Difference between revisions of "Iwasawa decomposition"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 2: | Line 2: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Iwasawa, "On some types of topological groups" ''Ann. of Math.'' , '''50''' (1949) pp. 507–558 {{MR|0029911}} {{ZBL|0034.01803}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) {{MR|0793377}} {{ZBL|0484.22018}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) {{MR|0514561}} {{ZBL|0451.53038}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306044.png" />-adique" ''Publ. Math. IHES'' , '''23''' (1964) pp. 45–74 {{MR|179298}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306045.png" />-adic Chevalley groups" ''Publ. Math. IHES'' , '''25''' (1965) pp. 5–48 {{MR|185016}} {{ZBL|}} </TD></TR></table> |
Line 10: | Line 10: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 {{MR|0754767}} {{ZBL|0543.58001}} </TD></TR></table> |
Revision as of 14:50, 24 March 2012
The unique representation of an arbitrary element of a non-compact connected semi-simple real Lie group as a product of elements of analytic subgroups , respectively, where , and are defined as follows. Let be a Cartan decomposition of the Lie algebra of ; let be the maximal commutative subspace of the space , and let be a nilpotent Lie subalgebra of such that is the linear hull of the root vectors in some system of positive roots with respect to . The decomposition of the Lie algebra as the direct sum of the subalgebras , and is called the Iwasawa decomposition [1] of the semi-simple real Lie algebra . The groups , and are defined to be the analytic subgroups of corresponding to the subalgebras , and , respectively. The groups , and are closed; and are simply-connected; contains the centre of , and the image of under the adjoint representation of is a maximal compact subgroup of the adjoint group of . The mapping is an analytic diffeomorphism of the manifold onto the Lie group . The Iwasawa decomposition plays a fundamental part in the representation theory of semi-simple Lie groups. The Iwasawa decomposition can be defined also for connected semi-simple algebraic groups over a -adic field (or, more generally, for groups of -adic type) (see [4], [5]).
References
[1] | K. Iwasawa, "On some types of topological groups" Ann. of Math. , 50 (1949) pp. 507–558 MR0029911 Zbl 0034.01803 |
[2] | M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018 |
[3] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) MR0514561 Zbl 0451.53038 |
[4] | F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps -adique" Publ. Math. IHES , 23 (1964) pp. 45–74 MR179298 |
[5] | N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups" Publ. Math. IHES , 25 (1965) pp. 5–48 MR185016 |
Comments
An example of an Iwasawa decomposition is with , the subgroup of diagonal matrices of and a lower triangular matrix with 's on the diagonal. So, in particular, every element of gets written as a product of a special orthogonal matrix and a lower triangular matrix.
References
[a1] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 MR0754767 Zbl 0543.58001 |
Iwasawa decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Iwasawa_decomposition&oldid=21877