Namespaces
Variants
Actions

Difference between revisions of "Symmetric channel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
Line 1: Line 1:
A [[Communication channel|communication channel]] whose transition function possesses some kind of symmetry. A homogeneous discrete time [[Memoryless channel|memoryless channel]] with finite alphabets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916002.png" /> of input and output letters, respectively, and defined by a matrix of transition probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916003.png" /> is called a symmetric channel if
+
A [[Communication channel|communication channel]] whose transition function possesses some kind of symmetry. A homogeneous discrete time [[Memoryless channel|memoryless channel]] with finite alphabets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916002.png" /> of input and output letters, respectively, and defined by a matrix of transition probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916003.png" /> is called a symmetric channel if:
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916004.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091600/s0916004.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>

Revision as of 00:44, 14 April 2015

A communication channel whose transition function possesses some kind of symmetry. A homogeneous discrete time memoryless channel with finite alphabets and of input and output letters, respectively, and defined by a matrix of transition probabilities is called a symmetric channel if:

(*)

where is the number of elements of , . The most studied example of a memoryless symmetric channel is the binary symmetric channel with matrix of transition probabilities

For symmetric channels, many important information-theoretic characteristics can either be calculated explicitly or their calculation can be substantially simplified in comparison with non-symmetric channels. For example, for a memoryless symmetric channel with matrix of the form (*) the capacity (cf. Transmission rate of a channel) is given by the equation

For references see ,

cited under Communication channel.


Comments

References

[a1] R.C. Gallager, "Information theory and reliable communication" , Wiley (1968)
How to Cite This Entry:
Symmetric channel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_channel&oldid=36402
This article was adapted from an original article by R.L. DobrushinV.V. Prelov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article