Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT: Updated image/latex database (currently 475 images indexed)
(AUTOMATIC EDIT: Updated image/latex database (currently 475 images indexed (order by confidence, reverse: True.)
Line 2: Line 2:
  
 
== List ==
 
== List ==
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002010.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png" /> : $( 4 n + 3 )$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002011.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010118.png" /> : $4 n + 3$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002012.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010151.png" /> : $4 n + 3$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png" /> : $\pi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png" /> : $( 1 / 2 \pi ) ^ { n / 2 }$  
(confidence 0.45)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002014.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png" /> : $m = 4 n + 3$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002016.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png" /> : $n + 2$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002018.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png" /> : $2 \times 2$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002019.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png" /> : $7$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100203.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png" /> : $x > 0$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png" /> : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042093.png" /> : $( G , G ^ { + } )$  
(confidence 0.52)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png" /> : $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { x _ { 1 } } \square \ldots x _ { k }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420115.png" /> : $( G , G ^ { + } )$  
(confidence 0.10)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042088.png" /> : $( G , G ^ { + } )$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100207.png" /> : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042083.png" /> : $( G , G ^ { + } )$  
(confidence 0.52)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100208.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420111.png" /> : $( G , G ^ { + } )$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100209.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png" /> : $n > 0$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008011.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png" /> : $p \neq 2$  
(confidence 0.12)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008013.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115041.png" /> : $p ^ { - 1 } + q ^ { - 1 } = 1$  
(confidence 0.12)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008014.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420121.png" /> : $y \leq x$  
(confidence 0.12)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008016.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png" /> : $B ^ { A } \cong ( A ^ { * } \otimes B )$  
(confidence 0.00)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008017.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115045.png" /> : $1 < p \leq 2$  
(confidence 0.12)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100802.png" /> : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420162.png" /> : $\theta = \theta$  
(confidence 0.31)
+
(confidence 1.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008020.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png" /> : $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008021.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png" /> : $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$  
(confidence 0.12)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008022.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$  
(confidence 0.12)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png" /> : $n > 1$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png" /> : $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008025.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001049.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
(confidence 0.12)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008026.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001037.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001031.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008030.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001053.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
(confidence 0.00)
+
(confidence 0.99)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008031.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png" /> : $( S ) = 7$  
(confidence 0.00)
+
(confidence 0.98)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008032.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png" /> : $> 1$  
(confidence 0.00)
+
(confidence 0.98)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008033.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042098.png" /> : $K _ { 1 } ( A ) = 0$  
(confidence 0.00)
+
(confidence 0.98)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008034.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png" /> : $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$  
(confidence 0.00)
+
(confidence 0.98)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008035.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png" /> : $m > 3$  
(confidence 0.12)
+
(confidence 0.98)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008036.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png" /> : $( x , t , z ) =$  
(confidence 0.00)
+
(confidence 0.97)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008037.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png" /> : $\varphi , \psi : A \rightarrow B$  
(confidence 0.00)
+
(confidence 0.97)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100804.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420113.png" /> : $f ( G ^ { + } ) \subseteq R ^ { + }$  
(confidence 0.12)
+
(confidence 0.97)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png" /> : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$  
(confidence 0.31)
+
(confidence 0.97)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042065.png" /> : $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$  
(confidence 0.00)
+
(confidence 0.96)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png" /> : $A _ { n _ { 1 } } , \ldots , A _ { n _ { 1 } } \ldots n _ { k } , \dots$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png" /> : $x , y \in A$  
(confidence 0.12)
+
(confidence 0.96)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100809.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png" /> : $T ^ { 2 } \times SO ( 3 )$  
(confidence 0.12)
+
(confidence 0.96)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420100.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013024.png" /> : $g ( z$  
(confidence 0.08)
+
(confidence 0.96)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420101.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042064.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$  
(confidence 0.12)
+
(confidence 0.95)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420102.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420161.png" /> : $A _ { \theta } \cong A _ { \theta }$  
(confidence 0.12)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420103.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042050.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$  
(confidence 0.72)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420105.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png" /> : $F L y$  
(confidence 0.76)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420106.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042074.png" /> : $\varphi : A \rightarrow B$  
(confidence 0.12)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420107.png" /> : $\tau : A \rightarrow 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420148.png" /> : $\varphi : A \rightarrow B$  
(confidence 0.44)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420108.png" /> : $\tau ( x y ) = \tau ( y x )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png" /> : $\varphi : A \rightarrow B$  
(confidence 0.66)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420109.png" /> : $x , y \in A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png" /> : $L ( \psi ) = z \psi$  
(confidence 0.96)
+
(confidence 0.94)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png" /> : $t$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420117.png" /> : $H ^ { + } = G ^ { + } \cap H$  
(confidence 0.51)
+
(confidence 0.93)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420111.png" /> : $( G , G ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png" /> : $p ( 0$  
(confidence 1.00)
+
(confidence 0.93)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420112.png" /> : $f : G \rightarrow R$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png" /> : $A$  
(confidence 0.84)
+
(confidence 0.93)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420113.png" /> : $f ( G ^ { + } ) \subseteq R ^ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420157.png" /> : $A$  
(confidence 0.97)
+
(confidence 0.93)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420114.png" /> : $e$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png" /> : $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$  
(confidence 0.31)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420115.png" /> : $( G , G ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042055.png" /> : $K _ { 0 } ( A ) ^ { + }$  
(confidence 1.00)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420116.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420151.png" /> : $K _ { 0 } ( A ) ^ { + }$  
(confidence 0.41)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420117.png" /> : $H ^ { + } = G ^ { + } \cap H$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png" /> : $i < n$  
(confidence 0.93)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png" /> : $e$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420137.png" /> : $\tau \mapsto K _ { 0 } ( \tau )$  
(confidence 0.31)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420119.png" /> : $x \in H ^ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png" /> : $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - t }$  
(confidence 0.29)
+
(confidence 0.92)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420120.png" /> : $y \in G$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png" /> : $b _ { 2 i + 1 } ( S ) = 0$  
(confidence 0.68)
+
(confidence 0.91)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420121.png" /> : $y \leq x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115065.png" /> : $\beta = ( 1 / 2 \pi ) ^ { x }$  
(confidence 1.00)
+
(confidence 0.91)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png" /> : $y \in H$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png" /> : $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$  
(confidence 0.79)
+
(confidence 0.91)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png" /> : $4 n$  
(confidence 0.00)
+
(confidence 0.90)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420124.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png" /> : $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$  
(confidence 0.12)
+
(confidence 0.90)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420125.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png" /> : $S ^ { * } = S$  
(confidence 0.97)
+
(confidence 0.90)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png" /> : $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png" /> : $\operatorname { sp } ( ( m + 1 ) / 4 )$  
(confidence 0.68)
+
(confidence 0.90)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png" /> : $m$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png" /> : $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$  
(confidence 0.16)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png" /> : $ $  
(confidence 0.00)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420129.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010146.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420130.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010156.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420131.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001027.png" /> : $a = 1,2,3$  
(confidence 0.12)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420132.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png" /> : $a = 1,2,3$  
(confidence 0.12)
+
(confidence 0.89)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png" /> : $1 \times$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042066.png" /> : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
(confidence 0.27)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png" /> : $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042071.png" /> : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
(confidence 0.74)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420135.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115035.png" /> : $L _ { p } ( R ^ { n } )$  
(confidence 0.12)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420136.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115039.png" /> : $L _ { p } ( R ^ { n } )$  
(confidence 0.08)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420137.png" /> : $\tau \mapsto K _ { 0 } ( \tau )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001025.png" /> : $C ( S$  
(confidence 0.92)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png" /> : $I \mapsto I$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001010.png" /> : $C ( S$  
(confidence 0.14)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420139.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png" /> : $C ( S$  
(confidence 0.08)
+
(confidence 0.88)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420140.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042080.png" /> : $7$  
(confidence 0.12)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420141.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042073.png" /> : $7$  
(confidence 0.76)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420142.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042076.png" /> : $7$  
(confidence 0.12)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png" /> : $7$  
(confidence 0.00)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420144.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png" /> : $U ( ( m + 1 ) / 2 )$  
(confidence 0.76)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420145.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013028.png" /> : $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$  
(confidence 0.76)
+
(confidence 0.87)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420146.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png" /> : $Z = G / U ( 1 ) . K$  
(confidence 0.12)
+
(confidence 0.85)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420147.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001054.png" /> : $U ( 2 )$  
(confidence 0.00)
+
(confidence 0.84)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420148.png" /> : $\varphi : A \rightarrow B$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png" /> : $U ( 2 )$  
(confidence 0.94)
+
(confidence 0.84)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png" /> : $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420112.png" /> : $f : G \rightarrow R$  
(confidence 0.77)
+
(confidence 0.84)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png" /> : $06$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png" /> : $C ( S ^ { 2 n }$
(confidence 0.34)
+
(confidence 0.84)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png" /> : $\partial x = \partial / \partial t$  
 +
(confidence 0.83)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420151.png" /> : $K _ { 0 } ( A ) ^ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png" /> : $( \partial / \partial x ) - P _ { 0 } z$  
(confidence 0.92)
+
(confidence 0.83)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420152.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png" /> : $\phi = \phi _ { - } \phi _ { + }$  
(confidence 0.08)
+
(confidence 0.82)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420153.png" /> : $K _ { 0 } ( B ) ^ { + }$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420153.png" /> : $K _ { 0 } ( B ) ^ { + }$  
 
(confidence 0.82)
 
(confidence 0.82)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png" /> : $x ^ { 2 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042068.png" /> : $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$  
(confidence 0.13)
+
(confidence 0.81)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420156.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042070.png" /> : $K _ { 0 } ( \varphi ) = a$  
(confidence 0.76)
+
(confidence 0.81)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420157.png" /> : $A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png" /> : $n > 1$  
(confidence 0.93)
+
(confidence 0.81)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420158.png" /> : $A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png" /> : $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$  
(confidence 0.93)
+
(confidence 0.81)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420159.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042067.png" /> : $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$  
(confidence 0.00)
+
(confidence 0.80)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png" /> : $K _ { 0 } ( B ) = Z + \vec { \theta } Z$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png" /> : $F _ { j k } =$  
(confidence 0.18)
+
(confidence 0.80)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420161.png" /> : $A _ { \theta } \cong A _ { \theta }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013068.png" /> : $L ( \Lambda _ { 0 }$  
(confidence 0.94)
+
(confidence 0.80)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420162.png" /> : $\theta = \theta$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png" /> : $L ( \Lambda _ { 0 }$  
(confidence 1.00)
+
(confidence 0.80)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420163.png" /> : $\theta = 1 - \theta$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013064.png" /> : $L ( \Lambda _ { 0 }$  
(confidence 0.74)
+
(confidence 0.80)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420164.png" /> : $C ( S ^ { 2 n }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png" /> : $b _ { 2 } \neq b _ { 6 }$  
(confidence 0.84)
+
(confidence 0.79)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420165.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png" /> : $y \in H$  
(confidence 0.72)
+
(confidence 0.79)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png" /> : $3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042056.png" /> : $\Sigma ( A$  
(confidence 0.43)
+
(confidence 0.79)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420167.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png" /> : $\Phi \rightarrow \Psi$  
(confidence 0.76)
+
(confidence 0.78)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420168.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png" /> : $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$  
(confidence 0.76)
+
(confidence 0.78)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420149.png" /> : $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
(confidence 0.72)
+
(confidence 0.77)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420170.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115034.png" /> : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$
 +
(confidence 0.77)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png" /> : $C ^ { \infty } ( S ^ { 1 } , SL _ { 2 } ( C ) )$  
 
(confidence 0.76)
 
(confidence 0.76)
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042047.png" /> : $4$
 
(confidence 0.72)
 
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042048.png" /> : $4$
 
(confidence 0.72)
 
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042049.png" /> : $C$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042049.png" /> : $C$  
 
(confidence 0.76)
 
(confidence 0.76)
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042050.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$
 
(confidence 0.94)
 
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042051.png" /> : $C$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042051.png" /> : $C$  
 
(confidence 0.76)
 
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042052.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420144.png" /> : $C$  
(confidence 0.12)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420156.png" /> : $C$  
(confidence 0.08)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042054.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420145.png" /> : $C$  
(confidence 0.12)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042055.png" /> : $K _ { 0 } ( A ) ^ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420141.png" /> : $C$  
(confidence 0.92)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042056.png" /> : $\Sigma ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420105.png" /> : $C$  
(confidence 0.79)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042057.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420167.png" /> : $C$  
(confidence 0.08)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042058.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png" /> : $C$  
(confidence 0.12)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042059.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420170.png" /> : $C$  
(confidence 0.12)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420168.png" /> : $C$  
(confidence 0.00)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042061.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042097.png" /> : $C$  
(confidence 0.12)
+
(confidence 0.76)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042062.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$  
(confidence 0.00)
+
(confidence 0.75)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042063.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420163.png" /> : $\theta = 1 - \theta$  
(confidence 0.87)
+
(confidence 0.74)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042064.png" /> : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png" /> : $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$  
(confidence 0.95)
+
(confidence 0.74)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042065.png" /> : $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420134.png" /> : $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$  
(confidence 0.96)
+
(confidence 0.74)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042066.png" /> : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png" /> : $\sum ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$  
(confidence 0.88)
+
(confidence 0.74)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042067.png" /> : $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png" /> : $( g )$  
(confidence 0.80)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042068.png" /> : $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013071.png" /> : $( g )$  
(confidence 0.81)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042069.png" /> : $\varphi : A \rightarrow B$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010110.png" /> : $x > 7$  
(confidence 0.94)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042070.png" /> : $K _ { 0 } ( \varphi ) = a$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png" /> : $4$  
(confidence 0.81)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042071.png" /> : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420165.png" /> : $4$  
(confidence 0.88)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042072.png" /> : $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042047.png" /> : $4$  
(confidence 0.74)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042073.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042094.png" /> : $4$  
(confidence 0.87)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042074.png" /> : $\varphi : A \rightarrow B$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420103.png" /> : $4$  
(confidence 0.94)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042075.png" /> : $\varphi , \psi : A \rightarrow B$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042048.png" /> : $4$  
(confidence 0.97)
+
(confidence 0.72)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042076.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png" /> : $C ( s ) , g$  
(confidence 0.87)
+
(confidence 0.71)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png" /> : $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png" /> : $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$  
(confidence 0.92)
+
(confidence 0.71)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png" /> : $1$  
(confidence 0.00)
+
(confidence 0.70)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png" /> : $- 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115033.png" /> : $F ( f ^ { * } g ) = F f . F g$  
(confidence 0.08)
+
(confidence 0.68)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042080.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420126.png" /> : $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q$  
(confidence 0.87)
+
(confidence 0.68)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042081.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png" /> : $> 7$  
(confidence 0.12)
+
(confidence 0.68)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042082.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420120.png" /> : $y \in G$  
(confidence 0.00)
+
(confidence 0.68)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042083.png" /> : $( G , G ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png" /> : $Q _ { 1 } = P _ { 1 }$  
(confidence 1.00)
+
(confidence 0.67)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042084.png" /> : $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png" /> : $x \in r$  
(confidence 0.78)
+
(confidence 0.67)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042085.png" /> : $x _ { i } \leq y _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png" /> : $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$  
(confidence 0.29)
+
(confidence 0.66)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png" /> : $z \in r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png" /> : $x$  
(confidence 0.38)
+
(confidence 0.66)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042087.png" /> : $x _ { i } \leq z \leq y _ { j }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420108.png" /> : $\tau ( x y ) = \tau ( y x )$  
(confidence 0.19)
+
(confidence 0.66)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042088.png" /> : $( G , G ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png" /> : $\xi = I ( \partial _ { y } )$  
(confidence 1.00)
+
(confidence 0.65)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042089.png" /> : $3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png" /> : $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$  
(confidence 0.39)
+
(confidence 0.64)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png" /> : $n > 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png" /> : $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$  
(confidence 0.81)
+
(confidence 0.62)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042091.png" /> : $x \in r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png" /> : $Q _ { 0 } = P$  
(confidence 0.67)
+
(confidence 0.62)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042092.png" /> : $x > 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013011.png" /> : $Q _ { 0 } = P$  
(confidence 1.00)
+
(confidence 0.62)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042093.png" /> : $( G , G ^ { + } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png" /> : $4$  
(confidence 1.00)
+
(confidence 0.62)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042094.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png" /> : $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } )$  
(confidence 0.72)
+
(confidence 0.62)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013029.png" /> : $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi j ( x , t ) z ^ { j } )$  
(confidence 0.76)
+
(confidence 0.60)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042096.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png" /> : $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$  
(confidence 0.12)
+
(confidence 0.59)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042097.png" /> : $C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png" /> : $m = 2 l + 1$  
(confidence 0.76)
+
(confidence 0.59)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042098.png" /> : $K _ { 1 } ( A ) = 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png" /> : $1.3$  
(confidence 0.98)
+
(confidence 0.59)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042099.png" /> : $_ { 0 } ( A$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010143.png" /> : $1.3$  
(confidence 0.08)
+
(confidence 0.59)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001011.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png" /> : $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$  
(confidence 0.00)
+
(confidence 0.58)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001012.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png" /> : $T ^ { 2 } \times Sp ( 1 )$  
(confidence 0.00)
+
(confidence 0.56)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001013.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png" /> : $K P$  
(confidence 0.00)
+
(confidence 0.56)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png" /> : $\sqrt { 2 } e$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013077.png" /> : $T _ { l }$  
(confidence 0.37)
+
(confidence 0.54)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png" /> : $S ^ { * } = S$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png" /> : $T _ { l }$  
(confidence 0.90)
+
(confidence 0.54)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001016.png" /> : $B ^ { A } \cong ( A ^ { * } \otimes B )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png" /> : $( S ) \leq 1$  
(confidence 1.00)
+
(confidence 0.54)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png" /> : $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { x }$  
(confidence 0.00)
+
(confidence 0.54)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001018.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png" /> : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$  
(confidence 0.00)
+
(confidence 0.53)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001019.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png" /> : $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$  
(confidence 0.00)
+
(confidence 0.52)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png" /> : $4 K N$  
(confidence 0.00)
+
(confidence 0.52)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001020.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png" /> : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$  
(confidence 0.00)
+
(confidence 0.52)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png" /> : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100207.png" /> : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$  
(confidence 0.26)
+
(confidence 0.52)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png" /> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png" /> : $\operatorname { dim } ( S ) = 4 n + 3$  
(confidence 0.75)
+
(confidence 0.51)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png" /> : $t$  
(confidence 0.12)
+
(confidence 0.51)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png" /> : $t$  
(confidence 0.00)
+
(confidence 0.51)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png" /> : $A , B , C \in C$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115067.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$  
(confidence 0.99)
+
(confidence 0.50)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300108.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png" /> : $\Delta ( S )$  
(confidence 0.00)
+
(confidence 0.50)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png" /> : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png" /> : $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { n } } - Q _ { 0 } z ^ { n } \phi _ { - } = \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) }$  
(confidence 0.40)
+
(confidence 0.50)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png" /> : $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _ { t } = - \frac { 1 } { 2 } q x _ { x } + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _ { t } = \frac { 1 } { 2 } r _ { X x } - q r ^ { 2 } } \end{array} \right.$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png" /> : $5$  
(confidence 0.37)
+
(confidence 0.50)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png" /> : $t = ( t _ { n }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png" /> : $S ^ { 3 } / \Gamma$  
(confidence 0.41)
+
(confidence 0.50)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png" /> : $4 K N$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png" /> : $7$  
(confidence 0.52)
+
(confidence 0.49)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130101.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png" /> : $S O ( 4 n + 3 )$  
(confidence 0.00)
+
(confidence 0.49)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130102.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png" /> : $5$  
(confidence 0.38)
+
(confidence 0.49)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png" /> : $K P$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010128.png" /> : $b _ { 2 } \neq b$  
(confidence 0.56)
+
(confidence 0.48)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130104.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png" /> : $F \Phi = \Psi$  
(confidence 0.00)
+
(confidence 0.48)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013011.png" /> : $Q _ { 0 } = P$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png" /> : $\frac { \partial } { \partial t _ { t } } Q = [ Q ^ { ( n ) } , g ] , n \geq 1$  
(confidence 0.62)
+
(confidence 0.47)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png" /> : $Q _ { 1 } = P _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png" /> : $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$  
(confidence 0.67)
+
(confidence 0.46)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png" /> : $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002013.png" /> : $\pi$  
(confidence 0.66)
+
(confidence 0.45)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png" /> : $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png" /> : $0 ( 3$  
(confidence 0.64)
+
(confidence 0.45)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013015.png" /> : $L _ { 2 } CC$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001065.png" /> : $0 ( 3$  
(confidence 0.07)
+
(confidence 0.45)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420107.png" /> : $\tau : A \rightarrow 1$  
(confidence 0.00)
+
(confidence 0.44)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013018.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png" /> : $\{ I ^ { 1 } , R , \vec { P } \}$  
(confidence 0.00)
+
(confidence 0.43)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013019.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png" /> : $F L _ { p } \subset l _ { q }$  
(confidence 0.00)
+
(confidence 0.43)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png" /> : $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png" /> : $\phi _ { - } ^ { - 1 } ( \frac { \partial } { \partial x } - P b z ) \phi _ { - } = \frac { \partial } { \partial x } - P$  
(confidence 0.98)
+
(confidence 0.43)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png" /> : $5$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png" /> : $3$  
(confidence 0.50)
+
(confidence 0.43)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png" /> : $( 3 )$  
(confidence 0.00)
+
(confidence 0.42)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013022.png" /> : $( x , t , z ) =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010103.png" /> : $x$  
(confidence 0.97)
+
(confidence 0.41)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png" /> : $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png" /> : $x$  
(confidence 0.62)
+
(confidence 0.41)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013024.png" /> : $g ( z$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420116.png" /> : $x$  
(confidence 0.96)
+
(confidence 0.41)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png" /> : $C ^ { \infty } ( S ^ { 1 } , SL _ { 2 } ( C ) )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png" /> : $t = ( t _ { n }$  
(confidence 0.76)
+
(confidence 0.41)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png" /> : $m$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png" /> : $( O ) = \mathfrak { L }$  
(confidence 0.08)
+
(confidence 0.41)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png" /> : $\phi = \phi _ { - } \phi _ { + }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png" /> : $1 = \operatorname { dim } ( S ) - 1$  
(confidence 0.82)
+
(confidence 0.40)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013028.png" /> : $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300109.png" /> : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$  
(confidence 0.87)
+
(confidence 0.40)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013029.png" /> : $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi j ( x , t ) z ^ { j } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042089.png" /> : $3$  
(confidence 0.60)
+
(confidence 0.39)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png" /> : $( \partial / \partial x ) - P _ { 0 } z$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png" /> : $z \in r$  
(confidence 0.83)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png" /> : $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { \prime }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013061.png" /> : $A _ { 1 }$  
(confidence 0.30)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png" /> : $( 3 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013060.png" /> : $A _ { 1 }$  
(confidence 0.42)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png" /> : $\phi _ { - } ^ { - 1 } ( \frac { \partial } { \partial x } - P b z ) \phi _ { - } = \frac { \partial } { \partial x } - P$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013063.png" /> : $A _ { 1 }$  
(confidence 0.43)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png" /> : $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { n } } - Q _ { 0 } z ^ { n } \phi _ { - } = \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013072.png" /> : $A _ { 1 }$  
(confidence 0.50)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png" /> : $Q _ { 0 } = P$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013057.png" /> : $A _ { 1 }$  
(confidence 0.62)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png" /> : $\partial x = \partial / \partial t$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130102.png" /> : $A _ { 1 }$  
(confidence 0.83)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png" /> : $L _ { 2 } CC$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png" /> : $A _ { 1 }$  
(confidence 0.07)
+
(confidence 0.38)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png" /> : $\frac { \partial } { \partial t _ { t } } Q = [ Q ^ { ( n ) } , g ] , n \geq 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001014.png" /> : $\sqrt { 2 } e$  
(confidence 0.47)
+
(confidence 0.37)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013039.png" /> : $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png" /> : $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _ { t } = - \frac { 1 } { 2 } q x _ { x } + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _ { t } = \frac { 1 } { 2 } r _ { X x } - q r ^ { 2 } } \end{array} \right.$  
(confidence 0.58)
+
(confidence 0.37)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png" /> : $U ( 1 ) _ { \tau } \subset SU ( 2 )$  
(confidence 0.00)
+
(confidence 0.37)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png" /> : $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { N } Q _ { j } z ^ { n - j }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png" /> : $S = \operatorname { SU } ( m ) / S ( U ( m - 2 ) \times U ( 1 )$  
(confidence 0.25)
+
(confidence 0.36)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013041.png" /> : $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - t }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png" /> : $= T$  
(confidence 0.92)
+
(confidence 0.36)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png" /> : $O = G / Sp ( 1 ) . K$  
(confidence 0.00)
+
(confidence 0.35)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png" /> : $F _ { i , j }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png" /> : $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d r ^ { 2 } + r ^ { 2 } g )$  
(confidence 0.10)
+
(confidence 0.35)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png" /> : $F _ { j k } =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png" /> : $P ( 0$  
(confidence 0.80)
+
(confidence 0.35)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png" /> : $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - \gamma } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420150.png" /> : $06$  
(confidence 0.20)
+
(confidence 0.34)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013046.png" /> : $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115070.png" /> : $L _ { 2 } ( R ^ { * } )$  
(confidence 0.91)
+
(confidence 0.33)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png" /> : $x$  
(confidence 0.11)
+
(confidence 0.33)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001016.png" /> : $( S , g$  
(confidence 0.49)
+
(confidence 0.32)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png" /> : $( S , g$  
(confidence 0.12)
+
(confidence 0.32)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png" /> : $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200103.png" /> : $( S , g$  
(confidence 0.46)
+
(confidence 0.32)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013050.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001044.png" /> : $( S , g$  
(confidence 0.00)
+
(confidence 0.32)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013051.png" /> : $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png" /> : $\Delta$  
(confidence 0.99)
+
(confidence 0.32)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013052.png" /> : $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png" /> : $\leq p < 2$  
(confidence 0.52)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png" /> : $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png" /> : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$  
(confidence 0.62)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100802.png" /> : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$  
(confidence 0.20)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013055.png" /> : $L ( \Lambda _ { 0 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115066.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$  
(confidence 0.80)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420114.png" /> : $e$  
(confidence 0.38)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013057.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png" /> : $e$  
(confidence 0.38)
+
(confidence 0.31)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png" /> : $= \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { c }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png" /> : $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { \prime }$  
(confidence 0.14)
+
(confidence 0.30)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png" /> : $\subset \operatorname { SU } ( 2 )$  
(confidence 0.00)
+
(confidence 0.30)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png" /> : $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { x }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png" /> : $x ^ { 2 }$  
(confidence 0.54)
+
(confidence 0.30)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013060.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png" /> : $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { t }$  
(confidence 0.38)
+
(confidence 0.30)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013061.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png" /> : $F _ { T } \subset F _ { 3 } \subset S$  
(confidence 0.38)
+
(confidence 0.30)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013062.png" /> : $L _ { 2 } CC$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png" /> : $Z = S / F _ { T }$  
(confidence 0.07)
+
(confidence 0.29)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013063.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png" /> : $4$  
(confidence 0.38)
+
(confidence 0.29)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013064.png" /> : $L ( \Lambda _ { 0 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420119.png" /> : $x \in H ^ { + }$  
(confidence 0.80)
+
(confidence 0.29)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013065.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042085.png" /> : $x _ { i } \leq y _ { 1 }$  
(confidence 0.00)
+
(confidence 0.29)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115036.png" /> : $\leq p \leq 2$  
(confidence 0.00)
+
(confidence 0.28)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013067.png" /> : $ $
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png" /> : $1 \times$  
(confidence 0.00)
+
(confidence 0.27)
 
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013068.png" /> : $L ( \Lambda _ { 0 }$  
 
(confidence 0.80)
 
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png" /> : $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in T }$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013069.png" /> : $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in T }$  
 
(confidence 0.27)
 
(confidence 0.27)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png" /> : $x ^ { 2 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115038.png" /> : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$  
(confidence 0.30)
+
(confidence 0.26)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png" /> : $T _ { l }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png" /> : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$  
(confidence 0.54)
+
(confidence 0.26)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013071.png" /> : $( g )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013040.png" /> : $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { N } Q _ { j } z ^ { n - j }$  
(confidence 0.72)
+
(confidence 0.25)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013072.png" /> : $A _ { 1 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png" /> : $\Phi ^ { d t } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$  
(confidence 0.38)
+
(confidence 0.24)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010142.png" /> : $I$  
(confidence 0.29)
+
(confidence 0.24)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png" /> : $1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png" /> : $I$  
(confidence 0.70)
+
(confidence 0.24)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013075.png" /> : $( g )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010126.png" /> : $I$  
(confidence 0.72)
+
(confidence 0.24)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png" /> : $P ( 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115040.png" /> : $L _ { \varphi } ( R ^ { n } )$  
(confidence 0.35)
+
(confidence 0.23)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013077.png" /> : $T _ { l }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013084.png" /> : $T$  
(confidence 0.54)
+
(confidence 0.22)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png" /> : $q ^ { ( l ) } = 2 i \frac { T l + 1 } { \tau l } , r ^ { ( l ) } = - 2 i \frac { \tau l - 1 } { \tau l }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png" /> : $T$  
(confidence 0.13)
+
(confidence 0.22)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013079.png" /> : $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png" /> : $\hat { \gamma } ( G / K )$  
(confidence 0.89)
+
(confidence 0.22)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png" /> : $512$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png" /> : $512$  
 
(confidence 0.21)
 
(confidence 0.21)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013081.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png" /> : $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - \gamma } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r }$  
(confidence 0.00)
+
(confidence 0.20)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013082.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013054.png" /> : $x$  
(confidence 0.12)
+
(confidence 0.20)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042087.png" /> : $x _ { i } \leq z \leq y _ { j }$  
(confidence 0.00)
+
(confidence 0.19)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013084.png" /> : $T$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420160.png" /> : $K _ { 0 } ( B ) = Z + \vec { \theta } Z$  
(confidence 0.22)
+
(confidence 0.18)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png" /> : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$  
(confidence 0.12)
+
(confidence 0.17)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013086.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png" /> : $m$  
(confidence 0.00)
+
(confidence 0.16)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013087.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010137.png" /> : $S ( D$  
(confidence 0.12)
+
(confidence 0.16)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png" /> : $T$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png" /> : $S ( D$  
(confidence 0.22)
+
(confidence 0.16)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013089.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115068.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$  
(confidence 0.00)
+
(confidence 0.16)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301309.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png" /> : $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { d : } , Y )$  
(confidence 0.00)
+
(confidence 0.15)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png" /> : $= \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { c }$  
(confidence 0.00)
+
(confidence 0.14)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013091.png" /> : $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420138.png" /> : $I \mapsto I$  
(confidence 0.90)
+
(confidence 0.14)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013092.png" /> : $2 \times 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png" /> : $q ^ { ( l ) } = 2 i \frac { T l + 1 } { \tau l } , r ^ { ( l ) } = - 2 i \frac { \tau l - 1 } { \tau l }$  
(confidence 1.00)
+
(confidence 0.13)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png" /> : $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { t }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png" /> : $x$  
(confidence 0.30)
+
(confidence 0.13)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013094.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420154.png" /> : $x ^ { 2 }$  
(confidence 0.12)
+
(confidence 0.13)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png" /> : $r$  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png" /> : $f ^ { 2 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115043.png" /> : $r$  
(confidence 0.11)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png" /> : $L ( \psi ) = z \psi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png" /> : $r$  
(confidence 0.94)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115037.png" /> : $r$  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png" /> : $7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png" /> : $A _ { n _ { 1 } } , \ldots , A _ { n _ { 1 } } \ldots n _ { k } , \dots$  
(confidence 1.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png" /> : $F \Phi = \Psi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png" /> : $\xi ^ { d x } = I ^ { \alpha } ( \partial _ { \gamma } )$  
(confidence 0.48)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png" /> : $r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png" /> : $ $  
 
(confidence 0.12)
 
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png" /> : $\Phi \rightarrow \Psi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png" /> : $ $  
(confidence 0.78)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png" /> : $F ^ { \prime }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008025.png" /> : $ $  
(confidence 0.11)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png" /> : $t$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100804.png" /> : $ $  
(confidence 0.51)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008021.png" /> : $ $  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115033.png" /> : $F ( f ^ { * } g ) = F f . F g$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008017.png" /> : $ $  
(confidence 0.68)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115034.png" /> : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008014.png" /> : $ $  
(confidence 0.77)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115035.png" /> : $L _ { p } ( R ^ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008022.png" /> : $ $  
(confidence 0.88)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115036.png" /> : $\leq p \leq 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008013.png" /> : $ $  
(confidence 0.28)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115037.png" /> : $r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008035.png" /> : $ $  
 
(confidence 0.12)
 
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115038.png" /> : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100809.png" /> : $ $  
(confidence 0.26)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115039.png" /> : $L _ { p } ( R ^ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008011.png" /> : $ $  
(confidence 0.88)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115040.png" /> : $L _ { \varphi } ( R ^ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420101.png" /> : $ $  
(confidence 0.23)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115041.png" /> : $p ^ { - 1 } + q ^ { - 1 } = 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420124.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115043.png" /> : $r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420146.png" /> : $ $  
 
(confidence 0.12)
 
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115045.png" /> : $1 < p \leq 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042058.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115046.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042096.png" /> : $ $  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png" /> : $p \neq 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420135.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420102.png" /> : $ $  
(confidence 0.13)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png" /> : $r$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420129.png" /> : $ $  
 
(confidence 0.12)
 
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042054.png" /> : $ $  
(confidence 0.33)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png" /> : $F L _ { p } \subset l _ { q }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042081.png" /> : $ $  
(confidence 0.43)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png" /> : $\leq p < 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420140.png" /> : $ $  
(confidence 0.31)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png" /> : $F ^ { \prime }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420130.png" /> : $ $  
(confidence 0.11)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png" /> : $F L y$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420142.png" /> : $ $  
(confidence 0.94)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png" /> : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420132.png" /> : $ $  
(confidence 0.17)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png" /> : $x = ( x _ { 1 } , \ldots , x _ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042061.png" /> : $ $  
(confidence 0.08)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png" /> : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042052.png" /> : $ $  
(confidence 0.53)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420131.png" /> : $ $  
(confidence 0.66)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png" /> : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420106.png" /> : $ $  
 
(confidence 0.12)
 
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png" /> : $( 1 / 2 \pi ) ^ { n / 2 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042059.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013082.png" /> : $ $  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115064.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013094.png" /> : $ $  
(confidence 0.00)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115065.png" /> : $\beta = ( 1 / 2 \pi ) ^ { x }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png" /> : $ $  
(confidence 0.91)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115066.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png" /> : $ $  
(confidence 0.31)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115067.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013087.png" /> : $ $  
(confidence 0.50)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115068.png" /> : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001051.png" /> : $2 =$  
(confidence 0.16)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115069.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001068.png" /> : $2 =$  
(confidence 0.08)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115070.png" /> : $L _ { 2 } ( R ^ { * } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001058.png" /> : $2 =$  
(confidence 0.33)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001010.png" /> : $C ( S$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png" /> : $2 =$  
(confidence 0.88)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png" /> : $O = G / Sp ( 1 ) . K$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png" /> : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$  
(confidence 0.35)
+
(confidence 0.12)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010101.png" /> : $Z = G / U ( 1 ) . K$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png" /> : $ $  
(confidence 0.85)
+
(confidence 0.11)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010102.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png" /> : $F ^ { \prime }$  
(confidence 0.00)
+
(confidence 0.11)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010103.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png" /> : $F ^ { \prime }$  
(confidence 0.41)
+
(confidence 0.11)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png" /> : $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013096.png" /> : $f ^ { 2 }$  
(confidence 0.10)
+
(confidence 0.11)
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png" /> : $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times$  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png" /> : $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times$  
 
(confidence 0.10)
 
(confidence 0.10)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png" /> : $\Delta$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013043.png" /> : $F _ { i , j }$  
(confidence 0.32)
+
(confidence 0.10)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010107.png" /> : $n > 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png" /> : $5 ^ { 2 }$  
(confidence 1.00)
+
(confidence 0.10)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png" /> : $p ( 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010104.png" /> : $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times 2$  
(confidence 0.93)
+
(confidence 0.10)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010109.png" /> : $m > 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png" /> : $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { x _ { 1 } } \square \ldots x _ { k }$  
(confidence 0.98)
+
(confidence 0.10)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png" /> : $\xi = I ( \partial _ { y } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png" /> : $- 1$  
(confidence 0.65)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010110.png" /> : $x > 7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png" /> : $x = ( x _ { 1 } , \ldots , x _ { n } )$  
(confidence 0.72)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010111.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042053.png" /> : $_ { 0 } ( A$  
(confidence 0.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010113.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420152.png" /> : $_ { 0 } ( A$  
(confidence 0.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010114.png" /> : $( S ) = 7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420139.png" /> : $_ { 0 } ( A$  
(confidence 0.98)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010115.png" /> : $I$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420100.png" /> : $_ { 0 } ( A$  
(confidence 0.24)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010116.png" /> : $( O ) = \mathfrak { L }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042057.png" /> : $_ { 0 } ( A$  
(confidence 0.41)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042099.png" /> : $_ { 0 } ( A$  
(confidence 0.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010118.png" /> : $4 n + 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420136.png" /> : $_ { 0 } ( A$  
(confidence 1.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010119.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115069.png" /> : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$  
(confidence 0.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001012.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png" /> : $m$  
(confidence 0.00)
+
(confidence 0.08)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010120.png" /> : $( S ) \leq 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013015.png" /> : $L _ { 2 } CC$  
(confidence 0.54)
+
(confidence 0.07)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010121.png" /> : $S = \operatorname { SU } ( m ) / S ( U ( m - 2 ) \times U ( 1 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013062.png" /> : $L _ { 2 } CC$
(confidence 0.36)
+
(confidence 0.07)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013037.png" /> : $L _ { 2 } CC$  
 +
(confidence 0.07)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010122.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001019.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png" /> : $\sum ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001011.png" /> : $ $  
(confidence 0.74)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010124.png" /> : $b _ { 2 i + 1 } ( S ) = 0$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png" /> : $ $  
(confidence 0.91)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png" /> : $i < n$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png" /> : $ $  
(confidence 0.92)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010126.png" /> : $I$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001020.png" /> : $ $  
(confidence 0.24)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010127.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010128.png" /> : $b _ { 2 } \neq b$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115064.png" /> : $ $  
(confidence 0.48)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010129.png" /> : $1.3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115046.png" /> : $ $  
(confidence 0.59)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001013.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010130.png" /> : $b _ { 2 } \neq b _ { 6 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png" /> : $ $  
(confidence 0.79)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010132.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300108.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010133.png" /> : $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001013.png" /> : $ $  
(confidence 0.71)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010134.png" /> : $( 4 n + 3 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001012.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010135.png" /> : $S ( D$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001018.png" /> : $ $  
(confidence 0.16)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png" /> : $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010155.png" /> : $ $  
(confidence 0.59)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010137.png" /> : $S ( D$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001023.png" /> : $ $  
(confidence 0.16)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010127.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001015.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010140.png" /> : $> 7$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001083.png" /> : $ $  
(confidence 0.68)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010149.png" /> : $ $  
(confidence 0.89)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010142.png" /> : $I$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001073.png" /> : $ $  
(confidence 0.24)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010143.png" /> : $1.3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png" /> : $ $  
(confidence 0.59)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010144.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001045.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010145.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010146.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001086.png" /> : $ $  
(confidence 0.89)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010147.png" /> : $T ^ { 2 } \times Sp ( 1 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001069.png" /> : $ $  
(confidence 0.56)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010148.png" /> : $T ^ { 2 } \times SO ( 3 )$
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010122.png" /> : $ $  
(confidence 0.96)
 
 
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010149.png" /> : $ $  
 
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001015.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001062.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010150.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010113.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010151.png" /> : $4 n + 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001055.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010152.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001059.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010153.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200102.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010154.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001013.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010155.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010156.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001047.png" /> : $ $  
(confidence 0.89)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010157.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010153.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001012.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010159.png" /> : $4 n$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png" /> : $ $  
(confidence 0.90)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001016.png" /> : $( S , g$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001087.png" /> : $ $  
(confidence 0.32)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001018.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010111.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png" /> : $C ( s ) , g$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001076.png" /> : $ $  
(confidence 0.71)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200102.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png" /> : $\operatorname { sp } ( ( m + 1 ) / 4 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010102.png" /> : $ $  
(confidence 0.90)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001021.png" /> : $m = 4 n + 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010119.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001022.png" /> : $n > 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001023.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001092.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001024.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001066.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001025.png" /> : $C ( S$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001096.png" /> : $ $  
(confidence 0.88)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png" /> : $\xi ^ { d x } = I ^ { \alpha } ( \partial _ { \gamma } )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001027.png" /> : $a = 1,2,3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001052.png" /> : $ $  
(confidence 0.89)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png" /> : $\{ I ^ { 1 } , R , \vec { P } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001043.png" /> : $ $  
(confidence 0.43)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png" /> : $C ( S$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010132.png" /> : $ $  
(confidence 0.88)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200103.png" /> : $( S , g$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001089.png" /> : $ $  
(confidence 0.32)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010152.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001031.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001063.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001090.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001093.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001034.png" /> : $0 ( 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010144.png" /> : $ $  
(confidence 0.45)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001035.png" /> : $U ( 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png" /> : $ $  
(confidence 0.84)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001036.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010150.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001037.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010154.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001038.png" /> : $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { d : } , Y )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010145.png" /> : $ $  
(confidence 0.15)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001039.png" /> : $\Phi ^ { d t } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001024.png" /> : $ $  
(confidence 0.24)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010158.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001040.png" /> : $a = 1,2,3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001036.png" /> : $ $  
(confidence 0.89)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001043.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010157.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001044.png" /> : $( S , g$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001018.png" /> : $ $  
(confidence 0.32)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001045.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001046.png" /> : $1 = \operatorname { dim } ( S ) - 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001080.png" /> : $ $  
(confidence 0.40)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001047.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001032.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001048.png" /> : $( S , g$
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png" /> : $ $  
(confidence 0.32)
+
(confidence 0.00)
 
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001049.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$
 
(confidence 0.99)
 
 
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png" /> : $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d r ^ { 2 } + r ^ { 2 } g )$  
 
(confidence 0.35)
 
  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001050.png" /> : $ $  
 
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001050.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001051.png" /> : $2 =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100203.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001052.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002010.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001053.png" /> : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001054.png" /> : $U ( 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002011.png" /> : $ $  
(confidence 0.84)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001055.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100209.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001056.png" /> : $2 =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100208.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002014.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001058.png" /> : $2 =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002016.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001059.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002012.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200106.png" /> : $U ( ( m + 1 ) / 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002018.png" /> : $ $  
(confidence 0.87)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png" /> : $S ^ { 3 } / \Gamma$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a01002019.png" /> : $ $  
(confidence 0.50)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001061.png" /> : $\subset \operatorname { SU } ( 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008020.png" /> : $ $  
(confidence 0.30)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001062.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008037.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001063.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008030.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001064.png" /> : $5 ^ { 2 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png" /> : $ $  
(confidence 0.10)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001065.png" /> : $0 ( 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008023.png" /> : $ $  
(confidence 0.45)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001066.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008032.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001068.png" /> : $2 =$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008036.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001069.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008033.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200107.png" /> : $m = 2 l + 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png" /> : $ $  
(confidence 0.59)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001070.png" /> : $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008026.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001071.png" /> : $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png" /> : $ $  
(confidence 0.99)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png" /> : $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008031.png" /> : $ $  
(confidence 0.81)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001073.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008016.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008034.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png" /> : $5$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png" /> : $ $  
(confidence 0.49)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001076.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042082.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001077.png" /> : $= T$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png" /> : $ $  
(confidence 0.36)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042062.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001079.png" /> : $F _ { T } \subset F _ { 3 } \subset S$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png" /> : $ $  
(confidence 0.30)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200108.png" /> : $> 1$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420147.png" /> : $ $  
(confidence 0.98)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001080.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420123.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001081.png" /> : $U ( 1 ) _ { \tau } \subset SU ( 2 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png" /> : $ $  
(confidence 0.37)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001082.png" /> : $Z = S / F _ { T }$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420159.png" /> : $ $  
(confidence 0.29)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001083.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png" /> : $4$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130101.png" /> : $ $  
(confidence 0.62)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001086.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001087.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013089.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png" /> : $\Delta ( S )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013067.png" /> : $ $
(confidence 0.50)
+
(confidence 0.00)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013095.png" /> : $ $
 +
(confidence 0.00)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013018.png" /> : $ $
 +
(confidence 0.00)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013086.png" /> : $ $
 +
(confidence 0.00)
 +
 
 +
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png" /> : $ $  
 +
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001089.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013050.png" /> : $ $  
(confidence 0.12)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001090.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301309.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001092.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001093.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001094.png" /> : $n + 2$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013065.png" /> : $ $  
(confidence 1.00)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png" /> : $\operatorname { dim } ( S ) = 4 n + 3$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013019.png" /> : $ $  
(confidence 0.51)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001096.png" /> : $ $  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013081.png" /> : $ $  
 
(confidence 0.00)
 
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001097.png" /> : $S O ( 4 n + 3 )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png" /> : $ $  
(confidence 0.49)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png" /> : $x$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130104.png" /> : $ $  
(confidence 0.41)
+
(confidence 0.00)
  
<img src ="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png" /> : $\hat { \gamma } ( G / K )$  
+
<img src ="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png" /> : $ $  
(confidence 0.22)
+
(confidence 0.00)

Revision as of 22:52, 6 April 2019

This is a list of automatically classified LaTeX files. You can manually edit this list, your changes will currently not be considered and only overwritten though.

List

 : $( 4 n + 3 )$ (confidence 1.00)

 : $4 n + 3$ (confidence 1.00)

 : $4 n + 3$ (confidence 1.00)

 : $( 1 / 2 \pi ) ^ { n / 2 }$ (confidence 1.00)

 : $m = 4 n + 3$ (confidence 1.00)

 : $n + 2$ (confidence 1.00)

 : $2 \times 2$ (confidence 1.00)

 : $7$ (confidence 1.00)

 : $x > 0$ (confidence 1.00)

 : $( G , G ^ { + } )$ (confidence 1.00)

 : $( G , G ^ { + } )$ (confidence 1.00)

 : $( G , G ^ { + } )$ (confidence 1.00)

 : $( G , G ^ { + } )$ (confidence 1.00)

 : $( G , G ^ { + } )$ (confidence 1.00)

 : $n > 0$ (confidence 1.00)

 : $p \neq 2$ (confidence 1.00)

 : $p ^ { - 1 } + q ^ { - 1 } = 1$ (confidence 1.00)

 : $y \leq x$ (confidence 1.00)

 : $B ^ { A } \cong ( A ^ { * } \otimes B )$ (confidence 1.00)

 : $1 < p \leq 2$ (confidence 1.00)

 : $\theta = \theta$ (confidence 1.00)

 : $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ (confidence 0.99)

 : $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ (confidence 0.99)

 : $A , B , C \in C$ (confidence 0.99)

 : $n > 1$ (confidence 0.99)

 : $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ (confidence 0.99)

 : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ (confidence 0.99)

 : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ (confidence 0.99)

 : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ (confidence 0.99)

 : $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ (confidence 0.99)

 : $( S ) = 7$ (confidence 0.98)

 : $> 1$ (confidence 0.98)

 : $K _ { 1 } ( A ) = 0$ (confidence 0.98)

 : $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ (confidence 0.98)

 : $m > 3$ (confidence 0.98)

 : $( x , t , z ) =$ (confidence 0.97)

 : $\varphi , \psi : A \rightarrow B$ (confidence 0.97)

 : $f ( G ^ { + } ) \subseteq R ^ { + }$ (confidence 0.97)

 : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ (confidence 0.97)

 : $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$ (confidence 0.96)

 : $x , y \in A$ (confidence 0.96)

 : $T ^ { 2 } \times SO ( 3 )$ (confidence 0.96)

 : $g ( z$ (confidence 0.96)

 : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ (confidence 0.95)

 : $A _ { \theta } \cong A _ { \theta }$ (confidence 0.94)

 : $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ (confidence 0.94)

 : $F L y$ (confidence 0.94)

 : $\varphi : A \rightarrow B$ (confidence 0.94)

 : $\varphi : A \rightarrow B$ (confidence 0.94)

 : $\varphi : A \rightarrow B$ (confidence 0.94)

 : $L ( \psi ) = z \psi$ (confidence 0.94)

 : $H ^ { + } = G ^ { + } \cap H$ (confidence 0.93)

 : $p ( 0$ (confidence 0.93)

 : $A$ (confidence 0.93)

 : $A$ (confidence 0.93)

 : $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ (confidence 0.92)

 : $K _ { 0 } ( A ) ^ { + }$ (confidence 0.92)

 : $K _ { 0 } ( A ) ^ { + }$ (confidence 0.92)

 : $i < n$ (confidence 0.92)

 : $\tau \mapsto K _ { 0 } ( \tau )$ (confidence 0.92)

 : $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - t }$ (confidence 0.92)

 : $b _ { 2 i + 1 } ( S ) = 0$ (confidence 0.91)

 : $\beta = ( 1 / 2 \pi ) ^ { x }$ (confidence 0.91)

 : $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ (confidence 0.91)

 : $4 n$ (confidence 0.90)

 : $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ (confidence 0.90)

 : $S ^ { * } = S$ (confidence 0.90)

 : $\operatorname { sp } ( ( m + 1 ) / 4 )$ (confidence 0.90)

 : $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ (confidence 0.89)

 : $ $ (confidence 0.89)

 : $ $ (confidence 0.89)

 : $ $ (confidence 0.89)

 : $a = 1,2,3$ (confidence 0.89)

 : $a = 1,2,3$ (confidence 0.89)

 : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ (confidence 0.88)

 : $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ (confidence 0.88)

 : $L _ { p } ( R ^ { n } )$ (confidence 0.88)

 : $L _ { p } ( R ^ { n } )$ (confidence 0.88)

 : $C ( S$ (confidence 0.88)

 : $C ( S$ (confidence 0.88)

 : $C ( S$ (confidence 0.88)

 : $7$ (confidence 0.87)

 : $7$ (confidence 0.87)

 : $7$ (confidence 0.87)

 : $7$ (confidence 0.87)

 : $U ( ( m + 1 ) / 2 )$ (confidence 0.87)

 : $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$ (confidence 0.87)

 : $Z = G / U ( 1 ) . K$ (confidence 0.85)

 : $U ( 2 )$ (confidence 0.84)

 : $U ( 2 )$ (confidence 0.84)

 : $f : G \rightarrow R$ (confidence 0.84)

 : $C ( S ^ { 2 n }$ (confidence 0.84)

 : $\partial x = \partial / \partial t$ (confidence 0.83)

 : $( \partial / \partial x ) - P _ { 0 } z$ (confidence 0.83)

 : $\phi = \phi _ { - } \phi _ { + }$ (confidence 0.82)

 : $K _ { 0 } ( B ) ^ { + }$ (confidence 0.82)

 : $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$ (confidence 0.81)

 : $K _ { 0 } ( \varphi ) = a$ (confidence 0.81)

 : $n > 1$ (confidence 0.81)

 : $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ (confidence 0.81)

 : $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$ (confidence 0.80)

 : $F _ { j k } =$ (confidence 0.80)

 : $L ( \Lambda _ { 0 }$ (confidence 0.80)

 : $L ( \Lambda _ { 0 }$ (confidence 0.80)

 : $L ( \Lambda _ { 0 }$ (confidence 0.80)

 : $b _ { 2 } \neq b _ { 6 }$ (confidence 0.79)

 : $y \in H$ (confidence 0.79)

 : $\Sigma ( A$ (confidence 0.79)

 : $\Phi \rightarrow \Psi$ (confidence 0.78)

 : $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ (confidence 0.78)

 : $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ (confidence 0.77)

 : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$ (confidence 0.77)

 : $C ^ { \infty } ( S ^ { 1 } , SL _ { 2 } ( C ) )$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $C$ (confidence 0.76)

 : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ (confidence 0.75)

 : $\theta = 1 - \theta$ (confidence 0.74)

 : $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ (confidence 0.74)

 : $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ (confidence 0.74)

 : $\sum ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ (confidence 0.74)

 : $( g )$ (confidence 0.72)

 : $( g )$ (confidence 0.72)

 : $x > 7$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $4$ (confidence 0.72)

 : $C ( s ) , g$ (confidence 0.71)

 : $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ (confidence 0.71)

 : $1$ (confidence 0.70)

 : $F ( f ^ { * } g ) = F f . F g$ (confidence 0.68)

 : $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q$ (confidence 0.68)

 : $> 7$ (confidence 0.68)

 : $y \in G$ (confidence 0.68)

 : $Q _ { 1 } = P _ { 1 }$ (confidence 0.67)

 : $x \in r$ (confidence 0.67)

 : $\frac { \partial } { \partial t _ { n } } P - \frac { \partial } { \partial x } Q ^ { ( n ) } + [ P , Q ^ { ( n ) } ] = 0 \Leftrightarrow$ (confidence 0.66)

 : $x$ (confidence 0.66)

 : $\tau ( x y ) = \tau ( y x )$ (confidence 0.66)

 : $\xi = I ( \partial _ { y } )$ (confidence 0.65)

 : $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ (confidence 0.64)

 : $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ (confidence 0.62)

 : $Q _ { 0 } = P$ (confidence 0.62)

 : $Q _ { 0 } = P$ (confidence 0.62)

 : $4$ (confidence 0.62)

 : $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } )$ (confidence 0.62)

 : $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi j ( x , t ) z ^ { j } )$ (confidence 0.60)

 : $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ (confidence 0.59)

 : $m = 2 l + 1$ (confidence 0.59)

 : $1.3$ (confidence 0.59)

 : $1.3$ (confidence 0.59)

 : $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ (confidence 0.58)

 : $T ^ { 2 } \times Sp ( 1 )$ (confidence 0.56)

 : $K P$ (confidence 0.56)

 : $T _ { l }$ (confidence 0.54)

 : $T _ { l }$ (confidence 0.54)

 : $( S ) \leq 1$ (confidence 0.54)

 : $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { x }$ (confidence 0.54)

 : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$ (confidence 0.53)

 : $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ (confidence 0.52)

 : $4 K N$ (confidence 0.52)

 : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$ (confidence 0.52)

 : $\{ E _ { n _ { 1 } \ldots n _ { k } } \}$ (confidence 0.52)

 : $\operatorname { dim } ( S ) = 4 n + 3$ (confidence 0.51)

 : $t$ (confidence 0.51)

 : $t$ (confidence 0.51)

 : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$ (confidence 0.50)

 : $\Delta ( S )$ (confidence 0.50)

 : $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { n } } - Q _ { 0 } z ^ { n } \phi _ { - } = \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) }$ (confidence 0.50)

 : $5$ (confidence 0.50)

 : $S ^ { 3 } / \Gamma$ (confidence 0.50)

 : $7$ (confidence 0.49)

 : $S O ( 4 n + 3 )$ (confidence 0.49)

 : $5$ (confidence 0.49)

 : $b _ { 2 } \neq b$ (confidence 0.48)

 : $F \Phi = \Psi$ (confidence 0.48)

 : $\frac { \partial } { \partial t _ { t } } Q = [ Q ^ { ( n ) } , g ] , n \geq 1$ (confidence 0.47)

 : $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ (confidence 0.46)

 : $\pi$ (confidence 0.45)

 : $0 ( 3$ (confidence 0.45)

 : $0 ( 3$ (confidence 0.45)

 : $\tau : A \rightarrow 1$ (confidence 0.44)

 : $\{ I ^ { 1 } , R , \vec { P } \}$ (confidence 0.43)

 : $F L _ { p } \subset l _ { q }$ (confidence 0.43)

 : $\phi _ { - } ^ { - 1 } ( \frac { \partial } { \partial x } - P b z ) \phi _ { - } = \frac { \partial } { \partial x } - P$ (confidence 0.43)

 : $3$ (confidence 0.43)

 : $( 3 )$ (confidence 0.42)

 : $x$ (confidence 0.41)

 : $x$ (confidence 0.41)

 : $x$ (confidence 0.41)

 : $t = ( t _ { n }$ (confidence 0.41)

 : $( O ) = \mathfrak { L }$ (confidence 0.41)

 : $1 = \operatorname { dim } ( S ) - 1$ (confidence 0.40)

 : $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ (confidence 0.40)

 : $3$ (confidence 0.39)

 : $z \in r$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $A _ { 1 }$ (confidence 0.38)

 : $\sqrt { 2 } e$ (confidence 0.37)

 : $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _ { t } = - \frac { 1 } { 2 } q x _ { x } + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _ { t } = \frac { 1 } { 2 } r _ { X x } - q r ^ { 2 } } \end{array} \right.$ (confidence 0.37)

 : $U ( 1 ) _ { \tau } \subset SU ( 2 )$ (confidence 0.37)

 : $S = \operatorname { SU } ( m ) / S ( U ( m - 2 ) \times U ( 1 )$ (confidence 0.36)

 : $= T$ (confidence 0.36)

 : $O = G / Sp ( 1 ) . K$ (confidence 0.35)

 : $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d r ^ { 2 } + r ^ { 2 } g )$ (confidence 0.35)

 : $P ( 0$ (confidence 0.35)

 : $06$ (confidence 0.34)

 : $L _ { 2 } ( R ^ { * } )$ (confidence 0.33)

 : $x$ (confidence 0.33)

 : $( S , g$ (confidence 0.32)

 : $( S , g$ (confidence 0.32)

 : $( S , g$ (confidence 0.32)

 : $( S , g$ (confidence 0.32)

 : $\Delta$ (confidence 0.32)

 : $\leq p < 2$ (confidence 0.31)

 : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$ (confidence 0.31)

 : $\{ A _ { n _ { 1 } \ldots n _ { k } } \}$ (confidence 0.31)

 : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$ (confidence 0.31)

 : $e$ (confidence 0.31)

 : $e$ (confidence 0.31)

 : $( \partial / \partial t _ { n } ) - Q _ { 0 } z ^ { \prime }$ (confidence 0.30)

 : $\subset \operatorname { SU } ( 2 )$ (confidence 0.30)

 : $x ^ { 2 }$ (confidence 0.30)

 : $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { t }$ (confidence 0.30)

 : $F _ { T } \subset F _ { 3 } \subset S$ (confidence 0.30)

 : $Z = S / F _ { T }$ (confidence 0.29)

 : $4$ (confidence 0.29)

 : $x \in H ^ { + }$ (confidence 0.29)

 : $x _ { i } \leq y _ { 1 }$ (confidence 0.29)

 : $\leq p \leq 2$ (confidence 0.28)

 : $1 \times$ (confidence 0.27)

 : $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in T }$ (confidence 0.27)

 : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$ (confidence 0.26)

 : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ (confidence 0.26)

 : $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { N } Q _ { j } z ^ { n - j }$ (confidence 0.25)

 : $\Phi ^ { d t } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ (confidence 0.24)

 : $I$ (confidence 0.24)

 : $I$ (confidence 0.24)

 : $I$ (confidence 0.24)

 : $L _ { \varphi } ( R ^ { n } )$ (confidence 0.23)

 : $T$ (confidence 0.22)

 : $T$ (confidence 0.22)

 : $\hat { \gamma } ( G / K )$ (confidence 0.22)

 : $512$ (confidence 0.21)

 : $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - \gamma } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r }$ (confidence 0.20)

 : $x$ (confidence 0.20)

 : $x _ { i } \leq z \leq y _ { j }$ (confidence 0.19)

 : $K _ { 0 } ( B ) = Z + \vec { \theta } Z$ (confidence 0.18)

 : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$ (confidence 0.17)

 : $m$ (confidence 0.16)

 : $S ( D$ (confidence 0.16)

 : $S ( D$ (confidence 0.16)

 : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$ (confidence 0.16)

 : $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { d : } , Y )$ (confidence 0.15)

 : $= \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { c }$ (confidence 0.14)

 : $I \mapsto I$ (confidence 0.14)

 : $q ^ { ( l ) } = 2 i \frac { T l + 1 } { \tau l } , r ^ { ( l ) } = - 2 i \frac { \tau l - 1 } { \tau l }$ (confidence 0.13)

 : $x$ (confidence 0.13)

 : $x ^ { 2 }$ (confidence 0.13)

 : $r$ (confidence 0.12)

 : $r$ (confidence 0.12)

 : $r$ (confidence 0.12)

 : $r$ (confidence 0.12)

 : $A _ { n _ { 1 } } , \ldots , A _ { n _ { 1 } } \ldots n _ { k } , \dots$ (confidence 0.12)

 : $\xi ^ { d x } = I ^ { \alpha } ( \partial _ { \gamma } )$ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $ $ (confidence 0.12)

 : $2 =$ (confidence 0.12)

 : $2 =$ (confidence 0.12)

 : $2 =$ (confidence 0.12)

 : $2 =$ (confidence 0.12)

 : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$ (confidence 0.12)

 : $ $ (confidence 0.11)

 : $F ^ { \prime }$ (confidence 0.11)

 : $F ^ { \prime }$ (confidence 0.11)

 : $f ^ { 2 }$ (confidence 0.11)

 : $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times$ (confidence 0.10)

 : $F _ { i , j }$ (confidence 0.10)

 : $5 ^ { 2 }$ (confidence 0.10)

 : $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times 2$ (confidence 0.10)

 : $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { x _ { 1 } } \square \ldots x _ { k }$ (confidence 0.10)

 : $- 1$ (confidence 0.08)

 : $x = ( x _ { 1 } , \ldots , x _ { n } )$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $_ { 0 } ( A$ (confidence 0.08)

 : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$ (confidence 0.08)

 : $m$ (confidence 0.08)

 : $L _ { 2 } CC$ (confidence 0.07)

 : $L _ { 2 } CC$ (confidence 0.07)

 : $L _ { 2 } CC$ (confidence 0.07)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

 : $ $ (confidence 0.00)

How to Cite This Entry:
Maximilian Janisch/latexlist. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist&oldid=43671