Difference between revisions of "Gauss-Manin connection"
Ulf Rehmann (talk | contribs) m (moved Gauss–Manin connection to Gauss-Manin connection: ascii title) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 38: | Line 38: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Yu. Manin, "Algebraic curves over fields with differentiation" ''Transl. Amer. Math. Soc.'' , '''37''' (1964) pp. 59–78 ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''22''' (1958) pp. 737–756</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.M. Katz, "On the differential equations satisfied by period matrices" ''Publ. Math. IHES'' , '''35''' (1968) pp. 71–106</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Grothendieck, "On the de Rham cohomology of algebraic varieties" ''Publ. Math. IHES'' , '''29''' (1966) pp. 351–359 {{MR|0199194}} {{ZBL|0145.17602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N.M. Katz, T. Oda, "On the differentiation of de Rham cohomology classes with respect to parameters" ''J. Math. Kyoto Univ.'' , '''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g04347053.png" />''' (1968) pp. 199–213</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N. Nilsson, "Some growth and ramification properties of certain integrals on algebraic manifolds" ''Arkiv för Mat.'' , '''5''' (1963–1965) pp. 527–540</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Deligne, "Equations différentielles à points singuliers réguliers" , ''Lect. notes in math.'' , '''163''' , Springer (1970) {{MR|0417174}} {{ZBL|0244.14004}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> N.M. Katz, "The regularity theorem in algebraic geometry" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''1''' , Gauthier-Villars (1971) pp. 437–443</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> P.A. Griffiths, "Periods of integrals on algebraic manifolds, I, II" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626; 805–865</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> A. Grothendieck, "Letter to J.-P. Serre" (5.10.1964)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> E. Brieskorn, "Die Monodromie von isolierten Singularitäten von Hyperflächen" ''Manuscr. Math.'' , '''2''' (1970) pp. 103–161</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> N.M. Katz, "Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin" ''Publ. Math. IHES'' , '''39''' (1971) pp. 175–232</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Landman, "On the Picard–Lefschetz formula for algebraic manifolds acquiring general singularities" , Berkeley (1967) (Thesis)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> C.H. Clemens, "Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities" ''Trans. Amer. Math. Soc.'' , '''136''' (1969) pp. 93–108 {{MR|0233814}} {{ZBL|0185.51302}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> D.T. Lê, "The geometry of the monodromy theorem" K.G. Ramanathan (ed.) , ''C.P. Ramanujam, a tribute'' , ''Tata IFR Studies in Math.'' , '''8''' , Springer (1978)</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> P. Deligne, "Théorème de Lefschetz et critères de dégénérescence de suites spectrales" ''Publ. Math. IHES'' , '''35''' (1968) pp. 107–126</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" ''Invent. Math.'' , '''22''' (1973) pp. 211–319 {{MR|0382272}} {{ZBL|0278.14003}} </TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> G.-M. Greuel, "Der Gauss–Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten" ''Math. Ann.'' , '''214''' (1975) pp. 235–266</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> P. Deligne, "Le formalisme des cycles évanescents" A. Grothendieck (ed.) , ''Groupes de monodromie en géométrie algébrique. SGA 7.II'' , ''Lect. notes in math.'' , '''340''' , Springer (1973) pp. Exp. XIII</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> F. Pham, "Singularités des systèmes différentiels de Gauss–Manin" , Birkhäuser (1979) {{MR|553954}} {{ZBL|0524.32015}} </TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> J. Scherk, J.H.M. Steenbrink, "On the mixed Hodge structure on the cohomology of the Milnor fibre" ''Math. Ann.'' , '''271''' (1985) pp. 641–665</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> A.N. Varchenko, "Asymptotic Hodge structure in the vanishing cohomology" ''Math USSR Izv.'' , '''18''' (1982) pp. 469–512 ''Izv. Akad. Nauk SSSR'' , '''45''' : 3 (1981) pp. 540–591; 688</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> M. Saito, "Gauss–Manin system and mixed Hodge structure" ''Proc. Japan Acad. Ser A'' , '''58''' (1982) pp. 29–32</TD></TR></table> |
Revision as of 21:52, 30 March 2012
The Gauss–Manin connection is a way to differentiate cohomology classes with respect to parameters. Consider a smooth projective curve over a field
. Its first de Rham cohomology group
can be identified with the space of differentials of second kind on
modulo exact differentials (cf. Differential). Each derivation
of
(cf. Derivation in a ring) can be lifted in a canonical way to a mapping
satisfying
for
,
[a1], [a2]. This amounts to a connection
![]() |
which is integrable (i.e. ). If
is a function field in one variable, one obtains the Picard–Fuchs equation
, which has regular singular points (cf. Regular singular point).
The generalization to higher dimension is due to A. Grothendieck [a3]. For a proper and smooth morphism of
-schemes the de Rham cohomology of the fibres of
is described by the locally free
-modules
, the relative de Rham cohomology sheaves. From now on suppose that
is of finite type over
and let
and
denote the underlying analytic spaces. Then
![]() |
and the analytic version of the Gauss–Manin connection is defined by for
(respectively,
) a local section of
(respectively,
).
An algebraic construction has been given by N.M. Katz and T. Oda [a4]. The complex is filtered by subcomplexes
, where
![]() |
One has and
. The connecting homomorphism
in the long exact hypercohomology sequence associated to the exact sequence
![]() |
is an algebraic version of the Gauss–Manin connection.
The Gauss–Manin connection is regular singular [a5]–[a8]. Its monodromy transformations around points at infinity are quasi-unipotent [a6], [a9], [a10], and bounds on the size of its Jordan blocks are known [a7], [a11]. Geometrical proofs of the monodromy theorem are due to A. Landman [a12], C.H. Clemens [a13] and D.T. Lê [a14].
Another important feature of the Gauss–Manin connection is Griffiths' transversality. The relative de Rham cohomology sheaves of a smooth proper morphism can be filtered as follows. Let
be the subcomplex
![]() |
of . Then
. The spectral sequence
degenerates at
[a15] and
is locally free on
. Hence
maps injectively to a subsheaf
of
. Griffiths' transversality is the property that
![]() |
The geometric data have given rise to the concept of a (polarized) variation of Hodge structure. A. Borel has extended the monodromy theorem to this abstract case ([a16], (6.1)).
The Gauss–Manin connection has also been defined for function germs with isolated singularity [a10] and for mapping germs defining isolated complete intersection singularities [a17]. The monodromy of these connections is the classical Picard–Lefschetz monodromy on the vanishing cohomology.
In the theory of -modules (cf.
-module), the theory of the Gauss–Manin connection is expressed as a property of the direct image functor for a proper morphism. Combined with the formalism of vanishing cycle functors [a18] it gives rise to the notion of the Gauss–Manin system [a19]. This plays an important role in the asymptotic Hodge theory of singularities [a20]–[a22].
References
[a1] | Yu. Manin, "Algebraic curves over fields with differentiation" Transl. Amer. Math. Soc. , 37 (1964) pp. 59–78 Izv. Akad. Nauk. SSSR Ser. Mat. , 22 (1958) pp. 737–756 |
[a2] | N.M. Katz, "On the differential equations satisfied by period matrices" Publ. Math. IHES , 35 (1968) pp. 71–106 |
[a3] | A. Grothendieck, "On the de Rham cohomology of algebraic varieties" Publ. Math. IHES , 29 (1966) pp. 351–359 MR0199194 Zbl 0145.17602 |
[a4] | N.M. Katz, T. Oda, "On the differentiation of de Rham cohomology classes with respect to parameters" J. Math. Kyoto Univ. , ![]() |
[a5] | N. Nilsson, "Some growth and ramification properties of certain integrals on algebraic manifolds" Arkiv för Mat. , 5 (1963–1965) pp. 527–540 |
[a6] | P. Deligne, "Equations différentielles à points singuliers réguliers" , Lect. notes in math. , 163 , Springer (1970) MR0417174 Zbl 0244.14004 |
[a7] | N.M. Katz, "The regularity theorem in algebraic geometry" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 1 , Gauthier-Villars (1971) pp. 437–443 |
[a8] | P.A. Griffiths, "Periods of integrals on algebraic manifolds, I, II" Amer. J. Math. , 90 (1968) pp. 568–626; 805–865 |
[a9] | A. Grothendieck, "Letter to J.-P. Serre" (5.10.1964) |
[a10] | E. Brieskorn, "Die Monodromie von isolierten Singularitäten von Hyperflächen" Manuscr. Math. , 2 (1970) pp. 103–161 |
[a11] | N.M. Katz, "Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin" Publ. Math. IHES , 39 (1971) pp. 175–232 |
[a12] | A. Landman, "On the Picard–Lefschetz formula for algebraic manifolds acquiring general singularities" , Berkeley (1967) (Thesis) |
[a13] | C.H. Clemens, "Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities" Trans. Amer. Math. Soc. , 136 (1969) pp. 93–108 MR0233814 Zbl 0185.51302 |
[a14] | D.T. Lê, "The geometry of the monodromy theorem" K.G. Ramanathan (ed.) , C.P. Ramanujam, a tribute , Tata IFR Studies in Math. , 8 , Springer (1978) |
[a15] | P. Deligne, "Théorème de Lefschetz et critères de dégénérescence de suites spectrales" Publ. Math. IHES , 35 (1968) pp. 107–126 |
[a16] | W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" Invent. Math. , 22 (1973) pp. 211–319 MR0382272 Zbl 0278.14003 |
[a17] | G.-M. Greuel, "Der Gauss–Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten" Math. Ann. , 214 (1975) pp. 235–266 |
[a18] | P. Deligne, "Le formalisme des cycles évanescents" A. Grothendieck (ed.) , Groupes de monodromie en géométrie algébrique. SGA 7.II , Lect. notes in math. , 340 , Springer (1973) pp. Exp. XIII |
[a19] | F. Pham, "Singularités des systèmes différentiels de Gauss–Manin" , Birkhäuser (1979) MR553954 Zbl 0524.32015 |
[a20] | J. Scherk, J.H.M. Steenbrink, "On the mixed Hodge structure on the cohomology of the Milnor fibre" Math. Ann. , 271 (1985) pp. 641–665 |
[a21] | A.N. Varchenko, "Asymptotic Hodge structure in the vanishing cohomology" Math USSR Izv. , 18 (1982) pp. 469–512 Izv. Akad. Nauk SSSR , 45 : 3 (1981) pp. 540–591; 688 |
[a22] | M. Saito, "Gauss–Manin system and mixed Hodge structure" Proc. Japan Acad. Ser A , 58 (1982) pp. 29–32 |
Gauss-Manin connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss-Manin_connection&oldid=23837