Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT: Updated image/latex database (currently 50 images indexed; order by confidence, reverse: True.)
(AUTOMATIC EDIT: Updated image/latex database (currently 125 images indexed; order by confidence, reverse: True.)
Line 2: Line 2:
  
 
== List ==
 
== List ==
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png" /> : $15$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png" /> : $1$
 +
(confidence 1.00)
 +
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png" /> : $( 4 n + 3 )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png" /> : $( 4 n + 3 )$  
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010151.png" /> : $4 n + 3$
 
(confidence 1.00)
 
(confidence 1.00)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010126.png" /> : $11$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010126.png" /> : $11$  
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png" /> : $11$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010149.png" /> : $2$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png" /> : $2$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010146.png" /> : $7$
 
(confidence 1.00)
 
(confidence 1.00)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png" /> : $m = 4 n + 3$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png" /> : $m = 4 n + 3$  
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png" /> : $n + 2$
 
(confidence 1.00)
 
(confidence 1.00)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png" /> : $\xi ( \tau )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png" /> : $\xi ( \tau )$  
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png" /> : $4 n$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png" /> : $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$
 
(confidence 1.00)
 
(confidence 1.00)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png" /> : $B ^ { A } \cong ( A ^ { * } \otimes B )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png" /> : $B ^ { A } \cong ( A ^ { * } \otimes B )$  
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001049.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$
 
(confidence 1.00)
 
(confidence 1.00)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $A$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $A$  
 
(confidence 1.00)
 
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png" /> : $n \geq 0$
 +
(confidence 1.00)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001058.png" /> : $F _ { 3 }$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001051.png" /> : $F _ { 3 }$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png" /> : $F _ { 3 }$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001068.png" /> : $F _ { 3 }$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png" /> : $n \geq 1$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png" /> : $\operatorname { dim } ( O ) = 4$
 +
(confidence 0.99)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010132.png" /> : $3$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010132.png" /> : $3$  
Line 34: Line 88:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200102.png" /> : $3$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200102.png" /> : $3$  
 
(confidence 0.99)
 
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001045.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001062.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010111.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010155.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001043.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010144.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001059.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010102.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010145.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001092.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001073.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010154.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001050.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001066.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010152.png" /> : $3$
 +
(confidence 0.99)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png" /> : $i < n$
 +
(confidence 0.98)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$  
Line 40: Line 142:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png" /> : $\xi$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png" /> : $\xi$  
 
(confidence 0.98)
 
(confidence 0.98)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001013.png" /> : $\xi$
 +
(confidence 0.98)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png" /> : $F _ { \tau } \subset F _ { 3 } \subset S$
 +
(confidence 0.97)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png" /> : $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$
 +
(confidence 0.96)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png" /> : $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$
 +
(confidence 0.96)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001012.png" /> : $S$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001012.png" /> : $S$  
Line 51: Line 165:
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001036.png" /> : $S$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001036.png" /> : $S$  
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010122.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001052.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001093.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001096.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001047.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001023.png" /> : $S$
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001080.png" /> : $S$
 
(confidence 0.95)
 
(confidence 0.95)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$  
 +
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png" /> : $Z = G / U ( 1 ) . K$
 
(confidence 0.95)
 
(confidence 0.95)
  
Line 61: Line 199:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png" /> : $S ^ { * } = S$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png" /> : $S ^ { * } = S$  
 
(confidence 0.95)
 
(confidence 0.95)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png" /> : $5 ^ { 3 }$
 +
(confidence 0.94)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png" /> : $\lambda = \operatorname { dim } ( S ) - 1$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png" /> : $\lambda = \operatorname { dim } ( S ) - 1$  
Line 67: Line 208:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png" /> : $T ^ { 2 } \times SO ( 3 )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png" /> : $T ^ { 2 } \times SO ( 3 )$  
 
(confidence 0.94)
 
(confidence 0.94)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001063.png" /> : $0$
 +
(confidence 0.93)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001086.png" /> : $0$
 +
(confidence 0.93)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png" /> : $\Gamma \subset \operatorname { SU } ( 2 )$
 +
(confidence 0.92)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png" /> : $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$
 +
(confidence 0.92)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png" /> : $C ( S )$
 +
(confidence 0.90)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001010.png" /> : $C ( S )$
 +
(confidence 0.90)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png" /> : $b _ { 2 i + 1 } ( S ) = 0$
 +
(confidence 0.90)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png" /> : $m > 3$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png" /> : $m > 3$  
Line 75: Line 237:
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001065.png" /> : $SO ( 3 )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001065.png" /> : $SO ( 3 )$  
 +
(confidence 0.88)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png" /> : $SO ( 3 )$
 
(confidence 0.88)
 
(confidence 0.88)
  
Line 82: Line 247:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png" /> : $\xi = I ( \partial _ { r } )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png" /> : $\xi = I ( \partial _ { r } )$  
 
(confidence 0.87)
 
(confidence 0.87)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png" /> : $\operatorname { sp } ( ( m + 1 ) / 4 )$
 +
(confidence 0.86)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png" /> : $U ( 1 ) _ { \tau } \subset SU ( 2 )$
 +
(confidence 0.82)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png" /> : $T ^ { n }$
 +
(confidence 0.82)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png" /> : $S ^ { 3 } / \Gamma$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png" /> : $S ^ { 3 } / \Gamma$  
 
(confidence 0.82)
 
(confidence 0.82)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png" /> : $5 ^ { 2 }$
 +
(confidence 0.80)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png" /> : $SU ( 2 )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png" /> : $SU ( 2 )$  
 +
(confidence 0.79)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001054.png" /> : $SU ( 2 )$
 
(confidence 0.79)
 
(confidence 0.79)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png" /> : $T ^ { 2 } \times Sp ( 1 )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png" /> : $T ^ { 2 } \times Sp ( 1 )$  
 
(confidence 0.79)
 
(confidence 0.79)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png" /> : $l > 1$
 +
(confidence 0.77)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png" /> : $\triangle ( G / K )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png" /> : $\triangle ( G / K )$  
 
(confidence 0.77)
 
(confidence 0.77)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png" /> : $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$
 +
(confidence 0.75)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $5$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $5$  
 +
(confidence 0.74)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png" /> : $\alpha = 1,2,3$
 
(confidence 0.74)
 
(confidence 0.74)
  
Line 103: Line 292:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png" /> : $p$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png" /> : $p$  
 
(confidence 0.64)
 
(confidence 0.64)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png" /> : $O = G / Sp ( 1 ) . K$
 +
(confidence 0.57)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png" /> : $S ( p )$
 +
(confidence 0.52)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010137.png" /> : $S ( p )$
 +
(confidence 0.52)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png" /> : $SO ( 4 n + 3 )$
 +
(confidence 0.49)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png" /> : $b _ { 2 } ( S ) \leq 1$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png" /> : $b _ { 2 } ( S ) \leq 1$  
Line 136: Line 337:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png" /> : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png" /> : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$  
 
(confidence 0.37)
 
(confidence 0.37)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png" /> : $5$
 +
(confidence 0.36)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001016.png" /> : $( S , g )$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001016.png" /> : $( S , g )$  
 
(confidence 0.31)
 
(confidence 0.31)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200103.png" /> : $( S , g )$
 +
(confidence 0.31)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001044.png" /> : $( S , g )$
 +
(confidence 0.31)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png" /> : $( S , g )$
 +
(confidence 0.31)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png" /> : $( C ( s ) , g )$
 +
(confidence 0.28)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png" /> : $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname { SU } ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png" /> : $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname { SU } ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$  
Line 145: Line 361:
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png" /> : $\{ I ^ { 1 } , P ^ { 2 } , \hat { P } \}$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png" /> : $\{ I ^ { 1 } , P ^ { 2 } , \hat { P } \}$  
 
(confidence 0.26)
 
(confidence 0.26)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png" /> : $\triangle ( S )$
 +
(confidence 0.20)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png" /> : $\Phi ^ { \mathscr { C } } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$
 +
(confidence 0.14)
 +
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png" /> : $\eta ^ { \mathscr { C } } ( Y ) = g ( \xi ^ { \alpha } , Y )$
 +
(confidence 0.06)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300108.png" /> : $ $  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300108.png" /> : $ $  

Revision as of 23:06, 6 April 2019

This is a list of automatically classified LaTeX files. You can manually edit this list, your changes will currently not be considered and only overwritten though.

List

 : $15$ (confidence 1.00)

 : $1$ (confidence 1.00)

 : $( 4 n + 3 )$ (confidence 1.00)

 : $4 n + 3$ (confidence 1.00)

 : $11$ (confidence 1.00)

 : $11$ (confidence 1.00)

 : $2$ (confidence 1.00)

 : $2$ (confidence 1.00)

 : $7$ (confidence 1.00)

 : $m = 4 n + 3$ (confidence 1.00)

 : $n + 2$ (confidence 1.00)

 : $\xi ( \tau )$ (confidence 1.00)

 : $4 n$ (confidence 1.00)

 : $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ (confidence 1.00)

 : $B ^ { A } \cong ( A ^ { * } \otimes B )$ (confidence 1.00)

 : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ (confidence 1.00)

 : $A$ (confidence 1.00)

 : $n \geq 0$ (confidence 1.00)

 : $F _ { 3 }$ (confidence 0.99)

 : $F _ { 3 }$ (confidence 0.99)

 : $F _ { 3 }$ (confidence 0.99)

 : $F _ { 3 }$ (confidence 0.99)

 : $n \geq 1$ (confidence 0.99)

 : $\operatorname { dim } ( O ) = 4$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $3$ (confidence 0.99)

 : $i < n$ (confidence 0.98)

 : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ (confidence 0.98)

 : $\xi$ (confidence 0.98)

 : $\xi$ (confidence 0.98)

 : $F _ { \tau } \subset F _ { 3 } \subset S$ (confidence 0.97)

 : $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ (confidence 0.96)

 : $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ (confidence 0.96)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $S$ (confidence 0.95)

 : $A , B , C \in C$ (confidence 0.95)

 : $Z = G / U ( 1 ) . K$ (confidence 0.95)

 : $> 7$ (confidence 0.95)

 : $S ^ { * } = S$ (confidence 0.95)

 : $5 ^ { 3 }$ (confidence 0.94)

 : $\lambda = \operatorname { dim } ( S ) - 1$ (confidence 0.94)

 : $T ^ { 2 } \times SO ( 3 )$ (confidence 0.94)

 : $0$ (confidence 0.93)

 : $0$ (confidence 0.93)

 : $\Gamma \subset \operatorname { SU } ( 2 )$ (confidence 0.92)

 : $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ (confidence 0.92)

 : $C ( S )$ (confidence 0.90)

 : $C ( S )$ (confidence 0.90)

 : $b _ { 2 i + 1 } ( S ) = 0$ (confidence 0.90)

 : $m > 3$ (confidence 0.89)

 : $Z = S / F _ { \tau }$ (confidence 0.89)

 : $SO ( 3 )$ (confidence 0.88)

 : $SO ( 3 )$ (confidence 0.88)

 : $C$ (confidence 0.87)

 : $\xi = I ( \partial _ { r } )$ (confidence 0.87)

 : $\operatorname { sp } ( ( m + 1 ) / 4 )$ (confidence 0.86)

 : $U ( 1 ) _ { \tau } \subset SU ( 2 )$ (confidence 0.82)

 : $T ^ { n }$ (confidence 0.82)

 : $S ^ { 3 } / \Gamma$ (confidence 0.82)

 : $5 ^ { 2 }$ (confidence 0.80)

 : $SU ( 2 )$ (confidence 0.79)

 : $SU ( 2 )$ (confidence 0.79)

 : $T ^ { 2 } \times Sp ( 1 )$ (confidence 0.79)

 : $l > 1$ (confidence 0.77)

 : $\triangle ( G / K )$ (confidence 0.77)

 : $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ (confidence 0.75)

 : $5$ (confidence 0.74)

 : $\alpha = 1,2,3$ (confidence 0.74)

 : $R e l$ (confidence 0.69)

 : $p$ (confidence 0.64)

 : $O = G / Sp ( 1 ) . K$ (confidence 0.57)

 : $S ( p )$ (confidence 0.52)

 : $S ( p )$ (confidence 0.52)

 : $SO ( 4 n + 3 )$ (confidence 0.49)

 : $b _ { 2 } ( S ) \leq 1$ (confidence 0.48)

 : $sp ( 0 )$ (confidence 0.44)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $35$ (confidence 0.42)

 : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ (confidence 0.39)

 : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ (confidence 0.37)

 : $5$ (confidence 0.36)

 : $( S , g )$ (confidence 0.31)

 : $( S , g )$ (confidence 0.31)

 : $( S , g )$ (confidence 0.31)

 : $( S , g )$ (confidence 0.31)

 : $( C ( s ) , g )$ (confidence 0.28)

 : $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname { SU } ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ (confidence 0.27)

 : $\{ I ^ { 1 } , P ^ { 2 } , \hat { P } \}$ (confidence 0.26)

 : $\triangle ( S )$ (confidence 0.20)

 : $\Phi ^ { \mathscr { C } } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ (confidence 0.14)

 : $\eta ^ { \mathscr { C } } ( Y ) = g ( \xi ^ { \alpha } , Y )$ (confidence 0.06)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

How to Cite This Entry:
Maximilian Janisch/latexlist. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist&oldid=43674