Namespaces
Variants
Actions

Difference between revisions of "Talk:Sporadic simple group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(removed table)
(table test)
Line 1: Line 1:
 
A [[Simple finite group|simple finite group]] that does not belong to  any of the known infinite series of simple finite groups. The  twenty-six sporadic simple groups are listed in the following  table.
 
A [[Simple finite group|simple finite group]] that does not belong to  any of the known infinite series of simple finite groups. The  twenty-six sporadic simple groups are listed in the following  table.
 +
 +
{| class="wikitable"
 +
! notation
 +
! name
 +
! order
 +
|-
 +
| $M_{11}$
 +
|
 +
| $2^4.3^2.5.11$
 +
|-
 +
| $M_{12}$
 +
|
 +
| $2^6.3^3.5.11$
 +
|-
 +
| $M_{22}$
 +
| Mathieu groups
 +
| $2^7.3^2.5.7.11$
 +
|-
 +
| $M_{23}$
 +
|
 +
| $2^7.3^2.5.7.11.23$
 +
|-
 +
| $M_{24}$
 +
|
 +
| $2^{10}.3^3.5.7.11.23$
 +
|-
 +
| $J_1$
 +
| Janko group
 +
| $2^3.3.5.7.11.19$
 +
|-
 +
| $J_2$, $HJ$
 +
| Hall–Janko group
 +
| $2^7.3^3.5^2.7$
 +
|-
 +
| $J_3$, $HJM$
 +
| Hall–Janko–McKay group
 +
| $2^7.3^5.5.17.19$
 +
|-
 +
| $J_4$
 +
| Janko group
 +
| $2^{21}.3^3.5.7.11^3.23.29.31.37.43$
 +
|-
 +
| $Co_1$
 +
|
 +
| $2^{21}.3^9.5^4.7^2.11.13.23$
 +
|-
 +
| $Co_2$
 +
| Conway groups
 +
| $2^{18}.3^6.5^3.7.11.23$
 +
|-
 +
| $Co_3$
 +
|
 +
| $2^{10}.3^7.5^3.7.11.23$
 +
|-
 +
| $F_{22}$, $M(22)$
 +
|
 +
| $2^{17}.3^9.5^2.7.11.13$
 +
|-
 +
| $F_{23}$, $M(23)$
 +
| Fischer groups
 +
| $2^{18}.3^{13}.5^2.7.11.13.17.23$
 +
|-
 +
| $F_{24}^\prime$, $M(24)^\prime$
 +
|
 +
| $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
 +
|-
 +
| $HS$
 +
| Higman–Sims group
 +
| $2^9.3^2.5^3.7.11$
 +
|-
 +
| $He$, $HHM$
 +
| Held–Higman–McKay
 +
| $2^{10}.2^3.5^2.7^3.17$
 +
|-
 +
| $Suz$
 +
| Suzuki group
 +
| $2^{13}.3^7.5^2.7.11.13$
 +
|-
 +
| $M^c$
 +
| McLaughlin group
 +
| $2^7.3^6.5^3.7.11$
 +
|-
 +
| $Ly$
 +
| Lyons group
 +
| $2^8.3^7.5^6.7.11.31.37.67$
 +
|-
 +
| $Ru$
 +
| Rudvalis group
 +
| $2^{14}.3^3.5^3.7.13.29$
 +
|-
 +
| $O'N$, $O'NS$
 +
| O'Nan–Sims
 +
| $2^9.3^4.5.7^3.11.19.31$
 +
|-
 +
| $F_1$, $M$
 +
| Monster, Fischer–Griess group
 +
| $2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.19.23.29.31.41.47.59.71$
 +
|-
 +
| $F_2$, $B$
 +
| Baby monster
 +
| $2^{41}.3^{13}.5^6.7^2.11.13.17.19.23.31.47$
 +
|-
 +
| $F_3$, $E$, $Th$
 +
| Thompson group
 +
| $2^{15}.3^{10}.5^3.7^2.13.19.31$
 +
|-
 +
| $F_5$, $D$, $HN$
 +
| Harada–Norton group
 +
| $2^{14}.3^6.5^6.7.11.19$
 +
|}
  
 
====References====
 
====References====

Revision as of 16:32, 30 April 2012

A simple finite group that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.

notation name order
$M_{11}$ $2^4.3^2.5.11$
$M_{12}$ $2^6.3^3.5.11$
$M_{22}$ Mathieu groups $2^7.3^2.5.7.11$
$M_{23}$ $2^7.3^2.5.7.11.23$
$M_{24}$ $2^{10}.3^3.5.7.11.23$
$J_1$ Janko group $2^3.3.5.7.11.19$
$J_2$, $HJ$ Hall–Janko group $2^7.3^3.5^2.7$
$J_3$, $HJM$ Hall–Janko–McKay group $2^7.3^5.5.17.19$
$J_4$ Janko group $2^{21}.3^3.5.7.11^3.23.29.31.37.43$
$Co_1$ $2^{21}.3^9.5^4.7^2.11.13.23$
$Co_2$ Conway groups $2^{18}.3^6.5^3.7.11.23$
$Co_3$ $2^{10}.3^7.5^3.7.11.23$
$F_{22}$, $M(22)$ $2^{17}.3^9.5^2.7.11.13$
$F_{23}$, $M(23)$ Fischer groups $2^{18}.3^{13}.5^2.7.11.13.17.23$
$F_{24}^\prime$, $M(24)^\prime$ $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
$HS$ Higman–Sims group $2^9.3^2.5^3.7.11$
$He$, $HHM$ Held–Higman–McKay $2^{10}.2^3.5^2.7^3.17$
$Suz$ Suzuki group $2^{13}.3^7.5^2.7.11.13$
$M^c$ McLaughlin group $2^7.3^6.5^3.7.11$
$Ly$ Lyons group $2^8.3^7.5^6.7.11.31.37.67$
$Ru$ Rudvalis group $2^{14}.3^3.5^3.7.13.29$
$O'N$, $O'NS$ O'Nan–Sims $2^9.3^4.5.7^3.11.19.31$
$F_1$, $M$ Monster, Fischer–Griess group $2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.19.23.29.31.41.47.59.71$
$F_2$, $B$ Baby monster $2^{41}.3^{13}.5^6.7^2.11.13.17.19.23.31.47$
$F_3$, $E$, $Th$ Thompson group $2^{15}.3^{10}.5^3.7^2.13.19.31$
$F_5$, $D$, $HN$ Harada–Norton group $2^{14}.3^6.5^6.7.11.19$

References

[1] S.A. Syskin, "Abstract properties of the simple sporadic groups" Russian Math. Surveys , 35 : 5 (1980) pp. 209–246 Uspekhi Mat. Nauk , 35 : 5 (1980) pp. 181–212
[2] M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)


Comments

The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an alternating group on at least letters, a group of (twisted or untwisted) Lie type, or one of the above sporadic groups. See [a2] for a discussion of the proof.

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
[a2] D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)
How to Cite This Entry:
Sporadic simple group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sporadic_simple_group&oldid=25777