Namespaces
Variants
Actions

Difference between revisions of "Hahn decomposition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: Royden: internal link)
Line 10: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.R. Halmos,  "Measure theory" , v. Nostrand  (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1966)  pp. 57</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.L. Royden,   "Real analysis" , Macmillan  (1968)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.R. Halmos,  "Measure theory" , v. Nostrand  (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1966)  pp. 57</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan  (1968)</TD></TR></table>

Revision as of 18:03, 26 April 2012

A partition of a set , on which a -additive set function is given on the -algebra of subsets, into two subsets and , , such that if , , and if , . Such a partition of is not unique, in general.

References

[1] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958)


Comments

See also Jordan decomposition. Instead of Hahn decomposition the phrase Hahn–Jordan decomposition is also used.

References

[a1] P.R. Halmos, "Measure theory" , v. Nostrand (1950)
[a2] W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 57
[a3] H.L. Royden, "Real analysis", Macmillan (1968)
How to Cite This Entry:
Hahn decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hahn_decomposition&oldid=25514
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article