Namespaces
Variants
Actions

Difference between revisions of "Transcendental number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 1: Line 1:
A number that is not a root of any polynomial with integer coefficients. The domain of definition of such numbers is the field of either the real, complex or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936401.png" />-adic numbers. The existence and explicit construction of transcendental numbers was provided by J. Liouville [[#References|[1]]] on the basis of the following fact, noted by him. Irrational algebraic numbers do not have "very good" approximations by rational numbers (see [[Liouville theorems|Liouville theorems]]). Similar considerations enable one to construct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936402.png" />-adic transcendental numbers. G. Cantor [[#References|[2]]], after discovering the countability of the set of all algebraic numbers and the uncountability of the set of all real numbers, thus proved that the transcendental real numbers form a set of the cardinality of the continuum. E. Borel [[#References|[3]]], after introducing the first concepts of measure theory, established that "almost all" real numbers are transcendental. It was later found that Liouville transcendental numbers form an everywhere-dense subset of the real axis, having the cardinality of the continuum and zero Lebesgue measure. Despite the fact that already in the middle of the 18th century there arose the conjecture on the transcendency of numbers such as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936403.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936406.png" />, etc., proofs of this could not be obtained. The transcendency of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936407.png" /> was proved by Ch. Hermite [[#References|[4]]], that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936408.png" /> and, more generally, of logarithms of algebraic numbers by C.L.F. Lindemann [[#References|[5]]], that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936409.png" /> by A.O. Gel'fond [[#References|[6]]]; C.L. Siegel [[#References|[7]]] developed a general method for proving transcendency and algebraic independence of the values at algebraic points of entire functions of a specific class (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364011.png" />-functions), satisfying a linear differential equation with polynomial coefficients (cf. [[Siegel method|Siegel method]]). Gel'fond [[#References|[8]]] and T. Schneider [[#References|[9]]] simultaneously and independently proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364012.png" /> is transcendental if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364013.png" /> is algebraic and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364014.png" /> is an algebraic irrational (the so-called Hilbert's seventh problem); A. Baker [[#References|[10]]] proved the transcendency of products of numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364015.png" /> under natural restrictions. Similar results have been obtained for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364016.png" />-adic transcendental numbers (including Engel's theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364017.png" />-functions). The development of methods of the theory of transcendental numbers has proved to have a strong influence on new studies in [[Diophantine equations|Diophantine equations]] [[#References|[10]]], [[#References|[11]]].
+
A number that is not a root of any polynomial with integer coefficients. The domain of definition of such numbers is the field of either the real, complex or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936401.png" />-adic numbers. The existence and explicit construction of transcendental numbers was provided by J. Liouville [[#References|[1]]] on the basis of the following fact, noted by him. Irrational algebraic numbers do not have "very good" approximations by rational numbers (see [[Liouville theorems|Liouville theorems]]). Similar considerations enable one to construct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936402.png" />-adic transcendental numbers. G. Cantor [[#References|[2]]], after discovering the countability of the set of all algebraic numbers and the uncountability of the set of all real numbers, thus proved that the transcendental real numbers form a set of the cardinality of the continuum. E. Borel [[#References|[3]]], after introducing the first concepts of measure theory, established that "almost all" real numbers are transcendental. It was later found that Liouville transcendental numbers form an everywhere-dense subset of the real axis, having the cardinality of the continuum and zero Lebesgue measure. Despite the fact that already in the middle of the 18th century there arose the conjecture on the transcendency of numbers such as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936403.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936406.png" />, etc., proofs of this could not be obtained. The transcendency of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936407.png" /> was proved by Ch. Hermite [[#References|[4]]], that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936408.png" /> and, more generally, of logarithms of algebraic numbers by C.L.F. Lindemann [[#References|[5]]], that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t0936409.png" /> by A.O. Gel'fond [[#References|[6]]]; C.L. Siegel [[#References|[7]]] developed a general method for proving transcendency and algebraic independence of the values at algebraic points of entire functions of a specific class (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364011.png" />-functions), satisfying a linear differential equation with polynomial coefficients (cf. [[Siegel method|Siegel method]]). Gel'fond [[#References|[8]]] and T. Schneider [[#References|[9]]] simultaneously and independently proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364012.png" /> is transcendental if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364013.png" /> is algebraic and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364014.png" /> is an algebraic irrational (the so-called Hilbert's seventh problem); A. Baker [[#References|[10]]] proved the transcendency of products of numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364015.png" /> under natural restrictions. Similar results have been obtained for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364016.png" />-adic transcendental numbers (including Engel's theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364017.png" />-functions). The development of methods of the theory of transcendental numbers has proved to have a strong influence on new studies in [[Diophantine equations|Diophantine equations]] [[#References|[10]]], [[#References|[11]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Liouville,   "Sur des classes de très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" ''C.R. Acad. Sci.'' , '''18''' (1844) pp. 883–885; 910–911</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Cantor,   "Gesammelte Abhandlungen mathematischen und philosophischen Inhalts" , G. Olms, reprint (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Borel,   "Leçons sur les fonctions discontinues" , Gauthier-Villars (1898)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Ch. Hermite,   "Sur la fonction exponentielle" ''C.R. Acad. Sci.'' , '''77''' (1873) pp. 18–24; 74–79; 221–233; 285–293</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> C.L.F. Lindemann,   "Ueber die Zahl <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364018.png" />" ''Math. Ann.'' , '''20''' (1882) pp. 213–225</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.O. Gel'fond,   "Sur les nombre transcendants" ''C.R. Acad. Sci.'' , '''189''' (1929) pp. 1224–1226</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C.L. Siegel,   "Ueber einige Anwendungen diophantischer Approximationen" ''Abhandl. Preuss. Akad. Wiss., Phys. Kl.'' , '''1''' (1929) pp. 1–70</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.O. Gel'fond,   "Sur le septième problème de Hilbert" ''Dokl. Akad. Nauk SSSR'' , '''2''' (1934) pp. 4–6</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> T. Schneider,   "Transzendenzuntersuchungen periodischer Functionen I, II" ''J. Reine Angew. Math.'' , '''172''' (1934) pp. 65–69; 70–74</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A. Baker,   "Transcendental number theory" , Cambridge Univ. Press (1975)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> V.G. Sprindzhuk,   "Classical Diophantine equations in two unknowns" , Moscow (1982) (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> N.I. Fel'dman,   "Hilbert's seventh problem" , Moscow (1982) (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Liouville, "Sur des classes de très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" ''C.R. Acad. Sci.'' , '''18''' (1844) pp. 883–885; 910–911</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Cantor, "Gesammelte Abhandlungen mathematischen und philosophischen Inhalts" , G. Olms, reprint (1962) {{MR|0148517}} {{ZBL|0717.01007}} {{ZBL|0441.04001}} {{ZBL|0004.05401}} {{ZBL|58.0043.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Borel, "Leçons sur les fonctions discontinues" , Gauthier-Villars (1898) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Ch. Hermite, "Sur la fonction exponentielle" ''C.R. Acad. Sci.'' , '''77''' (1873) pp. 18–24; 74–79; 221–233; 285–293 {{MR|}} {{ZBL|05.0248.01}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> C.L.F. Lindemann, "Ueber die Zahl <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364018.png" />" ''Math. Ann.'' , '''20''' (1882) pp. 213–225 {{MR|1510165}} {{ZBL|14.0369.04}} {{ZBL|14.0369.02}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.O. Gel'fond, "Sur les nombre transcendants" ''C.R. Acad. Sci.'' , '''189''' (1929) pp. 1224–1226</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> C.L. Siegel, "Ueber einige Anwendungen diophantischer Approximationen" ''Abhandl. Preuss. Akad. Wiss., Phys. Kl.'' , '''1''' (1929) pp. 1–70 {{MR|}} {{ZBL|56.0180.05}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.O. Gel'fond, "Sur le septième problème de Hilbert" ''Dokl. Akad. Nauk SSSR'' , '''2''' (1934) pp. 4–6</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> T. Schneider, "Transzendenzuntersuchungen periodischer Functionen I, II" ''J. Reine Angew. Math.'' , '''172''' (1934) pp. 65–69; 70–74 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A. Baker, "Transcendental number theory" , Cambridge Univ. Press (1975) {{MR|0422171}} {{ZBL|0297.10013}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> V.G. Sprindzhuk, "Classical Diophantine equations in two unknowns" , Moscow (1982) (In Russian) {{MR|0685430}} {{ZBL|0523.10008}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> N.I. Fel'dman, "Hilbert's seventh problem" , Moscow (1982) (In Russian)</TD></TR></table>
  
  
Line 10: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Mahler,   "Lectures on transcendental numbers" , ''Lect. notes in math.'' , '''546''' , Springer (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.O. Gel'fond,   "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D., et al. Bertrand,   "Les nombres transcendants" ''Mem. Soc. Math. France'' , '''13''' (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.B. Shidlovskii,   "Transcendental numbers" , de Gruyter (1989) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Y. André,   "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364030.png" />-functions and geometry" , Vieweg (1988)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Mahler, "Lectures on transcendental numbers" , ''Lect. notes in math.'' , '''546''' , Springer (1976) {{MR|0491533}} {{ZBL|0332.10019}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D., et al. Bertrand, "Les nombres transcendants" ''Mem. Soc. Math. France'' , '''13''' (1984) {{MR|0763958}} {{ZBL|0548.10021}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.B. Shidlovskii, "Transcendental numbers" , de Gruyter (1989) (Translated from Russian) {{MR|1033015}} {{ZBL|0689.10043}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Y. André, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093640/t09364030.png" />-functions and geometry" , Vieweg (1988) {{MR|0990016}} {{ZBL|0688.10032}} </TD></TR></table>

Revision as of 14:52, 24 March 2012

A number that is not a root of any polynomial with integer coefficients. The domain of definition of such numbers is the field of either the real, complex or -adic numbers. The existence and explicit construction of transcendental numbers was provided by J. Liouville [1] on the basis of the following fact, noted by him. Irrational algebraic numbers do not have "very good" approximations by rational numbers (see Liouville theorems). Similar considerations enable one to construct -adic transcendental numbers. G. Cantor [2], after discovering the countability of the set of all algebraic numbers and the uncountability of the set of all real numbers, thus proved that the transcendental real numbers form a set of the cardinality of the continuum. E. Borel [3], after introducing the first concepts of measure theory, established that "almost all" real numbers are transcendental. It was later found that Liouville transcendental numbers form an everywhere-dense subset of the real axis, having the cardinality of the continuum and zero Lebesgue measure. Despite the fact that already in the middle of the 18th century there arose the conjecture on the transcendency of numbers such as , , , , etc., proofs of this could not be obtained. The transcendency of was proved by Ch. Hermite [4], that of and, more generally, of logarithms of algebraic numbers by C.L.F. Lindemann [5], that of by A.O. Gel'fond [6]; C.L. Siegel [7] developed a general method for proving transcendency and algebraic independence of the values at algebraic points of entire functions of a specific class (the -functions), satisfying a linear differential equation with polynomial coefficients (cf. Siegel method). Gel'fond [8] and T. Schneider [9] simultaneously and independently proved that is transcendental if is algebraic and is an algebraic irrational (the so-called Hilbert's seventh problem); A. Baker [10] proved the transcendency of products of numbers of the form under natural restrictions. Similar results have been obtained for -adic transcendental numbers (including Engel's theory of -functions). The development of methods of the theory of transcendental numbers has proved to have a strong influence on new studies in Diophantine equations [10], [11].

References

[1] J. Liouville, "Sur des classes de très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" C.R. Acad. Sci. , 18 (1844) pp. 883–885; 910–911
[2] G. Cantor, "Gesammelte Abhandlungen mathematischen und philosophischen Inhalts" , G. Olms, reprint (1962) MR0148517 Zbl 0717.01007 Zbl 0441.04001 Zbl 0004.05401 Zbl 58.0043.01
[3] E. Borel, "Leçons sur les fonctions discontinues" , Gauthier-Villars (1898)
[4] Ch. Hermite, "Sur la fonction exponentielle" C.R. Acad. Sci. , 77 (1873) pp. 18–24; 74–79; 221–233; 285–293 Zbl 05.0248.01
[5] C.L.F. Lindemann, "Ueber die Zahl " Math. Ann. , 20 (1882) pp. 213–225 MR1510165 Zbl 14.0369.04 Zbl 14.0369.02
[6] A.O. Gel'fond, "Sur les nombre transcendants" C.R. Acad. Sci. , 189 (1929) pp. 1224–1226
[7] C.L. Siegel, "Ueber einige Anwendungen diophantischer Approximationen" Abhandl. Preuss. Akad. Wiss., Phys. Kl. , 1 (1929) pp. 1–70 Zbl 56.0180.05
[8] A.O. Gel'fond, "Sur le septième problème de Hilbert" Dokl. Akad. Nauk SSSR , 2 (1934) pp. 4–6
[9] T. Schneider, "Transzendenzuntersuchungen periodischer Functionen I, II" J. Reine Angew. Math. , 172 (1934) pp. 65–69; 70–74
[10] A. Baker, "Transcendental number theory" , Cambridge Univ. Press (1975) MR0422171 Zbl 0297.10013
[11] V.G. Sprindzhuk, "Classical Diophantine equations in two unknowns" , Moscow (1982) (In Russian) MR0685430 Zbl 0523.10008
[12] N.I. Fel'dman, "Hilbert's seventh problem" , Moscow (1982) (In Russian)


Comments

The results of Gel'fond and Schneider imply that for any , implies . Baker's generalization asserts that for any , -linear independence of implies -linear independence of . Moreover, one can give effective lower bounds for such linear forms. This has profound consequences for the theory of Diophantine equations (see [10]). Gel'fond's and Schneider's method has been further generalized to include -linear independence of periods and quasi-periods of elliptic curves and finally, through the work of G. Wüstholz, P. Philippon and M. Waldschmidt, this has resulted into very general statements of -linear independence on commutative algebraic groups defined over .

References

[a1] K. Mahler, "Lectures on transcendental numbers" , Lect. notes in math. , 546 , Springer (1976) MR0491533 Zbl 0332.10019
[a2] A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian)
[a3] D., et al. Bertrand, "Les nombres transcendants" Mem. Soc. Math. France , 13 (1984) MR0763958 Zbl 0548.10021
[a4] A.B. Shidlovskii, "Transcendental numbers" , de Gruyter (1989) (Translated from Russian) MR1033015 Zbl 0689.10043
[a5] Y. André, "-functions and geometry" , Vieweg (1988) MR0990016 Zbl 0688.10032
How to Cite This Entry:
Transcendental number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transcendental_number&oldid=21954
This article was adapted from an original article by V.G. Sprindzhuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article