Difference between revisions of "Rational curve"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 11: | Line 11: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 {{MR|0313252}} {{MR|0260752}} {{ZBL|0194.21901}} {{ZBL|0181.23901}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> |
Revision as of 21:55, 30 March 2012
A one-dimensional algebraic variety, defined over an algebraically closed field , whose field of rational functions is a purely transcendental extension of degree 1 of . Every non-singular complete rational curve is isomorphic to the projective line . A complete singular curve is rational if and only if its geometric genus is zero, that is, when there are no regular differential forms on .
When is the field of complex numbers, the (only) non-singular complete rational curve is the Riemann sphere .
Comments
In classic literature a rational curve is also called a unicursal curve.
If is defined over a not necessarily algebraically closed field and is birationally equivalent to over , is said to be a -rational curve.
References
[a1] | W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 MR0313252 MR0260752 Zbl 0194.21901 Zbl 0181.23901 |
[a2] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Rational curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_curve&oldid=23948