Namespaces
Variants
Actions

Difference between revisions of "Talk:Sporadic simple group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(table test)
(table rowspans)
Line 7: Line 7:
 
|-
 
|-
 
| $M_{11}$
 
| $M_{11}$
|
+
| rowspan="5" | Mathieu groups
 
| $2^4.3^2.5.11$
 
| $2^4.3^2.5.11$
 
|-
 
|-
 
| $M_{12}$
 
| $M_{12}$
|
 
 
| $2^6.3^3.5.11$
 
| $2^6.3^3.5.11$
 
|-
 
|-
 
| $M_{22}$
 
| $M_{22}$
| Mathieu groups
 
 
| $2^7.3^2.5.7.11$
 
| $2^7.3^2.5.7.11$
 
|-
 
|-
 
| $M_{23}$
 
| $M_{23}$
|
 
 
| $2^7.3^2.5.7.11.23$
 
| $2^7.3^2.5.7.11.23$
 
|-
 
|-
 
| $M_{24}$
 
| $M_{24}$
|
 
 
| $2^{10}.3^3.5.7.11.23$
 
| $2^{10}.3^3.5.7.11.23$
 
|-
 
|-
Line 43: Line 39:
 
|-
 
|-
 
| $Co_1$
 
| $Co_1$
|
+
| rowspan="3" | Conway groups
 
| $2^{21}.3^9.5^4.7^2.11.13.23$
 
| $2^{21}.3^9.5^4.7^2.11.13.23$
 
|-
 
|-
 
| $Co_2$
 
| $Co_2$
| Conway groups
 
 
| $2^{18}.3^6.5^3.7.11.23$
 
| $2^{18}.3^6.5^3.7.11.23$
 
|-
 
|-
 
| $Co_3$
 
| $Co_3$
|
 
 
| $2^{10}.3^7.5^3.7.11.23$
 
| $2^{10}.3^7.5^3.7.11.23$
 
|-
 
|-
 
| $F_{22}$, $M(22)$
 
| $F_{22}$, $M(22)$
|  
+
| rowspan="3" | Fischer groups
 
| $2^{17}.3^9.5^2.7.11.13$
 
| $2^{17}.3^9.5^2.7.11.13$
 
|-
 
|-
 
| $F_{23}$, $M(23)$
 
| $F_{23}$, $M(23)$
| Fischer groups
 
 
| $2^{18}.3^{13}.5^2.7.11.13.17.23$
 
| $2^{18}.3^{13}.5^2.7.11.13.17.23$
 
|-
 
|-
 
| $F_{24}^\prime$, $M(24)^\prime$
 
| $F_{24}^\prime$, $M(24)^\prime$
|
 
 
| $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
 
| $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
 
|-
 
|-
Line 71: Line 63:
 
|-
 
|-
 
| $He$, $HHM$
 
| $He$, $HHM$
| Held–Higman–McKay
+
| Held–Higman–McKay group
 
| $2^{10}.2^3.5^2.7^3.17$
 
| $2^{10}.2^3.5^2.7^3.17$
 
|-
 
|-
Line 91: Line 83:
 
|-
 
|-
 
| $O'N$, $O'NS$
 
| $O'N$, $O'NS$
| O'Nan–Sims
+
| O'Nan–Sims group
 
| $2^9.3^4.5.7^3.11.19.31$
 
| $2^9.3^4.5.7^3.11.19.31$
 
|-
 
|-
Line 113: Line 105:
 
====References====
 
====References====
 
<table><TR><TD  valign="top">[1]</TD> <TD valign="top">  S.A. Syskin,    "Abstract properties of the simple sporadic groups"  ''Russian Math.  Surveys'' , '''35''' :  5  (1980)  pp. 209–246  ''Uspekhi Mat. Nauk'' ,  '''35''' :  5  (1980)  pp. 181–212</TD></TR><TR><TD  valign="top">[2]</TD> <TD valign="top">  M. Aschbacher,    "The finite simple groups and their classification" , Yale Univ. Press  (1980)</TD></TR></table>
 
<table><TR><TD  valign="top">[1]</TD> <TD valign="top">  S.A. Syskin,    "Abstract properties of the simple sporadic groups"  ''Russian Math.  Surveys'' , '''35''' :  5  (1980)  pp. 209–246  ''Uspekhi Mat. Nauk'' ,  '''35''' :  5  (1980)  pp. 181–212</TD></TR><TR><TD  valign="top">[2]</TD> <TD valign="top">  M. Aschbacher,    "The finite simple groups and their classification" , Yale Univ. Press  (1980)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The  recent classification of the finite simple groups (1981) has led to the  conclusion that — up to a uniqueness proof for the Monster as the only  simple group of its order with certain additional properties — every  non-Abelian finite simple group is isomorphic to: an [[Alternating  group|alternating group]] on at least <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687069.png" />  letters, a group of (twisted or untwisted) Lie type, or one of the above <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687070.png" /> sporadic groups.  See [[#References|[a2]]] for a discussion of the proof.
+
The  recent classification of the finite simple groups (1981) has led to the  conclusion that — up to a uniqueness proof for the Monster as the only  simple group of its order with certain additional properties — every  non-Abelian finite simple group is isomorphic to: an [[Alternating  group|alternating group]] on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups.  See [[#References|[a2]]] for a discussion of the proof.
  
 
====References====
 
====References====
 
<table><TR><TD  valign="top">[a1]</TD> <TD valign="top">  J.H. Conway,    R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of  finite groups" , Clarendon Press  (1985)</TD></TR><TR><TD  valign="top">[a2]</TD> <TD valign="top">  D. Gorenstein,    "Finite simple groups. An introduction to their classification" ,  Plenum  (1982)</TD></TR></table>
 
<table><TR><TD  valign="top">[a1]</TD> <TD valign="top">  J.H. Conway,    R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of  finite groups" , Clarendon Press  (1985)</TD></TR><TR><TD  valign="top">[a2]</TD> <TD valign="top">  D. Gorenstein,    "Finite simple groups. An introduction to their classification" ,  Plenum  (1982)</TD></TR></table>

Revision as of 16:42, 30 April 2012

A simple finite group that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.

notation name order
$M_{11}$ Mathieu groups $2^4.3^2.5.11$
$M_{12}$ $2^6.3^3.5.11$
$M_{22}$ $2^7.3^2.5.7.11$
$M_{23}$ $2^7.3^2.5.7.11.23$
$M_{24}$ $2^{10}.3^3.5.7.11.23$
$J_1$ Janko group $2^3.3.5.7.11.19$
$J_2$, $HJ$ Hall–Janko group $2^7.3^3.5^2.7$
$J_3$, $HJM$ Hall–Janko–McKay group $2^7.3^5.5.17.19$
$J_4$ Janko group $2^{21}.3^3.5.7.11^3.23.29.31.37.43$
$Co_1$ Conway groups $2^{21}.3^9.5^4.7^2.11.13.23$
$Co_2$ $2^{18}.3^6.5^3.7.11.23$
$Co_3$ $2^{10}.3^7.5^3.7.11.23$
$F_{22}$, $M(22)$ Fischer groups $2^{17}.3^9.5^2.7.11.13$
$F_{23}$, $M(23)$ $2^{18}.3^{13}.5^2.7.11.13.17.23$
$F_{24}^\prime$, $M(24)^\prime$ $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
$HS$ Higman–Sims group $2^9.3^2.5^3.7.11$
$He$, $HHM$ Held–Higman–McKay group $2^{10}.2^3.5^2.7^3.17$
$Suz$ Suzuki group $2^{13}.3^7.5^2.7.11.13$
$M^c$ McLaughlin group $2^7.3^6.5^3.7.11$
$Ly$ Lyons group $2^8.3^7.5^6.7.11.31.37.67$
$Ru$ Rudvalis group $2^{14}.3^3.5^3.7.13.29$
$O'N$, $O'NS$ O'Nan–Sims group $2^9.3^4.5.7^3.11.19.31$
$F_1$, $M$ Monster, Fischer–Griess group $2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.19.23.29.31.41.47.59.71$
$F_2$, $B$ Baby monster $2^{41}.3^{13}.5^6.7^2.11.13.17.19.23.31.47$
$F_3$, $E$, $Th$ Thompson group $2^{15}.3^{10}.5^3.7^2.13.19.31$
$F_5$, $D$, $HN$ Harada–Norton group $2^{14}.3^6.5^6.7.11.19$

References

[1] S.A. Syskin, "Abstract properties of the simple sporadic groups" Russian Math. Surveys , 35 : 5 (1980) pp. 209–246 Uspekhi Mat. Nauk , 35 : 5 (1980) pp. 181–212
[2] M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)

Comments

The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an alternating group on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. See [a2] for a discussion of the proof.

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
[a2] D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)
How to Cite This Entry:
Sporadic simple group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sporadic_simple_group&oldid=25778