Difference between revisions of "User:Maximilian Janisch/Sandbox"
(Automatic edit) |
(copy of fourier transform article) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|part}} | |
+ | |||
+ | One of the integral transforms (cf. [[Integral transform|Integral transform]]). It is a linear operator $F$ acting on a space whose elements are functions $f$ of $n$ real variables. The smallest domain of definition of $F$ is the set $D=C_0^\infty$ of all infinitely-differentiable functions $\phi$ of compact support. For such functions | ||
+ | |||
+ | \begin{equation} (F\phi)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot \int_{\mathbf R^n} \phi(\xi) e^{-i x \xi} \, \mathrm d\xi. \end{equation} | ||
+ | |||
+ | In a certain sense the most natural domain of definition of $F$ is the set $S$ of all infinitely-differentiable functions $\phi$ that, together with their derivatives, vanish at infinity faster than any power of $\frac{1}{|x|}$. Formula (1) still holds for $\phi\in S$, and $(F \phi)(x) \equiv \psi(x)\in S$. Moreover, $F$ is an isomorphism of $S$ <u>onto</u> itself, the inverse mapping $F^{-1}$ (the inverse Fourier transform) is the inverse of the Fourier transform and is given by the formula: | ||
+ | |||
+ | \begin{equation} \phi(x) = (F^{-1} \psi)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot \int_{\mathbf R^n} \psi(\xi) e^{i x \xi} \, \mathrm d\xi. \end{equation} | ||
+ | |||
+ | Formula (1) also acts on the space $L_{1}\left(\mathbf{R}^{n}\right)$ of integrable functions. In order to enlarge the domain of definition of the operator $F$ generalization of (1) is necessary. In classical analysis such a generalization has been constructed for locally integrable functions with some restriction on their behaviour as $|x|\to\infty$ (see [[Fourier integral|Fourier integral]]). In the theory of generalized functions the definition of the operator $F$ is free of many requirements of classical analysis. | ||
+ | |||
+ | The basic problems connected with the study of the Fourier transform $F$ are: the investigation of the domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115023.png" /> and the range of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png" />; as well as studying properties of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png" /> (in particular, conditions for the existence of the inverse operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png" /> and its expression). The inversion formula for the Fourier transform is very simple: | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115028.png" /></td> </tr></table> | ||
+ | |||
+ | Under the action of the Fourier transform linear operators on the original space, which are invariant with respect to a shift, become (under certain conditions) multiplication operators in the image space. In particular, the convolution of two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png" /> goes over into the product of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115032.png" />: | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115033.png" /></td> </tr></table> | ||
+ | |||
+ | and differentiation induces multiplication by the independent variable: | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115034.png" /></td> </tr></table> | ||
+ | |||
+ | In the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115036.png" />, the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115037.png" /> is defined by the formula (1) on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115038.png" /> and is a bounded operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115039.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115041.png" />: | ||
+ | |||
+ | \begin{equation} \left\{\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbf{R}^{n}}|(F f)(x)|^{q} d x\right\}^{1 / q} \leq\left\{\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x\right\}^{1 / p} \end{equation} | ||
+ | |||
+ | (the Hausdorff–Young inequality). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115043.png" /> admits a continuous extension onto the whole space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115044.png" /> which (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115045.png" />) is given by | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115046.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table> | ||
+ | |||
+ | Convergence is understood to be in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png" />, the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png" /> under the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png" /> does not coincide with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png" />, that is, the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png" /> is strict when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png" /> (for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115054.png" /> see [[Plancherel theorem|Plancherel theorem]]). The inverse operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png" /> is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png" /> by | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png" /></td> </tr></table> | ||
+ | |||
+ | The problem of extending the Fourier transform to a larger class of functions arises constantly in analysis and its applications. See, for example, [[Fourier transform of a generalized function|Fourier transform of a generalized function]]. | ||
+ | |||
+ | ====References==== | ||
+ | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR></table> | ||
+ | |||
+ | |||
+ | |||
+ | ====Comments==== | ||
+ | Instead of "generalized function" the term "distributiondistribution" is often used. | ||
+ | |||
+ | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png" /> denotes the scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png" />. | ||
+ | |||
+ | If in (1) the "normalizing factor" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png" /> is replaced by some constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png" />, then in (2) it must be replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115064.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115065.png" />. | ||
+ | |||
+ | At least two other conventions for the "normalization factor" are in common use: | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table> | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115067.png" /></td> </tr></table> | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115068.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table> | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115069.png" /></td> </tr></table> | ||
+ | |||
+ | The convention of the article leads to the Fourier transform as a [[Unitary operator|unitary operator]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115070.png" /> into itself, and so does the convention (a2). Convention (a1) is more in line with [[Harmonic analysis|harmonic analysis]]. | ||
+ | |||
+ | ====References==== | ||
+ | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Functional analysis" , McGraw-Hill (1973)</TD></TR></table> |
Revision as of 16:34, 6 April 2019
One of the integral transforms (cf. Integral transform). It is a linear operator $F$ acting on a space whose elements are functions $f$ of $n$ real variables. The smallest domain of definition of $F$ is the set $D=C_0^\infty$ of all infinitely-differentiable functions $\phi$ of compact support. For such functions
\begin{equation} (F\phi)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot \int_{\mathbf R^n} \phi(\xi) e^{-i x \xi} \, \mathrm d\xi. \end{equation}
In a certain sense the most natural domain of definition of $F$ is the set $S$ of all infinitely-differentiable functions $\phi$ that, together with their derivatives, vanish at infinity faster than any power of $\frac{1}{|x|}$. Formula (1) still holds for $\phi\in S$, and $(F \phi)(x) \equiv \psi(x)\in S$. Moreover, $F$ is an isomorphism of $S$ onto itself, the inverse mapping $F^{-1}$ (the inverse Fourier transform) is the inverse of the Fourier transform and is given by the formula:
\begin{equation} \phi(x) = (F^{-1} \psi)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot \int_{\mathbf R^n} \psi(\xi) e^{i x \xi} \, \mathrm d\xi. \end{equation}
Formula (1) also acts on the space $L_{1}\left(\mathbf{R}^{n}\right)$ of integrable functions. In order to enlarge the domain of definition of the operator $F$ generalization of (1) is necessary. In classical analysis such a generalization has been constructed for locally integrable functions with some restriction on their behaviour as $|x|\to\infty$ (see Fourier integral). In the theory of generalized functions the definition of the operator $F$ is free of many requirements of classical analysis.
The basic problems connected with the study of the Fourier transform $F$ are: the investigation of the domain of definition and the range of values of ; as well as studying properties of the mapping (in particular, conditions for the existence of the inverse operator and its expression). The inversion formula for the Fourier transform is very simple:
Under the action of the Fourier transform linear operators on the original space, which are invariant with respect to a shift, become (under certain conditions) multiplication operators in the image space. In particular, the convolution of two functions and goes over into the product of the functions and :
and differentiation induces multiplication by the independent variable:
In the spaces , , the operator is defined by the formula (1) on the set and is a bounded operator from into , :
\begin{equation} \left\{\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbf{R}^{n}}|(F f)(x)|^{q} d x\right\}^{1 / q} \leq\left\{\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbf{R}^{n}}|f(x)|^{p} d x\right\}^{1 / p} \end{equation}
(the Hausdorff–Young inequality). admits a continuous extension onto the whole space which (for ) is given by
(3) |
Convergence is understood to be in the norm of . If , the image of under the action of does not coincide with , that is, the imbedding is strict when (for the case see Plancherel theorem). The inverse operator is defined on by
The problem of extending the Fourier transform to a larger class of functions arises constantly in analysis and its applications. See, for example, Fourier transform of a generalized function.
References
[1] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
[2] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[3] | E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
Comments
Instead of "generalized function" the term "distributiondistribution" is often used.
If and then denotes the scalar product .
If in (1) the "normalizing factor" is replaced by some constant , then in (2) it must be replaced by with .
At least two other conventions for the "normalization factor" are in common use:
(a1) |
(a2) |
The convention of the article leads to the Fourier transform as a unitary operator from into itself, and so does the convention (a2). Convention (a1) is more in line with harmonic analysis.
References
[a1] | W. Rudin, "Functional analysis" , McGraw-Hill (1973) |
Maximilian Janisch/Sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/Sandbox&oldid=43661