Difference between revisions of "Natural function"
Line 3: | Line 3: | ||
A function is natural if V(g,E_a^b)=b-a for all a,b \in E, a \leq b , where E\subset \mathbb{R} is a non-empty bounded set, E_a^b=\{s \in E: a \leq s \leq b \} for a,b \in E (a \leq b), X is a metric space with a metric d, V(g,E_a^b) variation of g on E_a^b. | A function g: E \to X is natural if V(g,E_a^b)=b-a for all a,b \in E, a \leq b , where E\subset \mathbb{R} is a non-empty bounded set, E_a^b=\{s \in E: a \leq s \leq b \} for a,b \in E (a \leq b), X is a metric space with a metric d, V(g,E_a^b) variation of g on E_a^b. | ||
− | Let {E_t}^-=\{s \in E: s \leq t\} and {E_t}^+=\{s \in E: t \leq s\}. | + | Let {E_t}^-=\{s \in E: s \leq t\} and ${E_t}^+=\{s \in E: t \leq s\}$. The follobwing conditions are equivalent: |
+ | (a) f is natural; | ||
+ | (b) V(f,E_x^-)=x+c, x \in E, where c=-inf(E); | ||
+ | (c) c is a Lipschitz function such that Lip(f) \leq 1 and $V(f,E)=sup(E)-inf(E)$. | ||
A natural function is a Lipschitz function and the smallest Lipschitz constant equals 1. | A natural function is a Lipschitz function and the smallest Lipschitz constant equals 1. |
Revision as of 16:20, 21 April 2016
A function g: E \to X is natural if V(g,E_a^b)=b-a for all a,b \in E, a \leq b , where E\subset \mathbb{R} is a non-empty bounded set, E_a^b=\{s \in E: a \leq s \leq b \} for a,b \in E (a \leq b), X is a metric space with a metric d, V(g,E_a^b) variation of g on E_a^b.
Let {E_t}^-=\{s \in E: s \leq t\} and {E_t}^+=\{s \in E: t \leq s\}. The follobwing conditions are equivalent: (a) f is natural; (b) V(f,E_x^-)=x+c, x \in E, where c=-inf(E); (c) c is a Lipschitz function such that Lip(f) \leq 1 and V(f,E)=sup(E)-inf(E).
A natural function is a Lipschitz function and the smallest Lipschitz constant equals 1.
A function f: E \to X has bounded variation if and only if there exists a non-decreasing bounded function \phi : E \to \mathbb{R} and a natural function g: \phi (E) \to X such that f=g\circ\phi on E.
References
[1] V.V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik: Mathematics 189:5 (1998), 797-819.
Natural function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_function&oldid=38593