|
|
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950901.png" /> from a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950902.png" /> in a [[Topological vector space|topological vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950903.png" /> into a topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950904.png" /> such that there is a [[Bounded set|bounded set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950905.png" /> whose image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950906.png" /> is an unbounded set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950907.png" />. | + | A mapping $ A $ from a set $ M $ in a [[Topological vector space|topological vector space]] $ X $ into a topological vector space $ Y $ such that there is a [[Bounded set|bounded set]] $ N \subseteq M $ whose image $ A[N] $ is an unbounded set in $ Y $. |
| | | |
− | The simplest example of an unbounded operator is the differentiation operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950908.png" />, defined on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u0950909.png" /> of all continuously-differentiable functions into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509010.png" /> of all continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509011.png" />, because the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509012.png" /> takes the bounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509013.png" /> to the unbounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509014.png" />. An unbounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509015.png" /> is necessarily discontinuous at certain (and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509016.png" /> is linear, at all) points of its domain of definition. An important class of unbounded operators is that of the closed operators (cf. [[Closed operator|Closed operator]]), because they have a property that to some extent replaces continuity. | + | The simplest example of an unbounded operator is the differentiation operator $ \dfrac{\mathrm{d}}{\mathrm{d}{t}} $, defined on the set $ {C^{1}}([a,b]) $ of all continuously differentiable functions into the space $ C([a,b]) $ of all continuous functions on $ a \leq t \leq b $, because the operator $ \dfrac{\mathrm{d}}{\mathrm{d}{t}} $ takes the bounded set $ \{ t \mapsto \sin(n t) \}_{n \in \mathbb{N}} $ to the unbounded set $ \{ t \mapsto n \cos(n t) \}_{n \in \mathbb{N}} $. An unbounded operator $ A $ is necessarily discontinuous at certain (and if $ A $ is linear, at all) points of its domain of definition. An important class of unbounded operators is that of the [[Closed operator|closed operators]], because they have a property that to some extent replaces continuity. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509018.png" /> be unbounded operators with domains of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509021.png" />, then on the intersection the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509023.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509024.png" />), is defined, and, similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509025.png" />, then the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509026.png" /> is defined. In particular, in this way the powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509028.png" /> of an unbounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509029.png" /> are defined. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509030.png" /> is said to be an extension of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509032.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509034.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509035.png" />. E.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509036.png" />. Commutativity of two operators is usually treated for the case when one of them is bounded: An unbounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509037.png" /> commutes with a bounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509038.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509039.png" />. | + | Let $ A $ and $ B $ be unbounded operators with domains of definition $ D_{A} $ and $ D_{B} $ respectively. If $ D_{A} \cap D_{B} \neq \varnothing $, then on this intersection, we can define the operator $ (\alpha A + \beta B)(x) \stackrel{\text{df}}{=} \alpha A(x) + \beta B(x) $, where $ \alpha,\beta \in \mathbf{R} $ (or $ \mathbf{C} $), and similarly, if $ D_{A} \cap {A^{\leftarrow}}[D_{B}] \neq \varnothing $, then we can define the operator $ (B A)(x) \stackrel{\text{df}}{=} B(A(x)) $. In particular, in this way, the powers $ A^{k} $, where $ k \in \mathbb{N} $, of an unbounded operator $ A $ are defined. An operator $ B $ is said to be an '''extension''' of an operator $ A $, written $ B \supseteq A $, if and only if $ D_{A} \subseteq D_{B} $ and $ B(x) = A(x) $ for $ x \in D_{A} $. For example, $ B (A_{1} + A_{2}) \supseteq B A_{1} + B A_{2} $. Commutativity of two operators is usually treated for the case when one of them is bounded: An unbounded operator $ A $ commutes with a bounded operator $ B $ if and only if $ B A \subseteq A B $. |
| | | |
− | For unbounded linear operators the concept of the [[Adjoint operator|adjoint operator]] is (still) defined. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509040.png" /> be an unbounded operator on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509041.png" /> which is dense in a topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509042.png" /> and mapping into a topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509043.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509045.png" /> are the strong dual spaces to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509047.png" />, respectively, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509048.png" /> is the collection of linear functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509049.png" /> for which there exists a linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509050.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509051.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509052.png" />, then the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509053.png" /> determines an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509054.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509055.png" /> (which may, however, consists of the zero element only) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509056.png" />, the so-called adjoint operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095090/u09509057.png" />. | + | For unbounded linear operators, the concept of an [[Adjoint operator|adjoint operator]] is (still) defined. Let $ A $ be an unbounded operator defined on a set $ D_{A} $ that is dense in a topological vector space $ X $ and mapping into a topological vector space $ Y $. If $ X^{*} $ and $ Y^{*} $ are the strong dual spaces to $ X $ and $ Y $ respectively, and if $ D_{A^{*}} $ is the collection of all linear functionals $ \phi \in Y^{*} $ for which there exists a linear functional $ f \in X^{*} $ such that $ \langle A(x),\phi \rangle = \langle x,f \rangle $ for all $ x \in D_{A} $, then the correspondence $ \phi \mapsto f $ determines an operator $ A^{*} $ on $ D_{A^{*}} $ (which may, however, consists of the zero element only) in $ Y^{*} $, the so-called '''adjoint operator''' of $ A $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L.A. [L.A. Lyusternik] Ljusternik, "Elements of functional analysis" , Wiley & Hindustan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. von Neumann, "Mathematische Grundlagen der Quantenmechanik" , Dover, reprint (1943)</TD></TR></table>
| |
| | | |
| + | <table> |
| + | <TR><TD valign="top">[1]</TD><TD valign="top"> |
| + | K. Yosida, “Functional analysis”, Springer (1980), pp. Chapt. 8, §1.</TD></TR> |
| + | <TR><TD valign="top">[2]</TD><TD valign="top"> |
| + | N. Dunford, J.T. Schwartz, “Linear operators. General theory”, '''1''', Interscience (1958).</TD></TR> |
| + | <TR><TD valign="top">[3]</TD><TD valign="top"> |
| + | F. Riesz, B. Szökefalvi-Nagy, “Functional analysis”, F. Ungar (1955). (Translated from French)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD><TD valign="top"> |
| + | L.A. [L.A. Lyusternik] Ljusternik, “Elements of functional analysis”, Wiley & Hindustan Publ. Comp. (1974). (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[5]</TD><TD valign="top"> |
| + | J. von Neumann, “Mathematische Grundlagen der Quantenmechanik”, Dover, reprint (1943).</TD></TR> |
| + | </table> |
| | | |
| + | ====Comments==== |
| | | |
− | ====Comments====
| |
| A continuous linear operator from one topological vector space into another maps bounded sets into bounded sets. The converse is also true for linear mappings between normed linear spaces. | | A continuous linear operator from one topological vector space into another maps bounded sets into bounded sets. The converse is also true for linear mappings between normed linear spaces. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Goldberg, "Unbounded linear operators" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, M.A. Kaashoek, "Classes of linear operators" , '''1''' , Birkhäuser (1991)</TD></TR></table> | + | |
| + | <table> |
| + | <TR><TD valign="top">[a1]</TD><TD valign="top"> |
| + | S. Goldberg, “Unbounded linear operators”, McGraw-Hill (1966).</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD><TD valign="top"> |
| + | I.C. Gohberg, S. Goldberg, M.A. Kaashoek, “Classes of linear operators”, '''1''', Birkhäuser (1991).</TD></TR> |
| + | </table> |
A mapping $ A $ from a set $ M $ in a topological vector space $ X $ into a topological vector space $ Y $ such that there is a bounded set $ N \subseteq M $ whose image $ A[N] $ is an unbounded set in $ Y $.
The simplest example of an unbounded operator is the differentiation operator $ \dfrac{\mathrm{d}}{\mathrm{d}{t}} $, defined on the set $ {C^{1}}([a,b]) $ of all continuously differentiable functions into the space $ C([a,b]) $ of all continuous functions on $ a \leq t \leq b $, because the operator $ \dfrac{\mathrm{d}}{\mathrm{d}{t}} $ takes the bounded set $ \{ t \mapsto \sin(n t) \}_{n \in \mathbb{N}} $ to the unbounded set $ \{ t \mapsto n \cos(n t) \}_{n \in \mathbb{N}} $. An unbounded operator $ A $ is necessarily discontinuous at certain (and if $ A $ is linear, at all) points of its domain of definition. An important class of unbounded operators is that of the closed operators, because they have a property that to some extent replaces continuity.
Let $ A $ and $ B $ be unbounded operators with domains of definition $ D_{A} $ and $ D_{B} $ respectively. If $ D_{A} \cap D_{B} \neq \varnothing $, then on this intersection, we can define the operator $ (\alpha A + \beta B)(x) \stackrel{\text{df}}{=} \alpha A(x) + \beta B(x) $, where $ \alpha,\beta \in \mathbf{R} $ (or $ \mathbf{C} $), and similarly, if $ D_{A} \cap {A^{\leftarrow}}[D_{B}] \neq \varnothing $, then we can define the operator $ (B A)(x) \stackrel{\text{df}}{=} B(A(x)) $. In particular, in this way, the powers $ A^{k} $, where $ k \in \mathbb{N} $, of an unbounded operator $ A $ are defined. An operator $ B $ is said to be an extension of an operator $ A $, written $ B \supseteq A $, if and only if $ D_{A} \subseteq D_{B} $ and $ B(x) = A(x) $ for $ x \in D_{A} $. For example, $ B (A_{1} + A_{2}) \supseteq B A_{1} + B A_{2} $. Commutativity of two operators is usually treated for the case when one of them is bounded: An unbounded operator $ A $ commutes with a bounded operator $ B $ if and only if $ B A \subseteq A B $.
For unbounded linear operators, the concept of an adjoint operator is (still) defined. Let $ A $ be an unbounded operator defined on a set $ D_{A} $ that is dense in a topological vector space $ X $ and mapping into a topological vector space $ Y $. If $ X^{*} $ and $ Y^{*} $ are the strong dual spaces to $ X $ and $ Y $ respectively, and if $ D_{A^{*}} $ is the collection of all linear functionals $ \phi \in Y^{*} $ for which there exists a linear functional $ f \in X^{*} $ such that $ \langle A(x),\phi \rangle = \langle x,f \rangle $ for all $ x \in D_{A} $, then the correspondence $ \phi \mapsto f $ determines an operator $ A^{*} $ on $ D_{A^{*}} $ (which may, however, consists of the zero element only) in $ Y^{*} $, the so-called adjoint operator of $ A $.
References
[1] |
K. Yosida, “Functional analysis”, Springer (1980), pp. Chapt. 8, §1. |
[2] |
N. Dunford, J.T. Schwartz, “Linear operators. General theory”, 1, Interscience (1958). |
[3] |
F. Riesz, B. Szökefalvi-Nagy, “Functional analysis”, F. Ungar (1955). (Translated from French) |
[4] |
L.A. [L.A. Lyusternik] Ljusternik, “Elements of functional analysis”, Wiley & Hindustan Publ. Comp. (1974). (Translated from Russian) |
[5] |
J. von Neumann, “Mathematische Grundlagen der Quantenmechanik”, Dover, reprint (1943). |
A continuous linear operator from one topological vector space into another maps bounded sets into bounded sets. The converse is also true for linear mappings between normed linear spaces.
References
[a1] |
S. Goldberg, “Unbounded linear operators”, McGraw-Hill (1966). |
[a2] |
I.C. Gohberg, S. Goldberg, M.A. Kaashoek, “Classes of linear operators”, 1, Birkhäuser (1991). |