s) ; w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799
  854. 1 duplicate(s) ; c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799
  855. 7 duplicate(s) ; l058360142.png ; $P _ { 8 }$ ; confidence 0.799
  856. 1 duplicate(s) ; h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798
  857. 1 duplicate(s) ; c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798
  858. 1 duplicate(s) ; i05065043.png ; $B _ { 1 } , \ldots , B _ { m / 2 }$ ; confidence 0.797
  859. 1 duplicate(s) ; n06717041.png ; $\frac { \partial u } { \partial t } + \sum _ { i = 1 } ^ { n } \frac { \partial } { \partial x _ { i } } \phi _ { i } ( t , x , u ) + \psi ( t , x , u ) = 0$ ; confidence 0.796
  860. 1 duplicate(s) ; p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795
  861. 1 duplicate(s) ; m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795
  862. 2 duplicate(s) ; e037040152.png ; $( \theta _ { i j } ) _ { i , j = 1 } ^ { n }$ ; confidence 0.795
  863. 1 duplicate(s) ; s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795
  864. 1 duplicate(s) ; r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794
  865. 1 duplicate(s) ; h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793
  866. 1 duplicate(s) ; c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
  867. 1 duplicate(s) ; a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793
  868. 1 duplicate(s) ; g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792
  869. 1 duplicate(s) ; h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
  870. 1 duplicate(s) ; t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
  871. 1 duplicate(s) ; e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789
  872. 2 duplicate(s) ; s0902702.png ; $\alpha < t < b$ ; confidence 0.786
  873. 1 duplicate(s) ; p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
  874. 1 duplicate(s) ; q076080281.png ; $R ( q , b ) = \frac { \pi ^ { n / 2 } b ^ { n / 2 - 1 } } { \Gamma ( n / 2 ) d ( q ) } H ( q , b ) + O ( b ^ { ( n - 1 ) / 4 + \epsilon } )$ ; confidence 0.785
  875. 1 duplicate(s) ; b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
  876. 1 duplicate(s) ; s08755022.png ; $\alpha \leq p b$ ; confidence 0.784
  877. 1 duplicate(s) ; c1203104.png ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x$ ; confidence 0.783
  878. 3 duplicate(s) ; n06659068.png ; $( \underline { \theta } , \overline { \theta } )$ ; confidence 0.783
  879. 1 duplicate(s) ; n06649013.png ; $N ( r , \alpha , f ) = \int _ { 0 } ^ { r } \frac { n ( t , \alpha , f ) - n ( 0 , \alpha , f ) } { t } d t + n ( 0 , \alpha , f ) \operatorname { ln } r$ ; confidence 0.780
  880. 1 duplicate(s) ; t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779
  881. 1 duplicate(s) ; i05255029.png ; $\omega ^ { p + 1 } , \ldots , \omega ^ { n }$ ; confidence 0.778
  882. 1 duplicate(s) ; r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777
  883. 16 duplicate(s) ; b11061011.png ; $K ^ { * }$ ; confidence 0.777
  884. 1 duplicate(s) ; n06634090.png ; $x \in V _ { n }$ ; confidence 0.777
  885. 1 duplicate(s) ; f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777
  886. 1 duplicate(s) ; c1202604.png ; $\{ ( x _ { j } , t _ { n } ) : x _ { j } = j h , t _ { n } = n k , 0 \leq j \leq J , 0 \leq n \leq N \}$ ; confidence 0.777
  887. 1 duplicate(s) ; l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
  888. 1 duplicate(s) ; s087420100.png ; $( 1 , \dots , k )$ ; confidence 0.776
  889. 1 duplicate(s) ; q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775
  890. 1 duplicate(s) ; i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
  891. 1 duplicate(s) ; t13014089.png ; $Q _ { 0 } = \{ 1 , \dots , n \}$ ; confidence 0.774
  892. 1 duplicate(s) ; r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773
  893. 2 duplicate(s) ; c11042035.png ; $( S , < )$ ; confidence 0.772
  894. 1 duplicate(s) ; i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769
  895. 1 duplicate(s) ; n0660601.png ; $x = s + \ldots , \quad y = \frac { k _ { 1 } } { 2 } s ^ { 2 } + \ldots , \quad z = \frac { k _ { 1 } k _ { 2 } } { 6 } s ^ { 3 } +$ ; confidence 0.769
  896. 1 duplicate(s) ; v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768
  897. 1 duplicate(s) ; s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766
  898. 1 duplicate(s) ; a12023021.png ; $\alpha _ { k } = \int _ { \Gamma } \frac { f ( \zeta ) d \zeta } { \zeta ^ { k + 1 } } , \quad k = 0,1$ ; confidence 0.766
  899. 1 duplicate(s) ; i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
  900. 2 duplicate(s) ; t09386023.png ; $P ( S )$ ; confidence 0.765
  901. 1 duplicate(s) ; s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763
  902. 2 duplicate(s) ; h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763
  903. 1 duplicate(s) ; c02165035.png ; $\hat { \mu } \square _ { X } ^ { ( r ) } ( t ) = \int _ { - \infty } ^ { \infty } ( i x ) ^ { r } e ^ { i t x } d \mu _ { X } ( x ) , \quad t \in R ^ { 1 }$ ; confidence 0.762
  904. 1 duplicate(s) ; c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760
  905. 1 duplicate(s) ; m0631205.png ; $u _ { t } \in U , \quad t = 0 , \dots , T$ ; confidence 0.760
  906. 1 duplicate(s) ; e03623076.png ; $2 d \geq n$ ; confidence 0.758
  907. 1 duplicate(s) ; q12007037.png ; $k ( E , F , g , g ^ { - 1 } )$ ; confidence 0.756
  908. 1 duplicate(s) ; l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
  909. 1 duplicate(s) ; s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754
  910. 1 duplicate(s) ; a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754
  911. 1 duplicate(s) ; j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
  912. 1 duplicate(s) ; c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753
  913. 1 duplicate(s) ; d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752
  914. 1 duplicate(s) ; b11029081.png ; $p _ { 1 } , \dots , p _ { 4 }$ ; confidence 0.747
  915. 1 duplicate(s) ; c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
  916. 1 duplicate(s) ; p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746
  917. 1 duplicate(s) ; b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
  918. 2 duplicate(s) ; f041940175.png ; $S \subset T$ ; confidence 0.743
  919. 1 duplicate(s) ; g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743
  920. 1 duplicate(s) ; r0777407.png ; $F ( u ) = - \lambda ( u - \frac { u ^ { 2 } } { 3 } ) , \quad \lambda =$ ; confidence 0.743
  921. 1 duplicate(s) ; p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743
  922. 1 duplicate(s) ; m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
  923. 3 duplicate(s) ; i05031095.png ; $( i = 1 , \dots , n )$ ; confidence 0.741
  924. 1 duplicate(s) ; e03640030.png ; $2 - 2 g - l$ ; confidence 0.741
  925. 1 duplicate(s) ; n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740
  926. 1 duplicate(s) ; n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739
  927. 1 duplicate(s) ; a012430100.png ; $I Y \subset O$ ; confidence 0.739
  928. 1 duplicate(s) ; m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738
  929. 1 duplicate(s) ; e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738
  930. 5 duplicate(s) ; i05023059.png ; $1 < m \leq n$ ; confidence 0.737
  931. 1 duplicate(s) ; b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
  932. 1 duplicate(s) ; c023150258.png ; $\beta \in O _ { S } ( 1 ; Z _ { p } , Z _ { p } )$ ; confidence 0.734
  933. 2 duplicate(s) ; l05718018.png ; $x g$ ; confidence 0.734
  934. 1 duplicate(s) ; s11024048.png ; $k < k _ { c } = \sqrt { - ( \frac { \partial ^ { 2 } f } { \partial c ^ { 2 } } ) _ { T , c = c } / K }$ ; confidence 0.732
  935. 1 duplicate(s) ; b11075050.png ; $B ( R , < , > )$ ; confidence 0.731
  936. 1 duplicate(s) ; m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731
  937. 1 duplicate(s) ; f040230221.png ; $x \in ( n , n + 1 ]$ ; confidence 0.729
  938. 1 duplicate(s) ; b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.727
  939. 2 duplicate(s) ; e03703035.png ; $H ^ { 2 } ( R , I )$ ; confidence 0.726
  940. 1 duplicate(s) ; p07253081.png ; $d f ^ { j }$ ; confidence 0.726
  941. 2 duplicate(s) ; b12002043.png ; $\alpha _ { n , F } \circ Q + \beta _ { n , F }$ ; confidence 0.726
  942. 1 duplicate(s) ; l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725
  943. 1 duplicate(s) ; b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
  944. 1 duplicate(s) ; b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
  945. 1 duplicate(s) ; i12006014.png ; $x < \varrho y$ ; confidence 0.723
  946. 1 duplicate(s) ; b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
  947. 1 duplicate(s) ; b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
  948. 1 duplicate(s) ; s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719
  949. 1 duplicate(s) ; c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718
  950. 1 duplicate(s) ; b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
  951. 1 duplicate(s) ; l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
  952. 1 duplicate(s) ; r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716
  953. 1 duplicate(s) ; a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.716
  954. 1 duplicate(s) ; q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716
  955. 1 duplicate(s) ; b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
  956. 1 duplicate(s) ; s08652091.png ; $| T | _ { p }$ ; confidence 0.714
  957. 41 duplicate(s) ; d03002056.png ; $D x$ ; confidence 0.713
  958. 1 duplicate(s) ; r08201023.png ; Missing ; confidence 0.713
  959. 1 duplicate(s) ; e13006038.png ; $C ( Z \times S Y , X ) \cong C ( Z , C ( Y , X ) )$ ; confidence 0.712
  960. 1 duplicate(s) ; l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
  961. 1 duplicate(s) ; t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
  962. 1 duplicate(s) ; t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710
  963. 1 duplicate(s) ; d13008018.png ; $D _ { \xi } = D ( \xi , R ) : = \{ z \in \Delta : \frac { | 1 - z \overline { \xi } | ^ { 2 } } { 1 - | z | ^ { 2 } } < R \}$ ; confidence 0.704
  964. 1 duplicate(s) ; f0412109.png ; $A / \eta$ ; confidence 0.702
  965. 1 duplicate(s) ; d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702
  966. 1 duplicate(s) ; a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701
  967. 1 duplicate(s) ; p0739106.png ; $\langle A x , x \} > 0$ ; confidence 0.699
  968. 1 duplicate(s) ; s09045015.png ; $\int [ 0 , t ] X \circ d X = ( 1 / 2 ) X ^ { 2 } ( t )$ ; confidence 0.698
  969. 2 duplicate(s) ; p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697
  970. 1 duplicate(s) ; s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696
  971. 1 duplicate(s) ; h047410122.png ; $H ^ { q } ( G , K ) = 0$ ; confidence 0.692
  972. 1 duplicate(s) ; h04628092.png ; $\rho _ { 1 } ^ { - 1 } , \ldots , \rho _ { k } ^ { - 1 }$ ; confidence 0.691
  973. 1 duplicate(s) ; c020890133.png ; $W ( \zeta _ { 0 } ; \epsilon , \alpha _ { 0 } ) = \frac { 1 } { 2 \pi i } [ \int _ { \Gamma } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - z } - \int _ { \Gamma _ { \epsilon } } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - \zeta _ { 0 } } ]$ ; confidence 0.690
  974. 1 duplicate(s) ; a12012049.png ; $x ^ { \prime } > x$ ; confidence 0.689
  975. 1 duplicate(s) ; p07486068.png ; $| f ( \zeta _ { 1 } ) - f ( \zeta _ { 2 } ) | < C | \zeta _ { 1 } - \zeta _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.689
  976. 3 duplicate(s) ; c02338044.png ; $x 0$ ; confidence 0.689
  977. 1 duplicate(s) ; a11066057.png ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
  978. 1 duplicate(s) ; c0254401.png ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
  979. 4 duplicate(s) ; f04058030.png ; $| X$ ; confidence 0.687
  980. 1 duplicate(s) ; d032910104.png ; $v ( x ) \geq \phi ( x _ { 0 } ) , \quad x \in D , x \rightarrow x _ { 0 } ; \quad H \square _ { \phi } = \overline { H }$ ; confidence 0.686
  981. 1 duplicate(s) ; q07619018.png ; $\sigma ( x ) = \prod _ { j = 1 } ^ { m } ( x - a _ { j } ) , \quad \omega ( x ) = \prod _ { j = 1 } ^ { n } ( x - x _ { j } )$ ; confidence 0.685
  982. 1 duplicate(s) ; b11085096.png ; $\langle f _ { 1 } , f _ { 2 } \rangle = \frac { 1 } { | G | } \sum _ { g \in G } f _ { 1 } ( g ) f _ { 2 } ( g ^ { - 1 } )$ ; confidence 0.684
  983. 1 duplicate(s) ; i050230430.png ; $l = 2,3 , \dots$ ; confidence 0.683
  984. 1 duplicate(s) ; k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
  985. 1 duplicate(s) ; i12008047.png ; $m s$ ; confidence 0.683
  986. 1 duplicate(s) ; e12023072.png ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
  987. 1 duplicate(s) ; s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
  988. 1 duplicate(s) ; h04744011.png ; $\lambda _ { 4 n }$ ; confidence 0.681
  989. 1 duplicate(s) ; a01303027.png ; $\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$ ; confidence 0.679
  990. 1 duplicate(s) ; l059490130.png ; $z _ { 1 } ( t ) , \ldots , z _ { d } ( t )$ ; confidence 0.679
  991. 1 duplicate(s) ; s08672038.png ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678
  992. 1 duplicate(s) ; p07289041.png ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676
  993. 1 duplicate(s) ; f04039058.png ; $F ^ { 2 } ( x , y ) = g _ { j } ( x , y ) y ^ { i } y ^ { j } , \quad y _ { i } = \frac { 1 } { 2 } \frac { \partial F ^ { 2 } ( x , y ) } { \partial y ^ { i } }$ ; confidence 0.675
  994. 1 duplicate(s) ; r082200179.png ; $\rho _ { M _ { 1 } } ( X , Y ) \geq \rho _ { M _ { 2 } } ( \phi ( X ) , \phi ( Y ) )$ ; confidence 0.675
  995. 1 duplicate(s) ; d0339906.png ; $y ( x ) = ( y _ { 1 } ( x ) , \ldots , y _ { n } ( x ) ) ^ { T }$ ; confidence 0.674
  996. 1 duplicate(s) ; p07374027.png ; $( \xi ) _ { R }$ ; confidence 0.672
  997. 1 duplicate(s) ; w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
  998. 1 duplicate(s) ; m06544063.png ; $i = 1 , \dots , l ( e )$ ; confidence 0.671
  999. 1 duplicate(s) ; d03233032.png ; $r \in F$ ; confidence 0.671
  1000. 1 duplicate(s) ; b01756018.png ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
  1001. 1 duplicate(s) ; c02176012.png ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
  1002. 1 duplicate(s) ; p07535026.png ; $S , q$ ; confidence 0.670
  1003. 1 duplicate(s) ; l06016034.png ; $\alpha = E X _ { 1 }$ ; confidence 0.670
  1004. 1 duplicate(s) ; s08694070.png ; $\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$ ; confidence 0.669
  1005. 1 duplicate(s) ; h046010104.png ; $m \geq 3$ ; confidence 0.668
  1006. 1 duplicate(s) ; t09424015.png ; $\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$ ; confidence 0.667
  1007. 2 duplicate(s) ; b01734029.png ; $C _ { \alpha }$ ; confidence 0.664
  1008. 1 duplicate(s) ; c02237063.png ; $Q / Z$ ; confidence 0.664
  1009. 1 duplicate(s) ; p07472020.png ; $\Gamma _ { F }$ ; confidence 0.663
  1010. 3 duplicate(s) ; s086650167.png ; $Z _ { 24 }$ ; confidence 0.663
  1011. 2 duplicate(s) ; a01095099.png ; $X = \xi ^ { i }$ ; confidence 0.662
  1012. 1 duplicate(s) ; k0553509.png ; $V = H _ { 2 k + 1 } ( M ; Z )$ ; confidence 0.661
  1013. 1 duplicate(s) ; t09260017.png ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.660
  1014. 1 duplicate(s) ; l06082028.png ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
  1015. 2 duplicate(s) ; c02502055.png ; $r \uparrow 1$ ; confidence 0.659
  1016. 1 duplicate(s) ; a01212040.png ; $\alpha _ { i } + 1$ ; confidence 0.659
  1017. 1 duplicate(s) ; i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659
  1018. 2 duplicate(s) ; w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.658
  1019. 1 duplicate(s) ; n12011031.png ; $x \in K$ ; confidence 0.658
  1020. 1 duplicate(s) ; g04364030.png ; $K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$ ; confidence 0.655
  1021. 1 duplicate(s) ; l05858097.png ; $Q = Q ( x ^ { i } , y _ { j } ^ { \ell } )$ ; confidence 0.653
  1022. 1 duplicate(s) ; g044350152.png ; $\{ m _ { 1 } ( F , \Lambda ) \} ^ { n } \frac { \Delta ( C _ { F } ) } { d ( \Lambda ) } \leq 1$ ; confidence 0.652
  1023. 2 duplicate(s) ; s120150139.png ; $\varphi H G$ ; confidence 0.652
  1024. 1 duplicate(s) ; b01661046.png ; $\vec { u } = A _ { j } ^ { i } u ^ { j }$ ; confidence 0.648
  1025. 1 duplicate(s) ; e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.648
  1026. 1 duplicate(s) ; s08558099.png ; $\psi ( t ) = a * ( t ) g ( t ) +$ ; confidence 0.645
  1027. 1 duplicate(s) ; s09027020.png ; $L ^ { * } L X ( t ) = 0 , \quad \alpha < t < b$ ; confidence 0.644
  1028. 1 duplicate(s) ; b01566054.png ; $\alpha = ( k + 1 / 2 )$ ; confidence 0.643
  1029. 3 duplicate(s) ; c026390117.png ; $r _ { u } \times r _ { v } \neq 0$ ; confidence 0.643
  1030. 1 duplicate(s) ; f041170108.png ; $\eta \in \operatorname { ln } t \Gamma ^ { \prime }$ ; confidence 0.642
  1031. 1 duplicate(s) ; q07680042.png ; $\nu _ { 1 } ^ { S }$ ; confidence 0.641
  1032. 1 duplicate(s) ; e036960198.png ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639
  1033. 1 duplicate(s) ; q07632096.png ; $( T _ { s , t } ) _ { s \leq t }$ ; confidence 0.639
  1034. 1 duplicate(s) ; k05585059.png ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
  1035. 2 duplicate(s) ; h047390191.png ; $M \rightarrow \operatorname { Hom } _ { R } ( M , R )$ ; confidence 0.637
  1036. 1 duplicate(s) ; c02305085.png ; $cd _ { l } ( Spec A )$ ; confidence 0.637
  1037. 1 duplicate(s) ; l05847082.png ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
  1038. 1 duplicate(s) ; l13001029.png ; $S _ { N } ( f ; x ) = \sum _ { k | \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.633
  1039. 1 duplicate(s) ; c02764016.png ; $( \phi _ { 1 } , \dots , \phi _ { n } )$ ; confidence 0.631
  1040. 2 duplicate(s) ; c0237402.png ; $\alpha _ { i } , b _ { 2 }$ ; confidence 0.631
  1041. 1 duplicate(s) ; g043810381.png ; $C = \text { int } \Gamma$ ; confidence 0.630
  1042. 1 duplicate(s) ; e03590064.png ; $j = i + 1 , \dots , n$ ; confidence 0.629
  1043. 2 duplicate(s) ; q07647062.png ; $S _ { 2 m + 1 } ^ { m }$ ; confidence 0.627
  1044. 1 duplicate(s) ; v09687029.png ; $+ \int _ { - \infty } ^ { + \infty } \ldots \int _ { - \infty } ^ { + \infty } h _ { n } ( \tau _ { 1 } , \ldots , \tau _ { n } ) u ( t - \tau _ { 1 } ) \ldots u ( t - \tau _ { n } )$ ; confidence 0.627
  1045. 1 duplicate(s) ; m06490036.png ; $\{ \operatorname { St } ( x , U _ { X } ) \} _ { n }$ ; confidence 0.625
  1046. 1 duplicate(s) ; o070310169.png ; $n + 1 , \dots , 2 n$ ; confidence 0.625
  1047. 5 duplicate(s) ; c02372047.png ; $( U ( \alpha , R ) , f _ { \alpha } )$ ; confidence 0.624
  1048. 1 duplicate(s) ; s087360228.png ; $P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$ ; confidence 0.622
  1049. 1 duplicate(s) ; c0242308.png ; $T M _ { 1 } , \dots , T M _ { i }$ ; confidence 0.620
  1050. 1 duplicate(s) ; d032450404.png ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618
  1051. 1 duplicate(s) ; l05883055.png ; $\frac { \partial u _ { j } } { \partial r } - i \mu _ { j } ( \omega ) u _ { j } = o ( r ^ { ( 1 - n ) / 2 } ) , \quad r \rightarrow \infty$ ; confidence 0.618
  1052. 2 duplicate(s) ; s120040125.png ; $\pi \Gamma$ ; confidence 0.616
  1053. 1 duplicate(s) ; h04780058.png ; $H _ { p } ( X , X \backslash U ; G ) = H ^ { n - p } ( U , H _ { n } )$ ; confidence 0.614
  1054. 1 duplicate(s) ; c12004058.png ; $\phi _ { k } = \frac { 1 } { \langle \rho ^ { \prime } , \zeta \} ^ { n } } \{ \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } ( \zeta ) , \zeta \} } , z \} ^ { k } \sigma$ ; confidence 0.612
  1055. 1 duplicate(s) ; b12004018.png ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
  1056. 1 duplicate(s) ; w12002010.png ; $l _ { 1 } ( P , Q )$ ; confidence 0.611
  1057. 1 duplicate(s) ; s12016026.png ; $A ( q , d ) ( f )$ ; confidence 0.610
  1058. 3 duplicate(s) ; o13003024.png ; $\overline { P _ { 8 } }$ ; confidence 0.610
  1059. 1 duplicate(s) ; r08249025.png ; $R ( \theta , \delta ) = \int \int _ { X D } L ( \theta , d ) d Q _ { x } ( d ) d P _ { \theta } ( x )$ ; confidence 0.609
  1060. 1 duplicate(s) ; w09776027.png ; $( L _ { 2 } ) \simeq \oplus _ { n } \operatorname { Sy } L _ { 2 } ( R ^ { n } , n ! d t )$ ; confidence 0.609
  1061. 1 duplicate(s) ; a01293027.png ; $L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$ ; confidence 0.607
  1062. 1 duplicate(s) ; e03685016.png ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606
  1063. 1 duplicate(s) ; c12008021.png ; $A = \left[ \begin{array} { c } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] , \quad A _ { 1 } \in C ^ { n \times n } , A _ { 2 } \in C ^ { ( m - n ) \times n }$ ; confidence 0.605
  1064. 2 duplicate(s) ; c022780212.png ; $x \in H ^ { n } ( B U ; Q )$ ; confidence 0.605
  1065. 1 duplicate(s) ; t093150393.png ; $\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$ ; confidence 0.601
  1066. 1 duplicate(s) ; e03704077.png ; $\lambda < \alpha$ ; confidence 0.600
  1067. 2 duplicate(s) ; g04440029.png ; $\delta \varepsilon$ ; confidence 0.600
  1068. 1 duplicate(s) ; r110010282.png ; $x = ( x _ { 1 } , x _ { 2 } , x _ { 3 } , x _ { 4 } , x _ { 5 } , x _ { 6 } )$ ; confidence 0.598
  1069. 1 duplicate(s) ; c120180381.png ; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.597
  1070. 1 duplicate(s) ; d03343058.png ; $\operatorname { Re } ( A x _ { 1 } - A x _ { 2 } , x _ { 1 } - x _ { 2 } ) \leq 0$ ; confidence 0.596
  1071. 1 duplicate(s) ; s085580113.png ; $K = \nu - \nu$ ; confidence 0.596
  1072. 1 duplicate(s) ; s08778056.png ; $w \in H ^ { * * } ( BO ; Z _ { 2 } )$ ; confidence 0.594
  1073. 1 duplicate(s) ; d032890165.png ; $\operatorname { li } x / \phi ( d )$ ; confidence 0.594
  1074. 1 duplicate(s) ; a01413050.png ; $\phi ( s _ { i j } , 1 ) = s _ { i , j + 1 } , \quad \text { if } j = 1 , \dots , n - 1$ ; confidence 0.594
  1075. 1 duplicate(s) ; q07609075.png ; $a , b , c \in Z$ ; confidence 0.594
  1076. 1 duplicate(s) ; s08538041.png ; $s _ { i } : X _ { n } \rightarrow X _ { n } + 1$ ; confidence 0.593
  1077. 1 duplicate(s) ; m06233085.png ; $\{ 1,2 , \dots \}$ ; confidence 0.593
  1078. 1 duplicate(s) ; g043780115.png ; $[ S ^ { k } X , M _ { n + k } ] \stackrel { S } { \rightarrow } [ S ^ { k + 1 } X , S M _ { n + k } ] \stackrel { ( s _ { n + k } ) } { \rightarrow } [ S ^ { k + 1 } X , M _ { n + k + 1 } ]$ ; confidence 0.593
  1079. 1 duplicate(s) ; w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591
  1080. 1 duplicate(s) ; s085590228.png ; $R = \{ R _ { 1 } > 0 , \dots , R _ { n } > 0 \}$ ; confidence 0.591
  1081. 1 duplicate(s) ; b1103309.png ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591
  1082. 1 duplicate(s) ; m06233032.png ; $\chi ( 0 , h )$ ; confidence 0.590
  1083. 1 duplicate(s) ; p1101706.png ; $( A , \{ . . \} )$ ; confidence 0.590
  1084. 1 duplicate(s) ; a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.588
  1085. 2 duplicate(s) ; a01150037.png ; $m = ( m _ { 1 } , \dots , m _ { p } )$ ; confidence 0.587
  1086. 1 duplicate(s) ; c11037013.png ; $u , v \in V ^ { \times }$ ; confidence 0.585
  1087. 6 duplicate(s) ; c1103302.png ; $DT ( S )$ ; confidence 0.583
  1088. 1 duplicate(s) ; g043810332.png ; $E _ { t t } - E _ { X x } = \delta ( x , t )$ ; confidence 0.582
  1089. 1 duplicate(s) ; n06684017.png ; $\{ \psi _ { i } \} _ { 0 } ^ { m }$ ; confidence 0.581
  1090. 1 duplicate(s) ; p0724304.png ; $B \operatorname { ccos } ( \omega t + \psi )$ ; confidence 0.580
  1091. 1 duplicate(s) ; l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
  1092. 1 duplicate(s) ; l13001015.png ; $S _ { B } ( f ; x ) = \sum _ { k \in B } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.580
  1093. 1 duplicate(s) ; b01605010.png ; $b ( \theta ) \equiv 0$ ; confidence 0.580
  1094. 1 duplicate(s) ; e03684018.png ; $K ( B - C _ { N } ) > K ( B - A ) > D$ ; confidence 0.579
  1095. 1 duplicate(s) ; n06790050.png ; $( N , + , , 1 \}$ ; confidence 0.577
  1096. 1 duplicate(s) ; s09045017.png ; $X ( t ) = ( X ^ { 1 } ( t ) , \ldots , X ^ { d } ( t ) )$ ; confidence 0.576
  1097. 1 duplicate(s) ; t092810186.png ; $B s$ ; confidence 0.576
  1098. 2 duplicate(s) ; t09280017.png ; $X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$ ; confidence 0.575
  1099. 2 duplicate(s) ; k0556808.png ; $P _ { s , x } ( x _ { t } \in \Gamma )$ ; confidence 0.574
  1100. 2 duplicate(s) ; r08021012.png ; $f ( y + 1 , x _ { 1 } , \dots , x _ { n } ) =$ ; confidence 0.570
  1101. 1 duplicate(s) ; s08525014.png ; $\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$ ; confidence 0.569
  1102. 1 duplicate(s) ; z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
  1103. 1 duplicate(s) ; d1201408.png ; $D _ { 1 } ( x , \alpha ) = x$ ; confidence 0.569
  1104. 1 duplicate(s) ; g04473023.png ; $f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$ ; confidence 0.569
  1105. 1 duplicate(s) ; l057050165.png ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
  1106. 1 duplicate(s) ; c02161076.png ; $\alpha _ { 20 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \alpha _ { 11 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } \partial x _ { 2 } } +$ ; confidence 0.568
  1107. 2 duplicate(s) ; a11054026.png ; $O ( n ^ { 2 } \operatorname { log } n )$ ; confidence 0.568
  1108. 1 duplicate(s) ; v13005046.png ; $Y ( 1 , x ) = 1$ ; confidence 0.565
  1109. 1 duplicate(s) ; j054050109.png ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
  1110. 3 duplicate(s) ; c0265505.png ; $1,2 , \dots$ ; confidence 0.563
  1111. 1 duplicate(s) ; c02604025.png ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.561
  1112. 1 duplicate(s) ; s087280171.png ; $\phi _ { 1 } , \dots , \phi _ { 2 } \in D$ ; confidence 0.561
  1113. 2 duplicate(s) ; c0207409.png ; Missing ; confidence 0.560
  1114. 1 duplicate(s) ; n066790104.png ; $\sigma = ( \sigma _ { 1 } , \ldots , \sigma _ { n } ) , \quad | \sigma | = \sigma _ { 1 } + \ldots + \sigma _ { n } \leq k$ ; confidence 0.560
  1115. 2 duplicate(s) ; t11002049.png ; $e ^ { \prime }$ ; confidence 0.559
  1116. 1 duplicate(s) ; m06306029.png ; $x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$ ; confidence 0.559
  1117. 1 duplicate(s) ; b01660011.png ; $( v ^ { 1 } , \ldots , v ^ { n } )$ ; confidence 0.559
  1118. 1 duplicate(s) ; e11011021.png ; $A \subset \{ 1 , \dots , n \}$ ; confidence 0.558
  1119. 1 duplicate(s) ; b13020013.png ; $e _ { i } , f _ { i } , h _ { i }$ ; confidence 0.557
  1120. 4 duplicate(s) ; f0410005.png ; $J _ { \nu }$ ; confidence 0.556
  1121. 1 duplicate(s) ; s12028015.png ; $\overline { E } * ( X )$ ; confidence 0.554
  1122. 1 duplicate(s) ; c02286015.png ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.553
  1123. 1 duplicate(s) ; m12015041.png ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y )$ ; confidence 0.551
  1124. 1 duplicate(s) ; c12028026.png ; $\operatorname { crs } ( A \otimes B , C ) \cong \operatorname { Crs } ( A , \operatorname { CRS } ( B , C ) )$ ; confidence 0.551
  1125. 1638 duplicate(s) ; a13013085.png ; $L$ ; confidence 0.550
  1126. 1 duplicate(s) ; n067520303.png ; $A \simeq K$ ; confidence 0.550
  1127. 1 duplicate(s) ; q076840121.png ; $P \{ T _ { j } \in ( u , u + d u ) \} = \frac { 1 } { \alpha u } P \{ X ( u ) \in ( 0 , d u ) \}$ ; confidence 0.548
  1128. 1 duplicate(s) ; p07375062.png ; $x = \prod _ { i = 1 } ^ { [ n / 2 ] } f ( x _ { i } ) \in H ^ { * * } ( BO _ { n } ; Q )$ ; confidence 0.548
  1129. 1 duplicate(s) ; r08061050.png ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.547
  1130. 1 duplicate(s) ; e03525041.png ; $u _ { 0 } = K ( \phi , \psi ; \kappa ) = \kappa \phi ( z ) - z \overline { \phi ^ { \prime } ( z ) } - \overline { \psi ( z ) }$ ; confidence 0.546
  1131. 1 duplicate(s) ; b1105203.png ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
  1132. 1 duplicate(s) ; c02250014.png ; $j \leq n$ ; confidence 0.544
  1133. 1 duplicate(s) ; f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.543
  1134. 1 duplicate(s) ; c02220015.png ; $\lambda _ { k } ^ { - 1 } = p _ { 0 } ( x _ { k } ) + \ldots + p _ { n } ( x _ { k } ) , \quad k = 1 , \dots , n$ ; confidence 0.543
  1135. 1 duplicate(s) ; r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543
  1136. 1 duplicate(s) ; p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541
  1137. 1 duplicate(s) ; c027470101.png ; $( X \times l , A \times I )$ ; confidence 0.540
  1138. 2 duplicate(s) ; n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540
  1139. 1 duplicate(s) ; w120110137.png ; $( a _ { m } b ) ( x , \xi ) = r _ { N } ( \alpha , b ) +$ ; confidence 0.539
  1140. 1 duplicate(s) ; f12024020.png ; $\operatorname { max } \{ m _ { 1 } , \ldots , m _ { k } \} < m$ ; confidence 0.538
  1141. 1 duplicate(s) ; b130300113.png ; $A$ ; confidence 0.535
  1142. 1 duplicate(s) ; b01531023.png ; $X _ { s } = X \times s s$ ; confidence 0.533
  1143. 1 duplicate(s) ; b1101602.png ; $d _ { 1 } , \dots , d _ { r } \geq 1$ ; confidence 0.527
  1144. 33 duplicate(s) ; c02545035.png ; $T ^ { * }$ ; confidence 0.527
  1145. 1 duplicate(s) ; c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526
  1146. 1 duplicate(s) ; s085400103.png ; $d _ { i } = \delta _ { i } ^ { * } : C ^ { n } ( \Delta ^ { q } ; \pi ) \rightarrow C ^ { n } ( \Delta _ { q - 1 } ; \pi )$ ; confidence 0.525
  1147. 1 duplicate(s) ; a01138058.png ; $\mathfrak { B } _ { 1 } , \ldots , \mathfrak { B } _ { s }$ ; confidence 0.523
  1148. 1 duplicate(s) ; s120040117.png ; $1 , \ldots , | \lambda |$ ; confidence 0.522
  1149. 1 duplicate(s) ; m06544015.png ; $C ( t + s , e ) = C ( t , \Phi _ { S } ( e ) ) C ( s , e )$ ; confidence 0.522
  1150. 1 duplicate(s) ; v09635084.png ; $a \perp b$ ; confidence 0.521
  1151. 1 duplicate(s) ; w0973508.png ; $A = N \oplus s$ ; confidence 0.521
  1152. 1 duplicate(s) ; p074970164.png ; $E X _ { k } = a$ ; confidence 0.520
  1153. 1 duplicate(s) ; m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520
  1154. 20 duplicate(s) ; m13022071.png ; $T$ ; confidence 0.520
  1155. 1 duplicate(s) ; c0211204.png ; $\alpha : ( B ^ { n } , S ^ { n - 1 } ) \rightarrow ( E , \partial E )$ ; confidence 0.520
  1156. 1 duplicate(s) ; k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519
  1157. 1 duplicate(s) ; e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
  1158. 1 duplicate(s) ; r082290200.png ; $p _ { \alpha } = e$ ; confidence 0.518
  1159. 1 duplicate(s) ; b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
  1160. 1 duplicate(s) ; c02043010.png ; $( M _ { n } ( f ) ) ^ { 1 / n } < A ( f ) \alpha _ { n } , \quad n = 0,1 , \ldots$ ; confidence 0.516
  1161. 1 duplicate(s) ; m06425068.png ; $\operatorname { sign } y . | y | ^ { \alpha } u _ { x x } + u _ { y y } = F ( x , y , u , u _ { x } , u _ { y } )$ ; confidence 0.514
  1162. 1 duplicate(s) ; a11038040.png ; $\sim 2$ ; confidence 0.512
  1163. 1 duplicate(s) ; d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
  1164. 1 duplicate(s) ; i11008034.png ; $( T f ) ( x ) = \int _ { Y } T ( x , y ) f ( y ) d \nu ( y )$ ; confidence 0.511
  1165. 1 duplicate(s) ; p07303077.png ; $\mathfrak { g } = C$ ; confidence 0.510
  1166. 1 duplicate(s) ; m06426078.png ; $V ^ { n } ( K , L , \ldots , L ) \geq V ( K ) V ^ { n - 1 } ( L )$ ; confidence 0.509
  1167. 1 duplicate(s) ; i130030142.png ; $\pi$ ; confidence 0.507
  1168. 1 duplicate(s) ; n06796016.png ; $q 2 = 6$ ; confidence 0.507
  1169. 1 duplicate(s) ; t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
  1170. 1 duplicate(s) ; a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
  1171. 4 duplicate(s) ; m064590192.png ; $\alpha p$ ; confidence 0.503
  1172. 1 duplicate(s) ; s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502
  1173. 1 duplicate(s) ; a1200807.png ; $j ( x ) = a _ { j , i } ( x )$ ; confidence 0.501
  1174. 3 duplicate(s) ; i130060185.png ; $< 2 a$ ; confidence 0.500
  1175. 1 duplicate(s) ; s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
  1176. 4 duplicate(s) ; h12013052.png ; Missing ; confidence 0.499
  1177. 6 duplicate(s) ; i0520106.png ; $D _ { 1 } , \ldots , D _ { n }$ ; confidence 0.499
  1178. 1 duplicate(s) ; q076820150.png ; $P _ { 0 } ( x ) , \ldots , P _ { k } ( x )$ ; confidence 0.498
  1179. 1 duplicate(s) ; s08300037.png ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497
  1180. 1 duplicate(s) ; k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
  1181. 3 duplicate(s) ; e12002023.png ; $74$ ; confidence 0.496
  1182. 1 duplicate(s) ; a012410104.png ; $z _ { 1 } = \zeta ^ { m } , \quad z _ { 2 } = f _ { 2 } ( \zeta ) , \ldots , z _ { n } = f _ { n } ( \zeta )$ ; confidence 0.495
  1183. 1 duplicate(s) ; f04221073.png ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494
  1184. 1 duplicate(s) ; e03644053.png ; $\phi _ { i } ( t , x , \dot { x } ) = 0 , \quad i = 1 , \dots , m , \quad m < n$ ; confidence 0.494
  1185. 1 duplicate(s) ; a01165082.png ; $\langle H , o \}$ ; confidence 0.492
  1186. 1 duplicate(s) ; p07243072.png ; $C _ { n } ^ { ( 2 ) } = - \frac { 1 } { 2 } \sum _ { m \neq n } \frac { | V _ { m n } | ^ { 2 } } { ( E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } ) ^ { 2 } } ; \ldots$ ; confidence 0.491
  1187. 1 duplicate(s) ; i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
  1188. 1 duplicate(s) ; o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
  1189. 3 duplicate(s) ; b13023050.png ; $G ( u )$ ; confidence 0.489
  1190. 1 duplicate(s) ; t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
  1191. 1 duplicate(s) ; t093180231.png ; $( t = ( t _ { 1 } , \ldots , t _ { n } ) \in R ^ { n } )$ ; confidence 0.488
  1192. 1 duplicate(s) ; d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
  1193. 1 duplicate(s) ; a110680158.png ; $a b , \alpha + b$ ; confidence 0.486
  1194. 1 duplicate(s) ; c02486016.png ; $F ( x _ { 1 } , \dots , x _ { n } ) \equiv 0$ ; confidence 0.486
  1195. 1 duplicate(s) ; d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
  1196. 1 duplicate(s) ; t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484
  1197. 1 duplicate(s) ; c0259603.png ; $c = ( c _ { 1 } , \dots , c _ { k } ) ^ { T }$ ; confidence 0.479
  1198. 1 duplicate(s) ; b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
  1199. 2 duplicate(s) ; c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
  1200. 1 duplicate(s) ; c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
  1201. 1 duplicate(s) ; k1100801.png ; $W _ { C }$ ; confidence 0.473
  1202. 1 duplicate(s) ; m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
  1203. 1 duplicate(s) ; l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
  1204. 1 duplicate(s) ; m13025083.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } u ( . , \varepsilon ) v ( . \varepsilon )$ ; confidence 0.470
  1205. 1 duplicate(s) ; m13019018.png ; $M _ { n } = [ m _ { i } + j ] _ { i , j } ^ { n } = 0$ ; confidence 0.469
  1206. 3 duplicate(s) ; e03694012.png ; $U _ { 1 } , \dots , U _ { n }$ ; confidence 0.469
  1207. 1 duplicate(s) ; b13020073.png ; $9 -$ ; confidence 0.467
  1208. 1 duplicate(s) ; a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
  1209. 1 duplicate(s) ; u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
  1210. 1 duplicate(s) ; s09017055.png ; $\zeta = \{ Z _ { 1 } , \dots , Z _ { m } \}$ ; confidence 0.466
  1211. 1 duplicate(s) ; f04147016.png ; $\int _ { \alpha } ^ { b } f ( x ) \overline { \psi _ { j } ( x ) } d x = 0 , \quad j = 1 , \dots , n$ ; confidence 0.464
  1212. 1 duplicate(s) ; l11006011.png ; $\operatorname { exp } ( u t ( 1 - t ) ^ { - 1 } ) = \sum _ { n = 0 } ^ { \infty } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { n } \frac { L _ { n , k } u ^ { k } t ^ { n } } { n ! }$ ; confidence 0.463
  1213. 1 duplicate(s) ; c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
  1214. 1 duplicate(s) ; l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
  1215. 1 duplicate(s) ; p07101037.png ; $p _ { i }$ ; confidence 0.459
  1216. 1 duplicate(s) ; p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
  1217. 11 duplicate(s) ; a120050110.png ; $M$ ; confidence 0.455
  1218. 1 duplicate(s) ; q07604010.png ; $\frac { Q _ { z _ { 2 } } ( z _ { 2 } ( p ) ) } { Q _ { z _ { 1 } } ( z _ { 1 } ( p ) ) } = ( \frac { d z _ { 1 } ( p ) } { d z _ { 2 } ( p ) } ) ^ { 2 } , \quad p \in U _ { 1 } \cap U _ { 2 }$ ; confidence 0.453
  1219. 1 duplicate(s) ; h04831094.png ; $w = \left( \begin{array} { c } { u } \\ { v } \end{array} \right) , \quad A = \left( \begin{array} { c c } { 0 } & { \alpha } \\ { 1 } & { 0 } \end{array} \right)$ ; confidence 0.452
  1220. 1 duplicate(s) ; m06537078.png ; $E = \{ ( x , y , z ) : ( x , y ) \in E _ { x } y , \phi ( x , y ) \leq z \leq \psi ( x , y ) \}$ ; confidence 0.452
  1221. 1 duplicate(s) ; b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
  1222. 2 duplicate(s) ; s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
  1223. 1 duplicate(s) ; h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447
  1224. 1 duplicate(s) ; b1300703.png ; $BS ( m , n ) = \{ \alpha , b | \alpha ^ { - 1 } b ^ { m } \alpha = b ^ { n } \}$ ; confidence 0.445
  1225. 1 duplicate(s) ; f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
  1226. 1 duplicate(s) ; b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
  1227. 1 duplicate(s) ; c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
  1228. 1 duplicate(s) ; d031850261.png ; $\partial z / \partial y = f ^ { \prime } ( x , y )$ ; confidence 0.440
  1229. 1 duplicate(s) ; w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
  1230. 1 duplicate(s) ; m0651606.png ; $( \forall x , x ^ { \prime } \in X ) ( \exists l < \infty ) | f ( x ) - f ( x ^ { \prime } ) | \leq l | x - x ^ { \prime } \|$ ; confidence 0.436
  1231. 1 duplicate(s) ; d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
  1232. 1 duplicate(s) ; i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
  1233. 1 duplicate(s) ; d11008062.png ; $( K ^ { H _ { i } } , v ^ { H _ { i } } )$ ; confidence 0.434
  1234. 3 duplicate(s) ; p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432
  1235. 1 duplicate(s) ; p0738407.png ; $A \supset B$ ; confidence 0.432
  1236. 1 duplicate(s) ; r08256016.png ; $1$ ; confidence 0.430
  1237. 1 duplicate(s) ; l05927010.png ; $\operatorname { det } \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) y ^ { \alpha } | _ { y _ { 0 } = \lambda } , \quad y ^ { \alpha } = ( y _ { 0 } ^ { \alpha _ { 0 } } , \ldots , y _ { n } ^ { \alpha _ { n } } )$ ; confidence 0.429
  1238. 1 duplicate(s) ; i05010033.png ; $| \exists y \phi ; x | = p r _ { n + 1 } | \phi ; x y |$ ; confidence 0.427
  1239. 1 duplicate(s) ; b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
  1240. 1 duplicate(s) ; w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
  1241. 1 duplicate(s) ; a12023068.png ; $c _ { q }$ ; confidence 0.425
  1242. 1 duplicate(s) ; a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425
  1243. 1 duplicate(s) ; e036960148.png ; $GL ( 1 , K ) = K ^ { * }$ ; confidence 0.425
  1244. 1 duplicate(s) ; c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
  1245. 7 duplicate(s) ; a01233050.png ; $x <$ ; confidence 0.424
  1246. 1 duplicate(s) ; c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
  1247. 1 duplicate(s) ; m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
  1248. 1 duplicate(s) ; p075700100.png ; $q ^ { 1 }$ ; confidence 0.419
  1249. 1 duplicate(s) ; b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
  1250. 1 duplicate(s) ; s087360208.png ; $\alpha , \beta , \dots ,$ ; confidence 0.419
  1251. 3 duplicate(s) ; f130290181.png ; $LOC$ ; confidence 0.417
  1252. 1 duplicate(s) ; n06728058.png ; $\pi / \rho$ ; confidence 0.416
  1253. 1 duplicate(s) ; p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
  1254. 1 duplicate(s) ; a11006029.png ; $B _ { j } \in B$ ; confidence 0.414
  1255. 1 duplicate(s) ; o13005095.png ; $v \in G$ ; confidence 0.413
  1256. 1 duplicate(s) ; c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
  1257. 1 duplicate(s) ; m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
  1258. 1 duplicate(s) ; h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
  1259. 2 duplicate(s) ; f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412
  1260. 1 duplicate(s) ; q076840146.png ; $f ( \lambda ) = E _ { e } ^ { i \lambda \xi } , \quad f _ { + } ( \lambda ) = e ^ { i \lambda \tau ^ { s } } , \quad f - ( \lambda ) = e ^ { - i \lambda \tau ^ { e } }$ ; confidence 0.410
  1261. 1 duplicate(s) ; b110100221.png ; $R _ { R } ( X ) = \operatorname { max } \{ d ( X , Y ) : Y \in B _ { n } \}$ ; confidence 0.410
  1262. 2 duplicate(s) ; b12031064.png ; $\tau ^ { n }$ ; confidence 0.408
  1263. 1 duplicate(s) ; g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
  1264. 1 duplicate(s) ; m06544064.png ; $\operatorname { lim } _ { t \rightarrow \infty } t ^ { - 1 } \operatorname { log } \| C ( t , e ) v \| = \lambda _ { é } ^ { i } \quad \Leftrightarrow \quad v \in W _ { é } ^ { i } \backslash W _ { é } ^ { i + 1 }$ ; confidence 0.404
  1265. 1 duplicate(s) ; c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
  1266. 1 duplicate(s) ; a011820111.png ; $\phi ( \mathfrak { A } , \alpha _ { 1 } , \ldots , \alpha _ { l } , S , \mathfrak { M } ^ { * } )$ ; confidence 0.402
  1267. 1 duplicate(s) ; i05226072.png ; $Z \in G$ ; confidence 0.401
  1268. 1 duplicate(s) ; l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
  1269. 1 duplicate(s) ; u09570015.png ; $D ( D , G - ) : C \rightarrow$ ; confidence 0.398
  1270. 1 duplicate(s) ; r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
  1271. 1 duplicate(s) ; c02718064.png ; $H ( K )$ ; confidence 0.395
  1272. 1 duplicate(s) ; m06379014.png ; $\psi _ { \nu } ( x , \mu ) = \phi _ { \nu } ( \mu ) e ^ { - x / \nu }$ ; confidence 0.394
  1273. 1 duplicate(s) ; t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
  1274. 1 duplicate(s) ; d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
  1275. 1 duplicate(s) ; p11017022.png ; $[ d \alpha , f d b ] _ { P } = f [ d \alpha , d b ] P + P ^ { * } ( d \alpha ) ( f ) d b$ ; confidence 0.385
  1276. 1 duplicate(s) ; f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384
  1277. 2 duplicate(s) ; c1202805.png ; $X *$ ; confidence 0.383
  1278. 1 duplicate(s) ; a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
  1279. 1 duplicate(s) ; c02592019.png ; $631$ ; confidence 0.381
  1280. 2 duplicate(s) ; b11025040.png ; $k ( g _ { 1 } , \ldots , g _ { n } - k + 1 ) =$ ; confidence 0.381
  1281. 1 duplicate(s) ; s08778021.png ; $w ^ { \prime }$ ; confidence 0.380
  1282. 1 duplicate(s) ; l059110126.png ; $L _ { k } u _ { h } ( t , x ) = \frac { 1 } { \tau } [ u _ { k } ( t + \frac { \tau } { 2 } , x ) - u _ { k } ( t - \frac { \tau } { 2 } , x ) ] +$ ; confidence 0.379
  1283. 1 duplicate(s) ; c02161086.png ; $\mu , \nu \in Z ^ { n }$ ; confidence 0.377
  1284. 1 duplicate(s) ; c02074088.png ; $H _ { C } * ( A , B ) = H _ { C } ( B , A )$ ; confidence 0.377
  1285. 1 duplicate(s) ; c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
  1286. 1 duplicate(s) ; p07283030.png ; $\sigma _ { i j } = A _ { k } \epsilon _ { i j } ^ { k } , \quad x \in \Omega \cup J S$ ; confidence 0.370
  1287. 1 duplicate(s) ; a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
  1288. 1 duplicate(s) ; p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
  1289. 1 duplicate(s) ; c11044053.png ; $a _ { y - 2,2 } = 1$ ; confidence 0.366
  1290. 1 duplicate(s) ; l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
  1291. 1 duplicate(s) ; d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
  1292. 1 duplicate(s) ; i11002078.png ; $A ^ { n } = \{ ( \alpha _ { 1 } , \dots , \alpha _ { n } ) : \alpha _ { j } \in A \}$ ; confidence 0.360
  1293. 1 duplicate(s) ; d032150132.png ; $\hat { V }$ ; confidence 0.359
  1294. 1 duplicate(s) ; c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
  1295. 5 duplicate(s) ; a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.356
  1296. 1 duplicate(s) ; c021620179.png ; $p _ { 1 } ^ { s } , \dots , p _ { n } ^ { s }$ ; confidence 0.356
  1297. 1 duplicate(s) ; z13001018.png ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.355
  1298. 1 duplicate(s) ; a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
  1299. 1 duplicate(s) ; w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
  1300. 1 duplicate(s) ; f040230234.png ; $a _ { k } , a _ { k } - 1 , \dots , 1$ ; confidence 0.354
  1301. 1 duplicate(s) ; w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
  1302. 1 duplicate(s) ; l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
  1303. 1 duplicate(s) ; n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.347
  1304. 1 duplicate(s) ; s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
  1305. 1 duplicate(s) ; t12013022.png ; $\frac { \partial \Psi _ { i } } { \partial x _ { n } } = ( L ^ { n _ { 1 } } ) _ { + } \Psi _ { i } , \frac { \partial \Psi _ { i } } { \partial y _ { n } } = ( L _ { 2 } ^ { n } ) _ { - } \Psi _ { i }$ ; confidence 0.344
  1306. 1 duplicate(s) ; c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
  1307. 1 duplicate(s) ; b017400125.png ; $\phi _ { X } = u \phi , \quad \phi _ { t } = v \phi$ ; confidence 0.342
  1308. 1 duplicate(s) ; l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
  1309. 1 duplicate(s) ; l0576208.png ; $\alpha _ { i j } \equiv i + j - 1 ( \operatorname { mod } n ) , \quad i , j = 1 , \dots , n$ ; confidence 0.342
  1310. 1 duplicate(s) ; t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
  1311. 2 duplicate(s) ; m06236012.png ; $T _ { i j }$ ; confidence 0.337
  1312. 2 duplicate(s) ; g043780168.png ; $T _ { \nu }$ ; confidence 0.336
  1313. 7 duplicate(s) ; l05715031.png ; $\mu$ ; confidence 0.335
  1314. 1 duplicate(s) ; s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
  1315. 1 duplicate(s) ; m064590235.png ; $F ^ { ( n ) } ( h n ) = \alpha _ { n } ; \quad F ^ { ( n ) } ( \omega ^ { n } ) = \alpha _ { n }$ ; confidence 0.332
  1316. 1 duplicate(s) ; l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
  1317. 1 duplicate(s) ; c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
  1318. 1 duplicate(s) ; q1100304.png ; $\partial \Omega = ( [ 0 , a ] \times \{ 0 \} ) \cup ( \{ 0 , a \} \times ( 0 , T ) )$ ; confidence 0.329
  1319. 1 duplicate(s) ; m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
  1320. 1 duplicate(s) ; c120010158.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \} ) ^ { n } } , z \in E$ ; confidence 0.328
  1321. 1 duplicate(s) ; b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
  1322. 7 duplicate(s) ; a130240141.png ; $c$ ; confidence 0.324
  1323. 1 duplicate(s) ; n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
  1324. 2 duplicate(s) ; d03110038.png ; $x = 0,1 , \dots$ ; confidence 0.323
  1325. 1 duplicate(s) ; f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
  1326. 1 duplicate(s) ; b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
  1327. 1 duplicate(s) ; c02322020.png ; $[ L u _ { n } - f ] _ { t = t _ { i } } = 0 , \quad i = 1 , \dots , n$ ; confidence 0.320
  1328. 1 duplicate(s) ; k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
  1329. 1 duplicate(s) ; a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.317
  1330. 1 duplicate(s) ; q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
  1331. 1 duplicate(s) ; m063240421.png ; $F ( x _ { 1 } , \ldots , x _ { k } ) = x _ { 1 } \ldots x _ { k }$ ; confidence 0.310
  1332. 1 duplicate(s) ; d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
  1333. 1 duplicate(s) ; y11002087.png ; $\frac { \alpha } { T } _ { I _ { \tau } ; J _ { v } }$ ; confidence 0.302
  1334. 2 duplicate(s) ; w09775013.png ; $X = \langle X , \phi \rangle$ ; confidence 0.301
  1335. 1 duplicate(s) ; r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
  1336. 1 duplicate(s) ; v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
  1337. 1 duplicate(s) ; a014060247.png ; $\alpha _ { \vec { \alpha } _ { 2 } } ( s _ { 1 } , s _ { 2 } ) = s _ { 1 }$ ; confidence 0.297
  1338. 1 duplicate(s) ; f04203061.png ; $f ( T ) = - \frac { 1 } { \pi } \int \int _ { C } \frac { \partial \tilde { f } } { \partial z } ( \lambda ) R ( \lambda , T ) d \lambda \overline { d \lambda }$ ; confidence 0.296
  1339. 3 duplicate(s) ; i05064054.png ; $\gamma , \gamma _ { 0 } , \ldots , \gamma _ { S }$ ; confidence 0.295
  1340. 1 duplicate(s) ; l05843067.png ; $\sum _ { i = 1 } ^ { m } d x ; \wedge d x _ { m } + i$ ; confidence 0.295
  1341. 1 duplicate(s) ; t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
  1342. 1 duplicate(s) ; t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { S } }$ ; confidence 0.294
  1343. 1 duplicate(s) ; n06790068.png ; $n , \alpha = \alpha + \ldots + \alpha > b \quad ( n \text { terms } \alpha )$ ; confidence 0.292
  1344. 1 duplicate(s) ; d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
  1345. 1 duplicate(s) ; g04468049.png ; $t \circ \in E$ ; confidence 0.290
  1346. 1 duplicate(s) ; s0864804.png ; $S ^ { ( n ) } ( t _ { 1 } , \ldots , t _ { n } ) =$ ; confidence 0.287
  1347. 1 duplicate(s) ; a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
  1348. 1 duplicate(s) ; a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
  1349. 1 duplicate(s) ; c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
  1350. 5 duplicate(s) ; d03294037.png ; $\epsilon _ { 1 } , \dots , \quad \epsilon _ { \gamma }$ ; confidence 0.278
  1351. 1 duplicate(s) ; i05058027.png ; $A _ { k _ { 1 } } , \ldots , A _ { k _ { n } }$ ; confidence 0.278
  1352. 1 duplicate(s) ; q07609025.png ; $q = ( b _ { 11 } , \dots , b _ { x - 1 , n } ) \in \mathfrak { G }$ ; confidence 0.278
  1353. 1 duplicate(s) ; r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
  1354. 1 duplicate(s) ; h11026076.png ; $+ \langle p , B ( \overline { q } , ( 2 i \omega _ { 0 } I _ { n } - A ) ^ { - 1 } B ( q , q ) ) \} ]$ ; confidence 0.276
  1355. 1 duplicate(s) ; i0511807.png ; $| \alpha | + k \leq N , \quad 0 \leq k < m , \quad x = ( x _ { 1 } , \ldots , x _ { k } )$ ; confidence 0.275
  1356. 1 duplicate(s) ; a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
  1357. 1 duplicate(s) ; l120130106.png ; $g _ { 1 } ( \alpha ) , \ldots , g _ { m } ( \alpha )$ ; confidence 0.271
  1358. 1 duplicate(s) ; a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
  1359. 1 duplicate(s) ; s08778015.png ; $w = \{ \dot { i } _ { 1 } , \ldots , i _ { k } \}$ ; confidence 0.265
  1360. 1 duplicate(s) ; l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
  1361. 1 duplicate(s) ; i120080137.png ; $\{ s _ { 1 } , \dots , S _ { N }$ ; confidence 0.261
  1362. 1 duplicate(s) ; s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
  1363. 2 duplicate(s) ; a1201308.png ; $m$ ; confidence 0.259
  1364. 1 duplicate(s) ; v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
  1365. 1 duplicate(s) ; c02544091.png ; $\xi _ { j } ^ { k } \in D _ { h } , h = 1 , \dots , m ; m = 1,2$ ; confidence 0.258
  1366. 1 duplicate(s) ; d034120424.png ; $A ^ { \circ } = \{ y \in G : \operatorname { Re } ( x , y ) \leq 1 , \forall x \in A \}$ ; confidence 0.258
  1367. 1 duplicate(s) ; p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
  1368. 1 duplicate(s) ; g044350101.png ; $D \Re \subset M$ ; confidence 0.255
  1369. 1 duplicate(s) ; q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
  1370. 1 duplicate(s) ; a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
  1371. 1 duplicate(s) ; b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
  1372. 1 duplicate(s) ; b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
  1373. 1 duplicate(s) ; e03552017.png ; $k _ { 0 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 } \leq Q ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \leq k _ { 1 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 }$ ; confidence 0.249
  1374. 1 duplicate(s) ; s08742047.png ; $P _ { t } ( A ) = P \{ ( U _ { t } ^ { V ^ { \prime } } ) ^ { - 1 } A \} , \quad A \subset \Omega _ { V }$ ; confidence 0.248
  1375. 1 duplicate(s) ; l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
  1376. 1 duplicate(s) ; c02643053.png ; $K \supset \operatorname { supp } f _ { n , } \quad n = 1,2 , \dots$ ; confidence 0.247
  1377. 4 duplicate(s) ; t130140116.png ; $q R$ ; confidence 0.245
  1378. 1 duplicate(s) ; p0733205.png ; $u ( M , t ) = \frac { \partial } { \partial t } \{ t \Gamma _ { d t } ( \phi ) \} + t \Gamma _ { \alpha t } ( \psi )$ ; confidence 0.242
  1379. 1 duplicate(s) ; l05947018.png ; $x \mapsto ( s _ { 0 } ( x ) , \ldots , s _ { k } ( x ) ) , \quad x \in X$ ; confidence 0.241
  1380. 1 duplicate(s) ; b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
  1381. 1 duplicate(s) ; q13002049.png ; $\hat { f } | x , 0 , w \} \rightarrow | x , f ( x ) , w \}$ ; confidence 0.237
  1382. 1 duplicate(s) ; b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
  1383. 1 duplicate(s) ; b110220124.png ; $r _ { D } : H _ { M } ^ { i } ( M _ { Z } , Q ( j ) ) \rightarrow H _ { D } ^ { i } ( M _ { / R } , R ( j ) )$ ; confidence 0.236
  1384. 1 duplicate(s) ; b12021033.png ; $+ \sum _ { 1 \leq i < j \leq k } ( - 1 ) ^ { i + j } X \bigotimes [ X ; X _ { j } ] \wedge$ ; confidence 0.234
  1385. 1 duplicate(s) ; c02019023.png ; $C A$ ; confidence 0.232
  1386. 1 duplicate(s) ; c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
  1387. 1 duplicate(s) ; k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
  1388. 1 duplicate(s) ; l05961015.png ; $\{ H , \rho \} q u _ { . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.229
  1389. 1 duplicate(s) ; m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
  1390. 1 duplicate(s) ; x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
  1391. 2 duplicate(s) ; c11041043.png ; $C X Y$ ; confidence 0.226
  1392. 1 duplicate(s) ; p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
  1393. 1 duplicate(s) ; c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
  1394. 1 duplicate(s) ; c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
  1395. 1 duplicate(s) ; m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
  1396. 1 duplicate(s) ; g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
  1397. 1 duplicate(s) ; a012460130.png ; $X \equiv 0$ ; confidence 0.220
  1398. 1 duplicate(s) ; s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
  1399. 1 duplicate(s) ; l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
  1400. 2 duplicate(s) ; e03536051.png ; $\alpha _ { 1 } , \dots , \alpha _ { n } \in A$ ; confidence 0.215
  1401. 1 duplicate(s) ; b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
  1402. 1 duplicate(s) ; r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
  1403. 1 duplicate(s) ; d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
  1404. 1 duplicate(s) ; d034120555.png ; $f _ { 0 } ( x ) \rightarrow \operatorname { inf } , \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \dots , m , \quad x \in B$ ; confidence 0.209
  1405. 1 duplicate(s) ; i130090183.png ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { \mathfrak { p } | p } ( 1 - \chi \omega ^ { - n } ( \mathfrak { p } ) N _ { p } ^ { n - 1 } )$ ; confidence 0.209
  1406. 1 duplicate(s) ; d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
  1407. 1 duplicate(s) ; b01757027.png ; $E \mu _ { X , t } ( G ) \approx K e ^ { ( \alpha - \lambda _ { 1 } ) t } \phi _ { 1 } ( x )$ ; confidence 0.207
  1408. 1 duplicate(s) ; f041940382.png ; $y _ { i _ { 1 } } = f _ { i _ { 1 } } ( x ) , \ldots , y _ { l _ { r } } = f _ { i r } ( x )$ ; confidence 0.206
  1409. 1 duplicate(s) ; i05064065.png ; $\gamma ^ { \prime } \equiv \gamma ( \operatorname { mod } c ) , \gamma _ { 0 } ^ { \prime } \equiv \gamma _ { 0 } ( \operatorname { mod } \mathfrak { c } ) , \ldots , \gamma _ { s } ^ { \prime } \equiv \gamma _ { s } ( \operatorname { mod } c _ { s } )$ ; confidence 0.206
  1410. 1 duplicate(s) ; b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
  1411. 1 duplicate(s) ; i05151010.png ; $\dot { x } _ { i } = f _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.203
  1412. 1 duplicate(s) ; s08514031.png ; $S _ { x , m } = \operatorname { sup } _ { | x | < \infty } | F _ { n } ( x ) - F _ { m } ( x ) |$ ; confidence 0.201
  1413. 1 duplicate(s) ; i0517809.png ; $L _ { X } [ U ] = \lambda \int _ { \mathscr { U } } ^ { b } K ( x , y ) M _ { y } [ U ] d y + f ( x )$ ; confidence 0.201
  1414. 1 duplicate(s) ; d03016014.png ; $s _ { \tau } = \operatorname { inf } _ { \xi _ { 1 } , \ldots , \xi _ { k } } \sigma _ { \tau } , \quad S _ { \tau } = \operatorname { sup } _ { \xi _ { 1 } , \ldots \xi _ { k } } \sigma _ { \tau }$ ; confidence 0.200
  1415. 1 duplicate(s) ; p07509019.png ; $\operatorname { sr } ( x , n / 2 ) \uparrow 2 \text { elsex } \times \text { power } ( x , n - 1 )$ ; confidence 0.200
  1416. 1 duplicate(s) ; s08740073.png ; $\beta _ { n } ( \theta ) = E _ { \theta } \phi _ { n } ( X ) = \int _ { F } \phi _ { n } ( x ) d P _ { \theta } ( x ) , \quad \theta \in \Theta = \Theta _ { 0 } \cup \Theta _ { 1 }$ ; confidence 0.200
  1417. 1 duplicate(s) ; d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
  1418. 1 duplicate(s) ; t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
  1419. 1 duplicate(s) ; m12023074.png ; $( 0 , T ) \times R ^ { R }$ ; confidence 0.197
  1420. 1 duplicate(s) ; e12019037.png ; $l _ { x }$ ; confidence 0.196
  1421. 1 duplicate(s) ; l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
  1422. 3 duplicate(s) ; l0607408.png ; $\& , \vee , \supset , \neg$ ; confidence 0.194
  1423. 1 duplicate(s) ; s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
  1424. 1 duplicate(s) ; e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
  1425. 1 duplicate(s) ; c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
  1426. 1 duplicate(s) ; r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
  1427. 1 duplicate(s) ; n06785094.png ; $\sum _ { i = 1 } ^ { \infty } \lambda _ { i } \langle y _ { i } ; x _ { l } ^ { \prime } \rangle$ ; confidence 0.191
  1428. 1 duplicate(s) ; p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
  1429. 1 duplicate(s) ; h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
  1430. 1 duplicate(s) ; v09682015.png ; $\int _ { | \Omega | = 1 } \int _ { | \sqrt { \Omega } } \int \theta ( x , \mu _ { 0 } ) u ( \overline { \Omega } \square ^ { \prime } , x ) d x d \overline { \Omega } \square ^ { \prime } d \overline { \Omega } = 1$ ; confidence 0.186
  1431. 1 duplicate(s) ; c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
  1432. 1 duplicate(s) ; p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
  1433. 4 duplicate(s) ; g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
  1434. 1 duplicate(s) ; c02601098.png ; $f ^ { \prime \prime } ( t , x )$ ; confidence 0.177
  1435. 1 duplicate(s) ; l05847042.png ; $[ g , \mathfrak { r } ] = [ \mathfrak { g } , \mathfrak { g } ] \cap \mathfrak { r }$ ; confidence 0.175
  1436. 1 duplicate(s) ; c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
  1437. 1 duplicate(s) ; c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
  1438. 1 duplicate(s) ; s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
  1439. 1 duplicate(s) ; b0152701.png ; $x _ { 1 } , \ldots , x _ { n _ { 1 } } \in N ( a _ { 1 } , \sigma _ { 1 } ^ { 2 } )$ ; confidence 0.166
  1440. 1 duplicate(s) ; m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
  1441. 1 duplicate(s) ; i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
  1442. 1 duplicate(s) ; a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
  1443. 1 duplicate(s) ; l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
  1444. 1 duplicate(s) ; a01189037.png ; $P _ { i } \stackrel { \circ } { = } \mathfrak { A } \lfloor P _ { i - 1 } \rfloor \quad ( i = 1 , \dots , k )$ ; confidence 0.155
  1445. 1 duplicate(s) ; f040230118.png ; $X _ { Y , k }$ ; confidence 0.153
  1446. 2 duplicate(s) ; c027180104.png ; $[ 1 , \dots , c )$ ; confidence 0.152
  1447. 1 duplicate(s) ; a011600198.png ; $N _ { 0 }$ ; confidence 0.151
  1448. 1 duplicate(s) ; d03161041.png ; $| x _ { n } - x * | \leq \frac { b - a - \epsilon } { 2 ^ { n } } + \frac { \epsilon } { 2 } , \quad n = 1,2$ ; confidence 0.149
  1449. 1 duplicate(s) ; i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
  1450. 1 duplicate(s) ; g043780134.png ; $F = p t$ ; confidence 0.143
  1451. 1 duplicate(s) ; d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
  1452. 1 duplicate(s) ; s08677096.png ; $5 + 7 n$ ; confidence 0.141
  1453. 1 duplicate(s) ; p07481050.png ; $\operatorname { sup } _ { x _ { 1 } \in X _ { 1 } } \operatorname { inf } _ { y _ { 1 } \in Y _ { 1 } } \ldots \operatorname { sup } _ { x _ { n } \in X _ { n } } \operatorname { inf } _ { y _ { n } \in Y _ { n } } f ( x _ { 1 } , y _ { 1 } , \ldots , x _ { \gamma } , y _ { n } )$ ; confidence 0.137
  1454. 1 duplicate(s) ; d033340149.png ; $\{ x _ { j } ; k - x _ { j } ; * \}$ ; confidence 0.135
  1455. 1 duplicate(s) ; w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
  1456. 1 duplicate(s) ; p07302056.png ; $H _ { \Phi } ^ { q } ( M , A ; H _ { n } ( G ) ) = H _ { \Phi | B } ^ { q } ( M ; H _ { n } ( G ) ) = H _ { \Phi | B } ^ { q } ( B ; H _ { n } ( G ) )$ ; confidence 0.133
  1457. 1 duplicate(s) ; w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi _ { \alpha } } ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi$ ; confidence 0.133
  1458. 1 duplicate(s) ; d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
  1459. 1 duplicate(s) ; p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
  1460. 1 duplicate(s) ; d11011084.png ; $L \cup O$ ; confidence 0.130
  1461. 1 duplicate(s) ; l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
  1462. 1 duplicate(s) ; a130040313.png ; $\epsilon _ { i , 0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { l , 1 } ^ { A } ( \alpha , b , c , d ) \text { for alli } < m$ ; confidence 0.129
  1463. 1 duplicate(s) ; s13014014.png ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } ) }$ ; confidence 0.121
  1464. 1 duplicate(s) ; c02054098.png ; $x _ { k } ^ { \mathscr { K } } , z _ { h } ^ { \xi }$ ; confidence 0.118
  1465. 1 duplicate(s) ; c0224509.png ; $\lambda _ { 0 } , \lambda _ { i } ( t ) , \quad i = 1 , \ldots , m ; \quad e _ { \mu } , \quad \mu = 1 , \ldots , p$ ; confidence 0.114
  1466. 1 duplicate(s) ; s0871708.png ; $\Delta ^ { n } = \{ ( t _ { 0 } , \ldots , t _ { k } + 1 ) : 0 \leq t _ { i } \leq 1 , \sum t _ { i } = 1 \} \subset R ^ { n + 1 }$ ; confidence 0.113
  1467. 1 duplicate(s) ; v0968401.png ; $\int _ { \mathscr { A } } ^ { X } K ( x , s ) \phi ( s ) d s = f ( x )$ ; confidence 0.112
  1468. 1 duplicate(s) ; p0737309.png ; $\tilde { a } ( t ) = \pi ( x , t ) = \sum _ { k = 1 } ^ { n } \tau _ { k } u _ { k } ( t )$ ; confidence 0.111
  1469. 1 duplicate(s) ; j05405089.png ; $\operatorname { cs } u = \frac { \operatorname { cn } u } { \operatorname { sn } u } , \quad \text { ds } u = \frac { \operatorname { dn } u } { \operatorname { sin } u } , \quad \operatorname { dc } u = \frac { \operatorname { dn } u } { \operatorname { cn } u }$ ; confidence 0.105
  1470. 1 duplicate(s) ; e12010044.png ; $t ^ { em } = t ^ { em , f } + ( P \otimes E ^ { \prime } - B \bigotimes M ^ { \prime } + 2 ( M ^ { \prime } . B ) 1 )$ ; confidence 0.105
  1471. 1 duplicate(s) ; l0593103.png ; $\alpha _ { 1 } , \ldots , \alpha _ { \mathfrak { N } } , a$ ; confidence 0.104
  1472. 1 duplicate(s) ; e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
  1473. 1 duplicate(s) ; l06077012.png ; $( a \alpha ) , ( \alpha a \alpha ) , \dots$ ; confidence 0.099
  1474. 1 duplicate(s) ; s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
  1475. 1 duplicate(s) ; q07625090.png ; $\kappa = \overline { \operatorname { lim } _ { t } } _ { t \rightarrow \infty } ( \operatorname { ln } \| u ( t , 0 ) \| ) / t$ ; confidence 0.093
  1476. 1 duplicate(s) ; t09225039.png ; $k ( A , B ) \bigotimes Z _ { l } \rightarrow \operatorname { Hom } _ { Gal ( \tilde { k } / k ) } ( T _ { l } ( A ) , T _ { l } ( B ) )$ ; confidence 0.090
  1477. 1 duplicate(s) ; m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
  1478. 1 duplicate(s) ; e0357003.png ; $X \quad ( \text { where ad } X ( Y ) = [ X , Y ] )$ ; confidence 0.089
  1479. 1 duplicate(s) ; h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
  1480. 1 duplicate(s) ; s08566010.png ; $F ( U ) \rightarrow \prod _ { i \in I } F ( U _ { i } ) \rightarrow \prod _ { ( i , j ) \in I \times I } F ( U _ { i } \cap U _ { j } )$ ; confidence 0.083
  1481. 1 duplicate(s) ; p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
  1482. 1 duplicate(s) ; d12002092.png ; $V _ { V }$ ; confidence 0.082
  1483. 1 duplicate(s) ; p07304041.png ; $R ( t , x _ { 1 } , \ldots , x _ { n } ; \eta _ { 1 } , \dots , \eta _ { s } ; a _ { s } + 1 , \dots , \alpha _ { k } ) =$ ; confidence 0.080
  1484. 1 duplicate(s) ; c0270004.png ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
  1485. 1 duplicate(s) ; a014060135.png ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
  1486. 1 duplicate(s) ; s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
  1487. 1 duplicate(s) ; c02203033.png ; $C _ { \omega }$ ; confidence 0.073
  1488. 1 duplicate(s) ; j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
  1489. 1 duplicate(s) ; e12010035.png ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
  1490. 1 duplicate(s) ; t12005082.png ; $\sum _ { 1 } ^ { i } , \ldots , i _ { S }$ ; confidence 0.070
  1491. 1 duplicate(s) ; i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
  1492. 1 duplicate(s) ; g0438203.png ; $D ^ { \alpha } f = \frac { \partial ^ { | \alpha | } f } { \partial x _ { 1 } ^ { \alpha _ { 1 } } \ldots \partial x _ { n } ^ { \alpha _ { n } } } , \quad | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.067
  1493. 1 duplicate(s) ; a01182053.png ; $\mathfrak { M } ^ { * } = \{ \mathfrak { A } _ { 1 } ^ { \alpha _ { 11 } \ldots \alpha _ { 1 l } } , \ldots , \mathfrak { A } _ { q } ^ { \alpha _ { q 1 } \cdots \alpha _ { q l } } \}$ ; confidence 0.067
  1494. 1 duplicate(s) ; h04624022.png ; $[ \nabla , a ] = \nabla \times a = \operatorname { rot } a = ( \frac { \partial a _ { 3 } } { \partial x _ { 2 } } - \frac { \partial \alpha _ { 2 } } { \partial x _ { 3 } } ) e _ { 1 } +$ ; confidence 0.065
  1495. 1 duplicate(s) ; l05938014.png ; $\left. \begin{array} { l } { \text { sup } \operatorname { Re } \lambda _ { m } ( \xi , x ^ { 0 } , t ^ { 0 } ) < 0 } \\ { m } \\ { | \xi | = 1 } \end{array} \right.$ ; confidence 0.058
  1496. 1 duplicate(s) ; g0434801.png ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
  1497. 1 duplicate(s) ; g04441010.png ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
  1498. 1 duplicate(s) ; m0653306.png ; $P \{ X _ { 1 } = n _ { 1 } , \dots , X _ { k } = n _ { k } \} = \frac { n ! } { n ! \cdots n _ { k } ! } p _ { 1 } ^ { n _ { 1 } } \dots p _ { k } ^ { n _ { k } }$ ; confidence 0.054
  1499. 1 duplicate(s) ; c020800a.gif ; Missing ; confidence 0.000
  1500. 1 duplicate(s) ; b12009047.png ; Missing ; confidence 0.000
  1501. 1 duplicate(s) ; s087450245.png ; Missing ; confidence 0.000
  1502. 1 duplicate(s) ; r0801405.png ; Missing ; confidence 0.000
  1503. 1 duplicate(s) ; c02161036.png ; Missing ; confidence 0.000
  1504. 1 duplicate(s) ; c02054019.png ; Missing ; confidence 0.000
  1505. 1 duplicate(s) ; i13007038.png ; Missing ; confidence 0.000
  1506. 1 duplicate(s) ; m06514047.png ; Missing ; confidence 0.000
  1507. 1 duplicate(s) ; a013370a.gif ; Missing ; confidence 0.000
  1508. 1 duplicate(s) ; f130290125.png ; Missing ; confidence 0.000
  1509. 1 duplicate(s) ; l060600a.gif ; Missing ; confidence 0.000
  1510. 1 duplicate(s) ; o110030a.gif ; Missing ; confidence 0.000
  1511. 2 duplicate(s) ; f04098020.png ; Missing ; confidence 0.000
  1512. 1 duplicate(s) ; t12020075.png ; Missing ; confidence 0.000
  1513. 1 duplicate(s) ; b13020080.png ; Missing ; confidence 0.000
  1514. 1 duplicate(s) ; f120230116.png ; Missing ; confidence 0.000
  1515. 1 duplicate(s) ; n06652028.png ; Missing ; confidence 0.000
  1516. 1 duplicate(s) ; i052860154.png ; Missing ; confidence 0.000
  1517. 1 duplicate(s) ; o0700709.png ; Missing ; confidence 0.000
  1518. 1 duplicate(s) ; d12023018.png ; Missing ; confidence 0.000
  1519. 1 duplicate(s) ; c02335032.png ; Missing ; confidence 0.000
  1520. 2 duplicate(s) ; c024850244.png ; Missing ; confidence 0.000
  1521. 1 duplicate(s) ; c025140179.png ; Missing ; confidence 0.000
  1522. 1 duplicate(s) ; d12012067.png ; Missing ; confidence 0.000
  1523. 1 duplicate(s) ; f120230133.png ; Missing ; confidence 0.000
  1524. 1 duplicate(s) ; g04441011.png ; Missing ; confidence 0.000
  1525. 1 duplicate(s) ; c024850123.png ; Missing ; confidence 0.000
How to Cite This Entry:
Maximilian Janisch/latexlist/latex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex&oldid=43767