Namespaces
Variants
Actions

Difference between revisions of "Dirac matrices"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Completed rendering of article in TeX.)
 
Line 1: Line 1:
Four Hermitian matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326901.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326902.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326903.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326904.png" /> which satisfy the following conditions
+
Four Hermitian matrices, denoted by $ \alpha_{1} $, $ \alpha_{2} $, $ \alpha_{3} $ and $ \beta $, of dimension $ 4 \times 4 $ that satisfy the relations
 +
\begin{gather}
 +
\alpha_{k} \alpha_{j} + \alpha_{j} \alpha_{k} = 2 \delta_{k j} \mathsf{I}_{4}, \\
 +
\alpha_{k} \beta + \beta \alpha_{k} = \mathbf{0}_{4}, \\
 +
\alpha_{k} \alpha_{k} = \beta^{2} = \mathsf{I}_{4},
 +
\end{gather}
 +
where $ \mathsf{I}_{4} $ is the $ (4 \times 4) $ identity matrix. The matrices $ \alpha_{1} $, $ \alpha_{2} $, $ \alpha_{3} $ and $ \beta $ may also be replaced by the Hermitian matrices $ \gamma^{k} = - i \beta \alpha_{k} $, where $ k \in \{ 1,2,3 \} $, and by the anti-Hermitian matrix $ \gamma^{0} = i \beta $. These then satisfy the relation
 +
$$
 +
\gamma^{\alpha} \gamma^{\beta} + \gamma^{\beta} \gamma^{\alpha} = - 2 \eta^{\alpha \beta} \mathsf{I}_{4}, \qquad \forall \alpha,\beta \in \{ 0,1,2,3 \}.
 +
$$
 +
Here, $ \eta^{\alpha \beta} \stackrel{\text{df}}{=} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} $. It is therefore possible to write the [[Dirac equation|Dirac equation]] in a form that is covariant with respect to the Lorentz group of transformations. The matrices $ \alpha_{k} $, $ \beta $ and $ \gamma^{k} $, where $ k \in \{ 0,1,2,3 \} $, are defined up to an arbitrary unitary transformation and may be represented in various ways. One such representation is
 +
$$
 +
\gamma^{0} = - i \begin{bmatrix} \mathsf{I}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & - \mathsf{I}_{2} \end{bmatrix}; \qquad
 +
\gamma^{k} = - i \begin{bmatrix} \mathbf{0}_{2} & \boldsymbol{\sigma}_{k} \\ - \boldsymbol{\sigma}_{k} & \mathbf{0}_{2} \end{bmatrix},
 +
$$
 +
where the $ \boldsymbol{\sigma}_{k} $’s are the $ (2 \times 2) $ [[Pauli matrices|Pauli matrices]], while $ \mathsf{I}_{2} $ and $ \mathbf{0}_{2} $ are the $ (2 \times 2) $ identity and zero matrices respectively. Dirac matrices may be used to factorize the [[Klein–Gordon equation|Klein–Gordon equation]] in the following manner:
 +
$$
 +
(\Box - m^{2}) E \psi
 +
= \left( \sum_{k = 0}^{3} \gamma^{k} \frac{\partial}{\partial x^{k}} - m E \right) \! \left( \sum_{l = 0}^{3} \gamma^{l} \frac{\partial}{\partial x^{l}} + m E \right) \psi
 +
= 0,
 +
$$
 +
where $ \Box $ denotes the [[D'Alembert operator|d’Alembert operator]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326905.png" /></td> </tr></table>
+
The Dirac matrices were Introduced by P. Dirac in 1928, in his derivation of the Dirac equation.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326906.png" /></td> </tr></table>
+
====Comments====
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326907.png" /> is the unit matrix of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326908.png" />. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d0326909.png" /> may also be replaced by the Hermitian matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269011.png" /> and by the anti-Hermitian matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269012.png" />, which satisfy the condition
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269013.png" /></td> </tr></table>
 
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269015.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269016.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269018.png" />, which makes it possible to write the [[Dirac equation|Dirac equation]] in a form which is covariant with respect to the Lorentz group of transformations. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269021.png" /> are defined up to an arbitrary unitary transformation, and may be represented in various ways. One such representation is
+
For references, see the article on the [[Dirac equation|Dirac equation]].
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269022.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269023.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269024.png" /> [[Pauli matrices|Pauli matrices]] while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269026.png" /> are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269027.png" /> unit and zero matrix respectively. Dirac matrices may be used to factorize the [[Klein–Gordon equation|Klein–Gordon equation]]:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269028.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269029.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032690/d03269030.png" /> is the [[D'Alembert operator|d'Alembert operator]].
 
 
 
Introduced by P. Dirac in 1928 in the derivation of the Dirac equation.
 
 
 
 
 
 
 
====Comments====
 
For references see – of [[Dirac equation|Dirac equation]].
 

Latest revision as of 16:06, 15 December 2016

Four Hermitian matrices, denoted by $ \alpha_{1} $, $ \alpha_{2} $, $ \alpha_{3} $ and $ \beta $, of dimension $ 4 \times 4 $ that satisfy the relations \begin{gather} \alpha_{k} \alpha_{j} + \alpha_{j} \alpha_{k} = 2 \delta_{k j} \mathsf{I}_{4}, \\ \alpha_{k} \beta + \beta \alpha_{k} = \mathbf{0}_{4}, \\ \alpha_{k} \alpha_{k} = \beta^{2} = \mathsf{I}_{4}, \end{gather} where $ \mathsf{I}_{4} $ is the $ (4 \times 4) $ identity matrix. The matrices $ \alpha_{1} $, $ \alpha_{2} $, $ \alpha_{3} $ and $ \beta $ may also be replaced by the Hermitian matrices $ \gamma^{k} = - i \beta \alpha_{k} $, where $ k \in \{ 1,2,3 \} $, and by the anti-Hermitian matrix $ \gamma^{0} = i \beta $. These then satisfy the relation $$ \gamma^{\alpha} \gamma^{\beta} + \gamma^{\beta} \gamma^{\alpha} = - 2 \eta^{\alpha \beta} \mathsf{I}_{4}, \qquad \forall \alpha,\beta \in \{ 0,1,2,3 \}. $$ Here, $ \eta^{\alpha \beta} \stackrel{\text{df}}{=} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} $. It is therefore possible to write the Dirac equation in a form that is covariant with respect to the Lorentz group of transformations. The matrices $ \alpha_{k} $, $ \beta $ and $ \gamma^{k} $, where $ k \in \{ 0,1,2,3 \} $, are defined up to an arbitrary unitary transformation and may be represented in various ways. One such representation is $$ \gamma^{0} = - i \begin{bmatrix} \mathsf{I}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & - \mathsf{I}_{2} \end{bmatrix}; \qquad \gamma^{k} = - i \begin{bmatrix} \mathbf{0}_{2} & \boldsymbol{\sigma}_{k} \\ - \boldsymbol{\sigma}_{k} & \mathbf{0}_{2} \end{bmatrix}, $$ where the $ \boldsymbol{\sigma}_{k} $’s are the $ (2 \times 2) $ Pauli matrices, while $ \mathsf{I}_{2} $ and $ \mathbf{0}_{2} $ are the $ (2 \times 2) $ identity and zero matrices respectively. Dirac matrices may be used to factorize the Klein–Gordon equation in the following manner: $$ (\Box - m^{2}) E \psi = \left( \sum_{k = 0}^{3} \gamma^{k} \frac{\partial}{\partial x^{k}} - m E \right) \! \left( \sum_{l = 0}^{3} \gamma^{l} \frac{\partial}{\partial x^{l}} + m E \right) \psi = 0, $$ where $ \Box $ denotes the d’Alembert operator.

The Dirac matrices were Introduced by P. Dirac in 1928, in his derivation of the Dirac equation.

Comments

For references, see the article on the Dirac equation.

How to Cite This Entry:
Dirac matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirac_matrices&oldid=40015
This article was adapted from an original article by V.D. Kukin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article