Difference between revisions of "Fabry theorem"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | Fabry's gap theorem | + | ==Fabry's gap theorem== |
− | + | If the exponents $\lambda_n$ in the power series | |
− | + | $$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$ | |
− | + | with radius of convergence $R$, $0<R<\infty$, satisfy the condition | |
− | + | $$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$ | |
− | + | then all points of the circle $\lvert z\rvert=R$ are singular points for $f(z)$. The theorem can be generalized to Dirichlet series. | |
− | + | ==Fabry's quotient theorem== | |
− | + | If the coefficients in the power series | |
− | + | $$ f(z)=\sum_{n=0}^\infty a_nz^n,$$ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | with unit radius of convergence, satisfy the condition | ||
+ | $$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$ | ||
− | = | + | then $z=s$ is a singular point of $f(z)$. |
+ | These theorems were obtained by E. Fabry {{Cite|Fa}}. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Bi}}|| valign="top"| L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Di}}|| valign="top"| P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fa}}|| valign="top"| E. Fabry, "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" ''Ann. Sci. Ecole Norm. Sup.'' , '''13''' (1896) pp. 367–399 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Le}}|| valign="top"| A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) | ||
+ | |valign="top"|{{Ref|La}}|| valign="top"| E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint (1973) | ||
+ | |- | ||
+ | |} |
Revision as of 06:22, 22 April 2012
Fabry's gap theorem
If the exponents $\lambda_n$ in the power series
$$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$
with radius of convergence $R$, $0<R<\infty$, satisfy the condition
$$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$
then all points of the circle $\lvert z\rvert=R$ are singular points for $f(z)$. The theorem can be generalized to Dirichlet series.
Fabry's quotient theorem
If the coefficients in the power series
$$ f(z)=\sum_{n=0}^\infty a_nz^n,$$
with unit radius of convergence, satisfy the condition
$$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$
then $z=s$ is a singular point of $f(z)$.
These theorems were obtained by E. Fabry [Fa].
References
[Bi] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) | ||
[Di] | P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) | ||
[Fa] | E. Fabry, "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" Ann. Sci. Ecole Norm. Sup. , 13 (1896) pp. 367–399 | ||
[Le] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) | [La] | E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973) |
How to Cite This Entry:
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=24999
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=24999
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article