Difference between revisions of "Projective algebraic set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 26: | Line 26: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''1''' , Springer (1975) {{MR|0389876}} {{MR|0384768}} {{ZBL|0313.13001}} </TD></TR></table> |
Line 34: | Line 34: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Mumford, "Algebraic geometry" , '''1. Complex projective varieties''' , Springer (1976) {{MR|0453732}} {{ZBL|0356.14002}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Revision as of 21:55, 30 March 2012
A subset of points of a projective space defined over a field that has (in homogeneous coordinates) the form
Here is a homogeneous ideal in the polynomial ring . (An ideal is homogeneous if and , where the are homogeneous polynomials of degree , imply that .)
Projective algebraic sets possess the following properties:
1) ;
2) ;
3) if , then ;
4) , where is the radical of the ideal (cf. Radical of an ideal).
It follows from properties 1)–3) that on the Zariski topology can be introduced. If , then can be uniquely represented as the intersection of homogeneous prime ideals:
and
In the case where is a homogeneous prime ideal, the projective algebraic set is called a projective variety.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | O. Zariski, P. Samuel, "Commutative algebra" , 1 , Springer (1975) MR0389876 MR0384768 Zbl 0313.13001 |
Comments
References
[a1] | D. Mumford, "Algebraic geometry" , 1. Complex projective varieties , Springer (1976) MR0453732 Zbl 0356.14002 |
[a2] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
Projective algebraic set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_algebraic_set&oldid=23932