Namespaces
Variants
Actions

Difference between revisions of "Diagonal group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
 
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.I. Kargapolov,  J.I. [Yu.I. Merzlyakov] Merzljakov,  "Fundamentals of the theory of groups" , Springer  (1979)  (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.I. Kargapolov,  J.I. [Yu.I. Merzlyakov] Merzljakov,  "Fundamentals of the theory of groups" , Springer  (1979)  (Translated from Russian) {{MR|0551207}} {{ZBL|0549.20001}} </TD></TR></table>
  
  
Line 10: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR></table>

Latest revision as of 10:03, 24 March 2012

A group of non-degenerate diagonal matrices. The group of matrices conjugate with a diagonal group is known as a diagonizable linear group.

References

[1] M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian) MR0551207 Zbl 0549.20001


Comments

For the role of diagonizable groups in the theory of linear algebraic groups (cf. Linear algebraic group) see [a1].

References

[a1] A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
How to Cite This Entry:
Diagonal group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagonal_group&oldid=21835
This article was adapted from an original article by Yu.I. Merzlyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article