Namespaces
Variants
Actions

Difference between revisions of "User talk:WikiSysop"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
Line 6: Line 6:
 
Test
 
Test
 
==Test Asymptote==
 
==Test Asymptote==
 +
===Tests November 1th===
 +
====Case 1====
 +
<asy>
 +
size(0,100);
 +
pair z1=(-1,0);
 +
pair z2=(1,0);
 +
real r=1.5;
 +
path c1=circle(z1,r);
 +
path c2=circle(z2,r);
 +
fill(c1, lightred);
 +
fill(c2, lightgreen);
 +
picture intersection;
 +
fill(intersection,c1,lightred+lightgreen);
 +
clip(intersection,c2);
 +
add(intersection);
 +
draw(c1);
 +
draw(c2);
 +
label("$A$",z1);
 +
label("$B$",z2);
 +
path g=(0,-2)--(0,-0.25);
 +
draw(Label("$A\cap B$",0),g,Arrow);
 +
</asy>
 
===Tests November 17th===
 
===Tests November 17th===
 
====Case 1====
 
====Case 1====

Revision as of 16:52, 25 November 2014

Test Copy&Paste HTML

Test-copy-paste

Test Test

Test Asymptote

Tests November 1th

Case 1

Tests November 17th

Case 1

Tests November 4th

Case 1

Case 2

Case 3

Tests October 27th

Case 1

Case 2

Case 3

Case 4

Case 5

[asy] pair A,B,C,X,Y,Z; A = (0,0); B = (1,0); C = (0.3,0.8); draw(A--B--C--A); X = (B+C)/2; Y = (A+C)/2; Z = (A+B)/2; draw(A--X, red); draw(B--Y,red); draw(C--Z,red); [/asy]

Previous tests





Test Cite Extension

Example: Cite-Extension

Test MathJax

\begin{align} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}


\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]


Some Text \( \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \)


Some Text \[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

Pages A-Z

Alphabetically ordered index of all pages

Recent Changes

List of previous changes on EOM

.

How to Cite This Entry:
WikiSysop. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=WikiSysop&oldid=34969

Test January 12th 2015