Namespaces
Variants
Actions

Difference between revisions of "Rational curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 11: Line 11:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Fulton,   "Algebraic curves" , Benjamin (1969) pp. 66</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich,   "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 {{MR|0313252}} {{MR|0260752}} {{ZBL|0194.21901}} {{ZBL|0181.23901}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table>

Revision as of 21:55, 30 March 2012

A one-dimensional algebraic variety, defined over an algebraically closed field , whose field of rational functions is a purely transcendental extension of degree 1 of . Every non-singular complete rational curve is isomorphic to the projective line . A complete singular curve is rational if and only if its geometric genus is zero, that is, when there are no regular differential forms on .

When is the field of complex numbers, the (only) non-singular complete rational curve is the Riemann sphere .


Comments

In classic literature a rational curve is also called a unicursal curve.

If is defined over a not necessarily algebraically closed field and is birationally equivalent to over , is said to be a -rational curve.

References

[a1] W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 MR0313252 MR0260752 Zbl 0194.21901 Zbl 0181.23901
[a2] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
How to Cite This Entry:
Rational curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_curve&oldid=23948
This article was adapted from an original article by Vik.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article