Difference between revisions of "Natural function"
Line 12: | Line 12: | ||
A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$. | A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$. | ||
− | |||
− | |||
A function $f: E \to X$ has bounded variation if and only if there exists a non-decreasing bounded function $\phi : E \to \mathbb{R}$ and a natural function $g: \phi (E) \to X$ such that $f=g\circ\phi$ on $E$. | A function $f: E \to X$ has bounded variation if and only if there exists a non-decreasing bounded function $\phi : E \to \mathbb{R}$ and a natural function $g: \phi (E) \to X$ such that $f=g\circ\phi$ on $E$. | ||
+ | Let $f:[a,b] \to \mathbb{R}$. Then $f$ is a natural function if and only if $f$ is absolutely continuous and $|f'(x)|=1$ a.e. on $[a,b]$. | ||
===References=== | ===References=== | ||
[1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819. | [1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819. |
Revision as of 16:34, 21 April 2016
A function $g: E \to X$ is natural if $V(g,E_a^b)=b-a$ for all $a,b \in E$, $a \leq b $, where $E\subset \mathbb{R}$ is a non-empty bounded set, $E_a^b=\{s \in E: a \leq s \leq b \}$ for $a,b \in E$ ($a \leq b$), $X$ is a metric space with a metric $d$, $V(g,E_a^b)$ variation of $g$ on $E_a^b$.
Let ${E_t}^-=\{s \in E: s \leq t\}$ and ${E_t}^+=\{s \in E: t \leq s\}$. The following conditions are equivalent:
(a) $f$ is a natural function;
(b) $V(f,{E_x}^-)=x+c$, $x \in E$, where $c=-inf(E)$;
(c) $f$ is a Lipschitz function such that $Lip(f) \leq 1$ and $V(f,E)=sup(E)-inf(E)$.
A natural function is a Lipschitz function and the smallest Lipschitz constant equals $1$.
A function $f: E \to X$ has bounded variation if and only if there exists a non-decreasing bounded function $\phi : E \to \mathbb{R}$ and a natural function $g: \phi (E) \to X$ such that $f=g\circ\phi$ on $E$.
Let $f:[a,b] \to \mathbb{R}$. Then $f$ is a natural function if and only if $f$ is absolutely continuous and $|f'(x)|=1$ a.e. on $[a,b]$.
References
[1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819.
Natural function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_function&oldid=38601