Namespaces
Variants
Actions

Difference between revisions of "Catenary"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Texify)
Line 6: Line 6:
  
 
In Cartesian coordinates its equation is
 
In Cartesian coordinates its equation is
 +
$$
 +
y= \frac{a}{2} \left( e^{x/a} + e^{-x/a} \right) = a \cosh \frac{x}{a}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207901.png" /></td> </tr></table>
+
The length of an arc beginning at the point $x=0$ is
 
+
$$
The length of an arc beginning at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207902.png" /> is
+
l= \frac{1}{2} \left( e^{x/a} - e^{-x/a} \right) = a \sinh \frac{x}{a}
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207903.png" /></td> </tr></table>
 
  
 
The radius of curvature is
 
The radius of curvature is
 +
$$
 +
r= a \cosh^2 \frac{x}{a}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207904.png" /></td> </tr></table>
+
The area bounded by an arc of the catenary, two of its ordinates and the $y$-axis is
 
+
$$
The area bounded by an arc of the catenary, two of its ordinates and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207905.png" />-axis is
+
S = a \sqrt{ y_2^2 - a^2 } - a \sqrt{ y_1^2 - a^2 } = a^2 \left( \sinh \frac{x_2}{a} - \sinh \frac{x_1}{a}  \right)
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207906.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207907.png" /></td> </tr></table>
 
  
If an arc of a catenary is rotated around the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020790/c0207908.png" />-axis, it forms a [[Catenoid|catenoid]].
+
If an arc of a catenary is rotated around the $x$-axis, it forms a [[Catenoid|catenoid]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR></table>

Revision as of 21:37, 2 June 2016

The plane transcendental curve describing the form of a homogeneous flexible string of fixed length and with fixed ends attained under the action of gravity (see Fig.).

Figure: c020790a

In Cartesian coordinates its equation is $$ y= \frac{a}{2} \left( e^{x/a} + e^{-x/a} \right) = a \cosh \frac{x}{a} $$

The length of an arc beginning at the point $x=0$ is $$ l= \frac{1}{2} \left( e^{x/a} - e^{-x/a} \right) = a \sinh \frac{x}{a} $$

The radius of curvature is $$ r= a \cosh^2 \frac{x}{a} $$

The area bounded by an arc of the catenary, two of its ordinates and the $y$-axis is $$ S = a \sqrt{ y_2^2 - a^2 } - a \sqrt{ y_1^2 - a^2 } = a^2 \left( \sinh \frac{x_2}{a} - \sinh \frac{x_1}{a} \right) $$

If an arc of a catenary is rotated around the $x$-axis, it forms a catenoid.

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)

Comments

References

[a1] J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)
How to Cite This Entry:
Catenary. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catenary&oldid=38912
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article